1
|
Mineur YS, Picciotto MR. How can I measure brain acetylcholine levels in vivo? Advantages and caveats of commonly used approaches. J Neurochem 2023; 167:3-15. [PMID: 37621094 PMCID: PMC10616967 DOI: 10.1111/jnc.15943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
The neurotransmitter acetylcholine (ACh) plays a central role in the regulation of multiple cognitive and behavioral processes, including attention, learning, memory, motivation, anxiety, mood, appetite, and reward. As a result, understanding ACh dynamics in the brain is essential for elucidating the neural mechanisms underlying these processes. In vivo measurements of ACh in the brain have been challenging because of the low concentrations and rapid turnover of this neurotransmitter. Here, we review a number of techniques that have been developed to measure ACh levels in the brain in vivo. We follow this with a deeper focus on use of genetically encoded fluorescent sensors coupled with fiber photometry, an accessible technique that can be used to monitor neurotransmitter release with high temporal resolution and specificity. We conclude with a discussion of methods for analyzing fiber photometry data and their respective advantages and disadvantages. The development of genetically encoded fluorescent ACh sensors is revolutionizing the field of cholinergic signaling, allowing temporally precise measurement of ACh release in awake, behaving animals. Use of these sensors has already begun to contribute to a mechanistic understanding of cholinergic modulation of complex behaviors.
Collapse
Affiliation(s)
- Yann S. Mineur
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| | - Marina R. Picciotto
- Department of Psychiatry, Yale University School of Medicine, 34 Park Street, 3 Floor Research, New Haven, CT 06508, USA
| |
Collapse
|
2
|
Ahlawat J, Sharma M, Shekhar Pundir C. Advances in biosensor development for detection of acetylcholine. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
3
|
Ahlawat J, Sharma M, Pundir CS. An Amperometric Acetylcholine Biosensor Based on Co-Immobilization of Enzyme Nanoparticles onto Nanocomposite. BIOSENSORS 2023; 13:386. [PMID: 36979598 PMCID: PMC10046218 DOI: 10.3390/bios13030386] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/01/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
An electrochemical biosensor was fabricated using nanoparticles of acetylcholinesterase (AChE) and choline oxidase (ChO)/Pt nanoparticles (PtNPs)/porous graphene oxide nanosheet (GONS) composite. A pencil graphite electrode (PGE) was used for the electrodeposition of nanocomposite and the determination of acetylcholine (ACh), a neurotransmitter. Various techniques such as scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectra and cyclic voltammetry (CV) were used for characterization. This biosensor (AChENPs-ChONPs/GONS/PtNPs/PGE) indicated a very short response time (3 s), a lower limit of detection (0.001 µM), good linearity (0.001-200 µM), longer storage stability (6 months) and better reproducibility. The percent analytical recoveries of added acetylcholine in serum (5.0 and 10 µM) were found to be 97.6 ± 0.7 and 96.5 ± 0.3 for the present biosensor. The coefficients of variation were obtained to be 8% and 3.25%, correspondingly. The biosensor was applied to measure the ACh amount in the serum of healthy individuals and patients with Alzheimer's disease. The number of interferents had no effect on the biosensor at their physiological concentrations.
Collapse
Affiliation(s)
- Jyoti Ahlawat
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (J.A.); (M.S.)
| | - Minakshi Sharma
- Department of Zoology, Maharshi Dayanand University, Rohtak 124001, India; (J.A.); (M.S.)
| | | |
Collapse
|
4
|
Ashraf G, Aziz A, Iftikhar T, Zhong ZT, Asif M, Chen W. The Roadmap of Graphene-Based Sensors: Electrochemical Methods for Bioanalytical Applications. BIOSENSORS 2022; 12:1183. [PMID: 36551150 PMCID: PMC9775289 DOI: 10.3390/bios12121183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 06/17/2023]
Abstract
Graphene (GR) has engrossed immense research attention as an emerging carbon material owing to its enthralling electrochemical (EC) and physical properties. Herein, we debate the role of GR-based nanomaterials (NMs) in refining EC sensing performance toward bioanalytes detection. Following the introduction, we briefly discuss the GR fabrication, properties, application as electrode materials, the principle of EC sensing system, and the importance of bioanalytes detection in early disease diagnosis. Along with the brief description of GR-derivatives, simulation, and doping, classification of GR-based EC sensors such as cancer biomarkers, neurotransmitters, DNA sensors, immunosensors, and various other bioanalytes detection is provided. The working mechanism of topical GR-based EC sensors, advantages, and real-time analysis of these along with details of analytical merit of figures for EC sensors are discussed. Last, we have concluded the review by providing some suggestions to overcome the existing downsides of GR-based sensors and future outlook. The advancement of electrochemistry, nanotechnology, and point-of-care (POC) devices could offer the next generation of precise, sensitive, and reliable EC sensors.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ayesha Aziz
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Tayyaba Iftikhar
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zi-Tao Zhong
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Muhammad Asif
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wei Chen
- Britton Chance Center for Biomedical Photonics at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Jain U, Saxena K, Hooda V, Balayan S, Singh AP, Tikadar M, Chauhan N. Emerging vistas on pesticides detection based on electrochemical biosensors - An update. Food Chem 2022; 371:131126. [PMID: 34583176 DOI: 10.1016/j.foodchem.2021.131126] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/19/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022]
Abstract
Organophosphates and carbamates pesticides are widely used to increase crop production globally causing a threat to human health and the environment. A variety of pesticides are applied during different stages of vegetable production. Therefore, monitoring the presence of pesticide residues in food and soil has great relevance to sensitive pesticide detection through distinct determination methods that are urgently required. Conventional techniques for the detection of pesticides have several limitations that can be overcome by the development of highly sensitive, fast, reliable and easy-to-use electrochemical biosensors. Herein, we describe the types of biosensors with the main focus on electrochemical biosensors fabricated for the detection of OPPs and carbamates pesticides. An overview of conventional techniques employed for pesticide detection is also discussed. This review aims to provide a glance of recently developed biosensors for some common pesticides like chlorpyrifos, malathion, parathion, paraoxon, and carbaryl which are present in food and environment samples.
Collapse
Affiliation(s)
- Utkarsh Jain
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Kirti Saxena
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Vinita Hooda
- Department of Botany, M. D. University, Rohtak 124001, Haryana, India
| | - Sapna Balayan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Amar Pal Singh
- Amity Institute of Forensic Sciences (AIFS), Amity University Uttar Pradesh (AUUP), Noida 201313, India; Forensic Science Laboratory, Govt. of NCT of Delhi, Sector-14, Rohini, Delhi, India
| | - Mayukh Tikadar
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India
| | - Nidhi Chauhan
- Amity Institute of Nanotechnology (AINT), Amity University Uttar Pradesh (AUUP), Noida 201313, India.
| |
Collapse
|
6
|
Song H, Liu Y, Fang Y, Zhang D. Carbon-Based Electrochemical Sensors for In Vivo and In Vitro Neurotransmitter Detection. Crit Rev Anal Chem 2021; 53:955-974. [PMID: 34752170 DOI: 10.1080/10408347.2021.1997571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
As essential neurological chemical messengers, neurotransmitters play an integral role in the maintenance of normal mammalian physiology. Aberrant neurotransmitter activity is associated with a range of neurological conditions including Parkinson's disease, Alzheimer's disease, and Huntington's disease. Many studies to date have tested different approaches to detecting neurotransmitters, yet the detection of these materials within the brain, due to the complex environment of the brain and the rapid metabolism of neurotransmitters, remains challenging and an area of active research. There is a clear need for the development of novel neurotransmitter sensing technologies capable of rapidly and sensitively monitoring specific analytes within the brain without adversely impacting the local microenvironment in which they are implanted. Owing to their excellent sensitivity, portability, ease-of-use, amenability to microprocessing, and low cost, electrochemical sensors methods have been widely studied in the context of neurotransmitter monitoring. The present review, thus, surveys current progress in this research field, discussing developed electrochemical neurotransmitter sensors capable of detecting dopamine (DA), serotonin (5-HT), acetylcholine (Ach), glutamate (Glu), nitric oxide (NO), adenosine (ADO), and so on. Of these technologies, those based on carbon nanostructures-modified electrodes including carbon nanotubes (CNTs), graphene (GR), gaphdiyne (GDY), carbon nanofibers (CNFs), and derivatives thereof hold particular promise owing to their excellent biocompatibility and electrocatalytic performance. The continued development of these and related technologies is, thus, likely to lead to major advances in the clinical diagnosis of neurological diseases and the detection of novel biomarkers thereof.
Collapse
Affiliation(s)
- Huijun Song
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yangyang Liu
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Yuxin Fang
- Research Center of Experimental Acupuncture Science, College of Acumox and Tuina, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| | - Di Zhang
- College of Pharmaceutical Engineering of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, PR China
| |
Collapse
|
7
|
An overview of recent analysis and detection of acetylcholine. Anal Biochem 2021; 632:114381. [PMID: 34534543 DOI: 10.1016/j.ab.2021.114381] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 01/15/2023]
Abstract
Acetylcholine (ACh), the major neurotransmitter secreted by cholinergic neurons, is widely found in the peripheral and central nervous systems, and its main function is to complete the transmission of neural signals. When cholinergic neurons are impaired, the synthesis and decomposition of ACh are abnormal and the neural signalling transition is blocked. To some extent, the concentration changes of ACh reflects the occurrence and development of many kinds of nervous system diseases, such as Alzheimer's disease, Parkinson's disease, Myasthenia gravis and so on. Thus, researches of the physiological and pathological roles and the tracking of the concentration changes of ACh in vivo are significant to the prevention and treatment of these diseases. In the paper, the pathophysiological functions and the comprehensive research progress on detection methods of ACh are summarized. Specifically, the latest research and related applications of the optical and electrochemical biosensors are described, and the future development directions and challenges are prospected, which provides a reference for the detection and applications of ACh.
Collapse
|
8
|
Soto D, Alzate M, Gallego J, Orozco J. Hybrid nanomaterial/catalase-modified electrode for hydrogen peroxide sensing. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2020.114826] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
9
|
Abstract
Choline oxidase catalyzes the four-electron, two-step, flavin-mediated oxidation of choline to glycine betaine. The enzyme is important both for medical and biotechnological reasons, because glycine betaine is one among a limited number of compatible solutes used by cells to counteract osmotic pressure. From a fundamental standpoint, choline oxidase has emerged as one of the paradigm enzymes for the oxidation of alcohols catalyzed by flavoproteins. Mechanistic, structural, and computational studies have elucidated the mechanism of action of the enzyme from Arthrobacter globiformis at the molecular level. Both choline and oxygen access to the active site cavity are gated and tightly controlled. Amino acid residues involved in substrate binding, and their contribution, have been identified. The mechanism of choline oxidation, with a hydride transfer reaction, an asynchronous transition state, the formation and stabilization of an alkoxide transient species, and a quantum mechanical mode of reaction, has been elucidated. The importance of nonpolar side chains for oxygen localization and of the positive charge harbored on the substrate for activation of oxygen for reaction with the reduced flavin have been recognized. Interesting phenomena, like the formation of a metastable photoinduced flavin-protein adduct, the reversible formation of a bicovalent flavoprotein, and the trapping of the enzyme in inactive conformations, have been described. This review summarizes the current status of our understanding on the structure-function-dynamics of choline oxidase.
Collapse
Affiliation(s)
- Giovanni Gadda
- Department of Chemistry, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States; Department of Biology, Center for Diagnostics and Therapeutics, Georgia State University, Atlanta, GA, United States.
| |
Collapse
|