1
|
Arockiasamy FS, Manoharan B, Santhi VM, Prakalathan K, Periasamy D, Dhandapani A, Natarajan V, Krishnasamy S, Thiagamani SMK, Ilyas R. Navigating the nano-world future: Harnessing cellulose nanocrystals from green sources for sustainable innovation. Heliyon 2025; 11:e41188. [PMID: 39811333 PMCID: PMC11730545 DOI: 10.1016/j.heliyon.2024.e41188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/09/2024] [Accepted: 12/12/2024] [Indexed: 01/16/2025] Open
Abstract
Cellulose nanocrystals (CNCs) are a class of materials that have received significant attention in recent years due to their unique properties and potential applications. CNCs are extracted from plant fibers and possess high strength, stiffness, and biocompatibility, making them attractive materials for use in various fields such as biomedical engineering, renewable energy, and nanotechnology. This provides an in-depth discussion of the extraction, characterization, and promising applications of CNCs. Furthermore, it discusses the sources of CNCs and the methods used for their extraction as well as the common techniques used to characterize their properties. This work also highlights various applications of CNCs and their advantages over other materials. The challenges associated with the use of CNCs and the current research efforts to address these challenges were analyzed. In addition, the potential future directions and applications for CNCs were discussed. This review article aims to provide a comprehensive understanding of CNCs and their potential as versatile and sustainable materials.
Collapse
Affiliation(s)
- Felix Sahayaraj Arockiasamy
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Bharathi Manoharan
- Department of Aeronautical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore, Tamil Nadu, 641402, India
| | - Vivek Mariappan Santhi
- Department of Chemical Engineering, Indian Institute of Technology Madras, Chennai, 600036, Tamil Nadu, India
| | - K. Prakalathan
- Department of Plastic Technology, Central Institute of Petrochemicals Engineering & Technology, Chennai, 600 032, Tamil Nadu, India
| | - Diwahar Periasamy
- Department of Plastic Technology, Central Institute of Petrochemicals Engineering & Technology, Chennai, 600 032, Tamil Nadu, India
| | - Aravind Dhandapani
- University Science Instrumentation Centre, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Varagunapandiyan Natarajan
- Department of Chemical Engineering, College of Engineering, King Khalid University, Abha, 61411, Saudi Arabia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore, 641 062, Tamil Nadu, India
| | - Senthil Muthu Kumar Thiagamani
- Department of Mechanical Engineering, Kalasalingam Academy of Research and Education, Krishnankoil, 626126, Tamil Nadu, India
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
- Department of Mechanical Engineering, INTI International University, Persiaran Perdana BBN, Putra Nilai, 71800, Nilai, Negeri Sembilan, Malaysia
| | - R.A. Ilyas
- Centre for Advanced Composite Materials (CACM) Universiti Teknologi Malaysia, 81310, Skudai, Johor Bahru, Johor, Malaysia
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor, 81310, Malaysia
| |
Collapse
|
2
|
Souza P, Grisi CVB, Monção É, da Silva MVS, de Souza AL. Obtaining Microcellulose from Solid Agro-Waste by Ball Mill Assisted by Light Acid Hydrolysis Process. ACS OMEGA 2025; 10:588-598. [PMID: 39829462 PMCID: PMC11740134 DOI: 10.1021/acsomega.4c07196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 12/20/2024] [Accepted: 12/25/2024] [Indexed: 01/22/2025]
Abstract
Cellulose, the most abundant biopolymer on Earth, is biodegradable, nontoxic, and derived from renewable sources. Its properties and applications depend on the extraction methods and sources, making plant waste reuse a sustainable production option. This study aimed to assess the potential of cowpea pod skin (Vigna unguiculata) as a source of microcellulose (CPMC) using a chemical-mechanical process involving ball milling combined with acid hydrolysis. For a comparative analysis of the method's efficiency and biomass performance, corn straw (Zea mays L., CSMC) and pineapple peel (Ananas comosus, PPMC) were also utilized as extraction sources. The chemical composition of microcelluloses (MCs) was investigated by Fourier Transform Infrared Spectroscopy (FTIR), thermal behavior by Thermogravimetric Analysis (TGA), crystallinity by X-ray Diffraction (XRD), morphologies by Scanning Electron Microscopy (SEM), and shape and size by Atomic Force Microscopy (AFM). In the FTIR spectra, absorption bands characteristic of cellulose were observed at 3408 cm-1 (hydroxyl group OH stretching), 1640 cm-1 (adsorbed water molecules), 1205 cm-1 (O-H deformation vibration), 1165 cm-1 (C-O-C- stretching vibration), 1113 cm-1 (glucose ring stretching vibration), 1055 cm-1 (CO stretching), 1028 cm-1 (C-OH stretching), and 895 cm-1 (β-glycosidic bonds). The TGA/DTG curves of all the samples showed three stages of mass loss, and CPMC proved to be the sample with the greatest thermal stability. The crystallinity indices of the MCs samples ranged between 69.23-75%. The micrographs show compact and lamellar materials. However, AFM measurements revealed distinct nanostructures for each of the MCs obtained, displaying lamellar structures from 20 to 280 nm. Therefore, this method was efficient for extracting MCs from different types of biomass. The analyses demonstrated greater efficiency in the CPMC and CSMC samples. In this context, they have become promising candidates for application in a wide range of industrial materials.
Collapse
Affiliation(s)
- Priscila
S. Souza
- Postgraduate
Program in Chemistry, Universidade Federal
da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Cristiani V. B. Grisi
- Postgraduate
Program in Chemical engineering, Universidade
Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Érica
C. Monção
- Postgraduate
Program in Food Science and Technology, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| | - Marcus V. S. da Silva
- Postgraduate
Program in Physics, Universidade Federal
da Bahia, Campus Universitário de Ondina - Ondina, Salvador 40170-115, Brazil
| | - Antonia L. de Souza
- Postgraduate
Program in Chemistry, Universidade Federal
da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
- Postgraduate
Program in Food Science and Technology, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-900, Brazil
| |
Collapse
|
3
|
Wu J, Gao Y, Shen H, Yan S, Zhao R, Wang F, Shen X, Li Z, Yao X, Wang Y. Application potential of wheat bran cellulose nanofibers as Pickering emulsion stabilizers and stabilization mechanisms. Food Chem X 2024; 24:101922. [PMID: 39568513 PMCID: PMC11577120 DOI: 10.1016/j.fochx.2024.101922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/17/2024] [Accepted: 10/22/2024] [Indexed: 11/22/2024] Open
Abstract
In this paper, cellulose nanofibers (CNF) were prepared from wheat bran (WB) and the structure of CNF was determined. Fourier transform infrared spectra and X-ray diffractograms showed the groups such as hydroxyl and carboxyl groups and cellulose type 1 structure possessed by CNF, respectively. Scanning electron microscopy exhibited that CNF was filamentous and intertwined. In addition, Pickering emulsions were prepared using CNF and the physicochemical properties of the emulsions were characterized. The results showed that CNF was able to increase the zeta potential and viscosity of the emulsions, thus improving the stability of the emulsions. Moreover, CNF formed a physical barrier by adsorbing at the oil-water interface and near the oil droplets and CNF dispersed in the aqueous phase formed a network structure to restrict the movement of oil droplets, thus improving the stability of the emulsions. These findings may provide some new insights for the potential applications of WB.
Collapse
Affiliation(s)
- Jiawu Wu
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yang Gao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Huifang Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Song Yan
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Rui Zhao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Fei Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinting Shen
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Zhebin Li
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Xinmiao Yao
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| | - Yao Wang
- Food Processing Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
- Heilongjiang Province Key Laboratory of Food Processing, Harbin 150086, China
- Heilongjiang Province Engineering Research Center of Whole Grain Nutritious Food, Harbin 150086, China
| |
Collapse
|
4
|
Vital N, Cardoso M, Kranendonk M, Silva MJ, Louro H. Evaluation of the cyto- and genotoxicity of two types of cellulose nanomaterials using human intestinal cells and in vitro digestion simulation. Arch Toxicol 2024:10.1007/s00204-024-03911-2. [PMID: 39718590 DOI: 10.1007/s00204-024-03911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/20/2024] [Indexed: 12/25/2024]
Abstract
Emerging cellulose nanomaterials (CNMs) may have commercial impacts in multiple sectors, being their application particularly explored in the food sector. Thus, their potential adverse effects in the gastrointestinal tract should be evaluated before marketing. This work aimed to assess the safety of two CNMs (CNF-TEMPO and CMF-ENZ) through the investigation of their cytotoxicity, genotoxicity (comet and micronucleus assays), and capacity to induce reactive oxygen species in human intestinal cells, and their mutagenic effect using the Hprt gene mutation assay. Each toxicity endpoint was analysed after cells exposure to a concentration-range of each CNM or to its digested product, obtained by the application of a standardized static in vitro digestion method. The results showed an absence of cytotoxic effects in intestinal cells, up to the highest concentration tested (200 µg/mL or 25 µg/mL, for non-digested and digested CNMs, respectively). Of note, the cytotoxicity of the digestion control limited the top concentration of digested samples (25 µg/mL) for subsequent assays. Application of a battery of in vitro assays showed that CNF-TEMPO and CMF-ENZ do not induce gene mutations or aneugenic/clastogenic effects. However, due to the observed DNA damage induction, a genotoxic potential cannot be excluded, even though in vitro digestion seems to attenuate the effect. The lowest digested CNF-TEMPO concentration induced chromosomal damage in Caco-2 cells, leading to an equivocal outcome. Ongoing research on epigenotoxic effects of these CNMs samples may strengthen the lines of evidence on their safety when ingested, paving the way for their innovative application in the food industry.
Collapse
Affiliation(s)
- Nádia Vital
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria Cardoso
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal.
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal.
| | - Henriqueta Louro
- Department of Human Genetics, National Institute of Health Dr. Ricardo Jorge, Avenida Padre Cruz, 1649-016, Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056, Lisbon, Portugal
| |
Collapse
|
5
|
Subbuvel M, Mohan R, Dubey U, Gopalaswamy Pillai UT, Kavan P. Fabrication of nutritional edible bowls with wheat bran, multigrain powder, refined flour, flax seed powder, fenugreek essential oil, and jaggery. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024. [PMID: 39633239 DOI: 10.1002/jsfa.14057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 12/07/2024]
Abstract
BACKGROUND The recycling or decomposition of plastic waste poses challenges due to its non-organic nature. As a consequence of the unregulated production of plastic goods, a substantial quantity of plastic garbage has been generated. There is an increasing demand for sustainable substitutes for synthetic petrochemical-derived plastic products. The utilization of cake molds made from plastic materials has become increasingly prevalent and they have become widely employed household items. Bio-based bowls have the potential to serve as viable alternatives to their plastic counterparts. This study involved the fabrication of a bio-based healthy edible bowl mold using natural ingredients, including multigrain flour, refined flour (maida), jaggery, flaxseed, and fenugreek essential oil. A nutrient-rich edible bowl was developed by using different weight percentages (ranging from 0% to 10%) of wheat bran (WB). RESULT The addition of WB to the nutritious bowl resulted in the lowest levels of water absorption and oil absorption compared with the control group. The enhanced nutritional bowl demonstrated notable antioxidant activity. The inclusion of wheat bran resulted in a further enhancement of antioxidant action, with an approximate increase of 28% observed. The protein value of the nutritious bowl came to be 13.17 g/0.1 kg of protein. It was also revealed from an early soil degradation test that the bowl that was created exhibited biodegradability. CONCLUSION The findings of this study offer a potentially viable method for developing a more sustainable substitute for cake molds/bowls made from plastic materials. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mohan Subbuvel
- Department of Mechanical Engineering, Dhanalakshmi Srinivasan University, Trichy, India
| | - Ramesh Mohan
- Department of Mechanical Engineering, SRM Institute of Science and Technology, Chennai, India
| | - Umang Dubey
- Department of Production Engineering, National Institute of Technology Tiruchirappalli, Trichy, India
| | | | - Panneerselvam Kavan
- Department of Production Engineering, National Institute of Technology Tiruchirappalli, Trichy, India
| |
Collapse
|
6
|
Manzoor MF, Riaz S, Verma DK, Waseem M, Goksen G, Ali A, Zeng XA. Nutraceutical tablets: Manufacturing processes, quality assurance, and effects on human health. Food Res Int 2024; 197:115197. [PMID: 39593282 DOI: 10.1016/j.foodres.2024.115197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/17/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
Consumers are increasingly focused on food products' nutritional content and health aspects. Nutraceutical tablets containing nutritional supplements have seen remarkable progress and are well-known for their precise dosage, which can improve consumer health by increasing the intake of bioactive compounds and vital nutrients. Oral nutraceuticals are frequently used to enhance consumer well-being, with around 80% of products being in solid form. This manuscript aims to thoroughly analyze and summarize the gathered literature using various search engines to investigate key trends in the market, the components involved, and the functional impact of nutraceutical tablets. Furthermore, the manuscript explores various nutraceutical tablets such as chewable tablets, gelling capsules, vitamin tablets, spirulina tablets, and bran tablets. A perspective is provided on multiple production and manufacturing methods of nutraceutical tablets, along with comparing these processes. Following this, evaluating quality characteristics and enforcing quality assurance procedures have been emphasized. The manuscript discussed the physiological breakdown of ingestible nutraceutical tablets in the human body and the possible toxic effects of the components found in these tablets. Furthermore, the focus is on producing nutraceutical tablets in a more environmentally friendly manner, tackling sustainability issues, offering solutions, and delving into potential opportunities. This manuscript will create a significant platform for people from the research, scientific, and industrial fields seeking novel and inventive projects.
Collapse
Affiliation(s)
- Muhammad Faisal Manzoor
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| | - Sakhawat Riaz
- The State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science, Anhui Agriculture University, Hefei, China
| | - Deepak Kumar Verma
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - Muhammad Waseem
- Department of Food Science & Technology, Faculty of Agriculture & Environment, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Mersin, Turkey
| | - Anwar Ali
- Institute of Human Nutrition Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159 St., 02-776 Warsaw, Poland
| | - Xin-An Zeng
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, School of Food Science and Engineering, Foshan University, Foshan, China; School of Food Science and Engineering, South China University of Technology, Guangzhou, China.
| |
Collapse
|
7
|
Zhu Y, Wei Z, Jiang F, Hu W, Yu X, Du SK. Comparative analysis of millet bran nanocelluloses with various morphologies: Revealing differences in the formation mechanism and structure characteristics. Carbohydr Polym 2024; 342:122419. [PMID: 39048244 DOI: 10.1016/j.carbpol.2024.122419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/03/2024] [Accepted: 06/18/2024] [Indexed: 07/27/2024]
Abstract
To investigate the differences of nanocelluloses with various morphologies, ammonium persulphate (APS) oxidation, H3PO4 dissolution and regeneration, and ball milling combined with 1-butyl-3-methylimidazolium chloride ([BMIM]Cl) as a medium were applied to isolate cellulose nanocrystals (MCNCs), cellulose nanospheres (MCNSs) and cellulose fibrils (MCNFs) from millet bran. The structure, properties, and formation mechanism of three nanocelluloses were comparatively investigated by Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, atomic force microscope, scanning electronic microscope, and emulsifying ability evaluation. MCNCs had needle-like structures due to the removal of amorphous regions, MCNFs appeared fibrous structures due to swelling and mechanical force, and MCNSs displayed spherical structures through self-assembly. MCNCs and MCNFs were confirmed to exhibit cellulose I structures with crystallinities of 61.24 % and 50.09 %, respectively. MCNSs showed the highest crystallinity of 68.41 % with a cellulose II structure. MCNFs and MCNSs exhibited higher initial decomposition temperatures, while MCNCs showed the highest residual mass. MCNFs suspension showed the highest apparent viscosity, while MCNSs suspension demonstrated superior dispersion. MCNSs-emulsion displayed the smallest droplet size, and MCNFs-emulsion exhibited the highest viscosity. This study reveals the formation mechanisms and relationship between morphologies and properties of three millet bran nanocelluloses, providing a theoretical basis for their application.
Collapse
Affiliation(s)
- Yulian Zhu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Ziqi Wei
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Fang Jiang
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Wenxuan Hu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xiuzhu Yu
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Shuang-Kui Du
- College of Food Science and Engineering, Northwest A&F University, 22 Xinong Road, Yangling, Shaanxi 712100, China; Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Qureshi SS, Nizamuddin S, Xu J, Vancov T, Chen C. Cellulose nanocrystals from agriculture and forestry biomass: synthesis methods, characterization and industrial applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:58745-58778. [PMID: 39340607 PMCID: PMC11513767 DOI: 10.1007/s11356-024-35127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Agricultural and forestry biomass wastes, often discarded or burned without adequate management, lead to significant environmental harm. However, cellulose nanocrystals (CNCs), derived from such biomass, have emerged as highly promising materials due to their unique properties, including high tensile strength, large surface area, biocompatibility, and renewability. This review provides a detailed analysis of the lignocellulosic composition, as well as the elemental and proximate analysis of different biomass sources. These assessments help determine the yield and characteristics of CNCs. Detailed discussion of CNC synthesis methods -ranging from biomass pretreatment to hydrolysis techniques such as acid, mineral, solid acid, ionic liquid, and enzymatic methods-are provided. The key physical, chemical, and thermal properties of CNCs are also highlighted, particularly in relation to their industrial applications. Recommendations for future research emphasize the need to optimize CNC synthesis processes, identify suitable biomass feedstocks, and explore new industrial applications.
Collapse
Affiliation(s)
- Sundus Saeed Qureshi
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Sabzoi Nizamuddin
- Water Regulation Division, Grampians Wimmera Mallee Water (GWMWater) Corporation, Horsham, Victoria, 3400, Australia
| | - Jia Xu
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia
| | - Tony Vancov
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, 2568, Australia
| | - Chengrong Chen
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Brisbane, Queensland, 4111, Australia.
- Cooperative Research Centre for High Performance Soils, Callaghan, NSW, Australia.
| |
Collapse
|
9
|
Li Y, Lu J, Shi J, Zhang L, Mu H, Cui T. Carboxymethyl chitosan nanoparticle-modulated cationic hydrogels doped with copper ions for combating bacteria and facilitating wound healing. Front Bioeng Biotechnol 2024; 12:1429771. [PMID: 39372435 PMCID: PMC11449867 DOI: 10.3389/fbioe.2024.1429771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/11/2024] [Indexed: 10/08/2024] Open
Abstract
The simultaneous administration of antibacterial treatment and acceleration of tissue regeneration are crucial for the effective healing of infected wounds. In this work, we developed a facile hydrogel (PCC hydrogel) through coordination and hydrogen interactions by polymerizing acrylamide monomers in the presence of carboxymethyl chitosan nanoparticles and copper ions. The prepared PCC hydrogel demonstrated effective bacterial capture from wound exudation and exhibited a potent bactericidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. Furthermore, slow release of copper ions from the hydrogel facilitated wound healing by promoting cell migration, collagen deposition and angiogenesis. Additionally, the PCC hydrogel possessed excellent biocompatibility and hemostatic properties. The practical effectiveness of PCC hydrogel in addressing bacterial infections and facilitating wound healing was verified using a mouse model of MRSA-induced wound infections. Overall, this work presents a simple yet efficient multifunctional hydrogel platform that integrates antibacterial activity, promotion of wound healing, and hemostasis for managing bacteria-associated wounds.
Collapse
Affiliation(s)
- Yaqin Li
- Xinjiang Xinhe Zhitong Technology Service Co. Ltd., Urumqi, China
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Jianping Lu
- Xinjiang Xinhe Zhitong Biotechnology Co. Ltd., Urumqi, China
| | - Jingru Shi
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingjiao Zhang
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Haibo Mu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi, China
| | - Tong Cui
- Karamay Central Hospital of Xinjiang, Karamay, China
| |
Collapse
|
10
|
Andrew LJ, Lizundia E, MacLachlan MJ. Designing for Degradation: Transient Devices Enabled by (Nano)Cellulose. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2401560. [PMID: 39221689 DOI: 10.1002/adma.202401560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/11/2024] [Indexed: 09/04/2024]
Abstract
Transient technology involves materials and devices that undergo controlled degradation after a reliable operation period. This groundbreaking strategy offers significant advantages over conventional devices based on non-renewable materials by limiting environmental exposure to potentially hazardous components after disposal, and by increasing material circularity. As the most abundant naturally occurring polymer on Earth, cellulose is an attractive material for this purpose. Besides, (nano)celluloses are inherently biodegradable and have competitive mechanical, optical, thermal, and ionic conductivity properties that can be exploited to develop sustainable devices and avoid the end-of-life issues associated with conventional systems. Despite its potential, few efforts have been made to review current advances in cellulose-based transient technology. Therefore, this review catalogs the state-of-the-art developments in transient devices enabled by cellulosic materials. To provide a wide perspective, the various degradation mechanisms involved in cellulosic transient devices are introduced. The advanced capabilities of transient cellulosic systems in sensing, photonics, energy storage, electronics, and biomedicine are also highlighted. Current bottlenecks toward successful implementation are discussed, with material circularity and environmental impact metrics at the center. It is believed that this review will serve as a valuable resource for the proliferation of cellulose-based transient technology and its implementation into fully integrated, circular, and environmentally sustainable devices.
Collapse
Affiliation(s)
- Lucas J Andrew
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| | - Erlantz Lizundia
- Life Cycle Thinking Group, Department of Graphic Design and Engineering Projects, Faculty of Engineering in Bilbao, University of the Basque Country (UPV/EHU), Bilbao, 48013, Spain
- BCMaterials, Basque Center for Materials, Applications, and Nanostructures, UPV/EHU Science Park, Leioa, 48940, Spain
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, BC, V6T 1Z4, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa, 920-1192, Japan
- UBC BioProducts Institute, 2385 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
11
|
Allahyari M, Motavalizadeh-Kakhky AR, Mehrzad J, Zhiani R, Chamani J. Cellulose nanocrystals derived from chicory plant: an un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway. J Biomol Struct Dyn 2024; 42:5575-5589. [PMID: 37340682 DOI: 10.1080/07391102.2023.2226751] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/13/2023] [Indexed: 06/22/2023]
Abstract
A significant contributing factor in the development of breast cancer is the estrogens. The synthesis of estrogens is primarily facilitated by aromatase (CYP19), a cytochrome P450 enzyme. Notably, aromatase is expressed at a higher level in human breast cancer tissue compared with the normal breast tissue. Therefore, inhibiting aromatase activity is a potential strategy in hormone receptor-positive breast cancer treatment. In this study, Cellulose Nanocrystals (CNCs) were obtained from Chicory plant waste through a sulfuric acid hydrolysis method with the objective of investigating that whether the obtained CNCs could act as an inhibitor of aromatase enzyme, and prevent the conversion of androgens to estrogens. Structural analysis of CNCs was carried out using Fourier transform infrared spectroscopy (FTIR) and X-ray diffraction (XRD), while morphological results were obtained using AFM, TEM, and FE-SEM. Furthermore, the nano-particles were found to be spherical in shape with a diameter range of 35-37 nm and displayed a reasonable negative surface charge. Stable transfection of MCF-7 cells with CYP19 has demonstrated the ability of CNCs to inhibit aromatase activities and prevent cell growth by interfering with the enzyme activities. Spectroscopic results revealed the binding constant of CYP19-CNCs and (CYP19-Androstenedione)-CNCs complexes to be 2.07 × 103 L/gr and 2.06 × 104 L/gr, respectively. Conductometry and CD data reported different interaction behaviors among CYP19 and CYP19-Androstenedione complexes at the presence of CNCs in the system. Moreover, the addition of CNCs to the solution in a successive manner resulted in the enhancement of the secondary structure of the CYP19-androstenedione complex. Additionally, CNCs showed a marked reduction in the viability of cancer cells compared to normal cells by enhancing the expression of Bax and p53 at protein and mRNA levels, and by decreasing mRNA levels of PI3K, AKT, and mTOP, as well as protein levels of PI3Kg-P110 and P-mTOP, in MCF-7 cells after incubation with CNCs at IC50 concentration. These findings confirm the decrease in proliferation of breast cancer cells associated with induction of apoptosis through down-regulation of the PI3K/AKT/mTOP signaling pathway. According to the provided data, the obtained CNCs are capable of inhibiting aromatase enzyme activity, which has significant implications for the treatment of cancer.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Manizheh Allahyari
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Ali Reza Motavalizadeh-Kakhky
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- New Material Technology and Processing Research Center, Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshid Mehrzad
- Department of Biochemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Rahele Zhiani
- Department of Chemistry, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
- Advance Research Center of Chemistry Biochemistry& Nanomaterial, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
12
|
Zhong J, Xie H, Wang Y, Xiong H, Zhao Q. Nanofibrillated cellulose derived from rice bran, wheat bran, okara as novel dietary fibers: Structural, physicochemical, and functional properties. Int J Biol Macromol 2024; 273:132902. [PMID: 38852734 DOI: 10.1016/j.ijbiomac.2024.132902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/28/2024] [Accepted: 06/02/2024] [Indexed: 06/11/2024]
Affiliation(s)
- Junbai Zhong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hexiang Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Yufeng Wang
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Hua Xiong
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China
| | - Qiang Zhao
- State Key Laboratory of Food Science and Resources, Nanchang University, Jiangxi 330047, China.
| |
Collapse
|
13
|
Zhou Q, Lv S, Wang W, Zhu S, Xu J, Zheng M, Liu Y, Zhou Y, Sui X, Xiao Y. Remodeling mechanism of gel network structure of soy protein isolate amyloid fibrils mediated by cellulose nanocrystals. Carbohydr Polym 2024; 332:121919. [PMID: 38431397 DOI: 10.1016/j.carbpol.2024.121919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/18/2024] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Abstract
The differences in the gelling properties of soy protein isolate (SPI) and soy protein isolate amyloid fibrils (SAFs) as well as the role of cellulose nanocrystals (CNC) in regulating their gel behaviors were investigated in this study. The binding of CNC to β-conglycinin (7S), glycinin (11S), and SAFs was predominantly driven by non-covalent interactions. CNC addition reduced the particle size, turbidity, subunit segments, and crystallinity of SPI and SAFs, promoted the conversion of α-helix to β-sheet, improved the thermal stability, exposed more tyrosine and tryptophan residues, and enhanced the intermolecular interactions. A more regular and ordered lamellar network structure was formed in the SAFs-CNC composite gel, which could be conducive to the improvement of gel quality. This study would provide theoretical reference for the understanding of the regulatory mechanism of protein amyloid fibrils gelation as well as the high-value utilization of SAFs-CNC complex as a functional protein-based material or food ingredient in food field.
Collapse
Affiliation(s)
- Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Sixu Lv
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Wenqi Wang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Shanlong Zhu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Jianxia Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
14
|
Nie C, Liu B, Tan Y, Wu P, Niu Y, Fan G, Wang J. Synergistic stabilization of high internal phase Pickering emulsions by peanut isolate proteins and cellulose nanocrystals for β-carotene encapsulation. Int J Biol Macromol 2024; 267:131196. [PMID: 38574915 DOI: 10.1016/j.ijbiomac.2024.131196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
In this study, high internal phase Pickering emulsions (HIPPEs) were stabilized by the complexes of peanut protein isolate (PPI) and cellulose nanocrystals (CNCs) for encapsulation β-carotene to retard its degradation during processing and storage. CNCs were prepared by H2SO4 hydrolysis (HCNCs), APS oxidation (ACNCs) and TEMPO oxidation (TCNCs), exhibiting needle-like or rod-like structures with nanoscale size and uniformly distributed around the spherical PPI particle, which enhanced the emulsifying capability of PPI. Results of optical micrographs and droplet size measurement showed that Pickering emulsions stabilized by PPI/ACNCs complexes exhibited the most excellent stability after 30 days of storage, which indicated that ACNCs had the most obvious effect to improve emulsifying capability of PPI. HIPPEs encapsulated β-carotene (βc-HIPPEs) were stabilized by PPI/ACNCs complexes and showed excellent inverted storage stability. Moreover, βc-HIPPEs exhibited typical shear thinning behavior investigated by rheological properties analysis. During thermal treatment, ultraviolet radiation and oxidation, the retentions of β-carotene encapsulated in HIPPEs were improved significantly. This research holds promise in expanding Pickering emulsions stabilized by proteins-polysaccharide particles to delivery systems for hydrophobic bioactive compounds.
Collapse
Affiliation(s)
- Chunling Nie
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bingqian Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yinfeng Tan
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Pengrui Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yefan Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guangsen Fan
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| | - Jianguo Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
15
|
Fan S, Yin X, Liu X, Wang G, Qiu W. Enhancing bread preservation through non-contact application of starch-based composite film infused with clove essential oil nanoemulsion. Int J Biol Macromol 2024; 263:130297. [PMID: 38382781 DOI: 10.1016/j.ijbiomac.2024.130297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024]
Abstract
In this study, we have successfully produced a corn starch-based composite film through the casting method, formulated with clove essential oil nanoemulsion (NCEO) and corn starch. The physical and chemical changes of the composite films were investigated at various concentrations (10 %, 20 % and 40 %) of NCEO. Furthermore, the non-contact preservation effects of the composite films on bread during 15-day storage were also examined in this study. As the concentration of NCEO increased, the composite films presented a gradual thinning, roughening, and yellowing in appearance. Following this, the water content, water vapor permeability rate, and elongation at break of the films decreased, while their hydrophobicity, tensile strength, antioxidant and antimicrobial activity increased accordingly. Through FT-IR, X-ray diffraction and thermal gravimetric analysis, it was demonstrated that NCEO has strong compatibility with corn starch. Additionally, the indices' analysis indicated that utilizing the composite film incorporating 40 % NCEO can significantly boost the shelf life and quality of bread. Moreover, it was revealed that application of the non-contact treatment with composite film could potentially contribute certain preservation effects towards bread. In light of these findings, the composite film with non-contact treatment exhibits potential as an effective, safe, and sustainable preservation technique for grain products.
Collapse
Affiliation(s)
- Saifeng Fan
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xiaoyu Yin
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Xingxun Liu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| | - Guangyu Wang
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Weifen Qiu
- College of Food Science and Engineering/Collaborative Innovation Center for Modern Grain Circulation and Safety/Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China
| |
Collapse
|
16
|
Wang G, Li J, Yan X, Meng Y, Zhang Y, Chang X, Cai J, Liu S, Ding W. Stability and Bioaccessibility of Quercetin-Enriched Pickering Emulsion Gels Stabilized by Cellulose Nanocrystals Extracted from Rice Bran. Polymers (Basel) 2024; 16:868. [PMID: 38611126 PMCID: PMC11013494 DOI: 10.3390/polym16070868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/14/2024] Open
Abstract
To investigate the optimal delivery system of quercetin, in this paper, cellulose nanocrystals (CNCs) extracted from rice bran were used to stabilize the Pickering emulsion and Pickering emulsion gels (PEGs) with quercetin. To compare the emulsion properties, stability, antioxidation activity, encapsulation rate, and bioaccessibility of the quercetin, four emulsions of CNC Pickering emulsion (C), CNC Pickering emulsion with quercetin (CQ), CNC Pickering gel emulsion (CG), and CNC Pickering gel emulsions with quercetin (CQG) were prepared. All four emulsions exhibited elastic gel network structure and good stability. The quercetin significantly reduced the particle size, increased the stability, and improved the antioxidant capacity of CQ and CQG. Compared to C and CG, the ABTS+ radical scavenging capacities of CQ and CQG were respectively enhanced by 46.92% and 3.59%. In addition, CQG had a higher encapsulation rate at 94.57% and higher bioaccessibility (16.17) compared to CQ. This study not only indicated that CNC from rice bran could be exploited as an excellent stabilization particle for Pickering emulsions, but also provided a highly stable and bioaccessible delivery system for water-insoluble functional active factors.
Collapse
Affiliation(s)
- Guozhen Wang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Jin Li
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Xiaoqin Yan
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China;
| | - Yanpeng Zhang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Xianhui Chang
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Jie Cai
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| | - Shilin Liu
- College of Food Science & Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenping Ding
- Key Laboratory for Deep Processing of Major Grain and Oil, Ministry of Education, School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (J.L.); (X.Y.); (Y.Z.); (X.C.); (J.C.)
| |
Collapse
|
17
|
Mnafki R, Morales A, Sillero L, Khiari R, Moussaoui Y, Labidi J. Integral Valorization of Posidonia oceanica Balls: An Abundant and Potential Biomass. Polymers (Basel) 2024; 16:164. [PMID: 38201829 PMCID: PMC10780897 DOI: 10.3390/polym16010164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/26/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
Posidonia oceanica balls (POB), a kind of seagrass, are a significant environmental issue since they are annually discharged onto beaches. Their current usefulness limits interest in their management and enhances the environmental problem. Therefore, in this research, the potential of this lignocellulosic biomass was studied from a holistic biorefinery point of view. To this end, an in-depth study was carried out to select the best pathway for the integral valorization of POBs. First, an autohydrolysis process was studied for the recovery of oligosaccharides. Then, a delignification stage was applied, where, in addition to studying different delignification methods, the influence of the autohydrolysis pre-treatment was also investigated. Finally, cellulose nanofibers (CNFs) were obtained through a chemo-mechanical treatment. The results showed that autohydrolysis not only improved the delignification process and its products, but also allowed the hemicelluloses to be valorized. Acetoformosolv delignification proved to be the most successful in terms of lignin and cellulose properties. However, alkaline delignification was able to extract the highest amount of lignin with low purity. CNFs were also successfully produced from bleached solids. Therefore, the potential of POB as a feedstock for a biorefinery was confirmed, and the pathway should be chosen according to the requirements of the desired end products.
Collapse
Affiliation(s)
- Rim Mnafki
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, Sfax 3018, Tunisia
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Amaia Morales
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| | - Leyre Sillero
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Ramzi Khiari
- Department of Textile, Higher Institute of Technological Studies (ISET) of Ksar-Hellal, Ksar-Hellal 5070, Tunisia
- CNRS, Grenoble INP, LGP2, University of Grenoble Alpes, 38000 Grenoble, France
| | - Younes Moussaoui
- Organic Chemistry Laboratory (LR17ES08), Faculty of Sciences of Sfax, Sfax 3018, Tunisia
- Faculty of Sciences of Gafsa, University of Gafsa, Gafsa 2112, Tunisia
| | - Jalel Labidi
- Biorefinery Processes Research Group, Department of Chemical and Environmental Engineering, University of Basque Country (UPV/EHU), 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
18
|
Feng J, Techapun C, Phimolsiripol Y, Phongthai S, Khemacheewakul J, Taesuwan S, Mahakuntha C, Porninta K, Htike SL, Kumar A, Nunta R, Sommanee S, Leksawasdi N. Utilization of agricultural wastes for co-production of xylitol, ethanol, and phenylacetylcarbinol: A review. BIORESOURCE TECHNOLOGY 2024; 392:129926. [PMID: 37925084 DOI: 10.1016/j.biortech.2023.129926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/10/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Corn, rice, wheat, and sugar are major sources of food calories consumption thus the massive agricultural waste (AW) is generated through agricultural and agro-industrial processing of these raw materials. Biological conversion is one of the most sustainable AW management technologies. The abundant supply and special structural composition of cellulose, hemicellulose, and lignin could provide great potential for waste biological conversion. Conversion of hemicellulose to xylitol, cellulose to ethanol, and utilization of remnant whole cells biomass to synthesize phenylacetylcarbinol (PAC) are strategies that are both eco-friendly and economically feasible. This co-production strategy includes essential steps: saccharification, detoxification, cultivation, and biotransformation. In this review, the implemented technologies on each unit step are described, the effectiveness, economic feasibility, technical procedures, and environmental impact are summarized, compared, and evaluated from an industrial scale viewpoint.
Collapse
Affiliation(s)
- Juan Feng
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Charin Techapun
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Yuthana Phimolsiripol
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Suphat Phongthai
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Julaluk Khemacheewakul
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Siraphat Taesuwan
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Chatchadaporn Mahakuntha
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Krisadaporn Porninta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Su Lwin Htike
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| | - Anbarasu Kumar
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Department of Biotechnology, Periyar Maniammai Institute of Science & Technology, Thanjavur 613403, India.
| | - Rojarej Nunta
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Division of Food Innovation and Business, Faculty of Agricultural Technology, Lampang Rajabhat University, Lampang 52100, Thailand
| | - Sumeth Sommanee
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Noppol Leksawasdi
- Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand.
| |
Collapse
|
19
|
Cañas-Gutiérrez A, Gómez Hoyos C, Velásquez-Cock J, Gañán P, Triana O, Cogollo-Flórez J, Romero-Sáez M, Correa-Hincapié N, Zuluaga R. Health and toxicological effects of nanocellulose when used as a food ingredient: A review. Carbohydr Polym 2024; 323:121382. [PMID: 37940279 DOI: 10.1016/j.carbpol.2023.121382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/25/2023] [Accepted: 09/10/2023] [Indexed: 11/10/2023]
Abstract
The use of nanocellulose (NC) has increased significantly in the food industry, as subtypes such as cellulose nanofibrils (CNF) or bacterial cellulose (BC) have been demonstrated to be a source of insoluble fiber with important benefits for human health. Despite these advantages, and due to its nanoscale size, NC must be assessed from a safety perspective that considers its exposure, fate, and biological effects in order to help more accurately estimate its potential hazards. The exposure routes of humans to NC include (i) ingestion during consumption of foods that contain cellulose as a food ingredient or (ii) contact of food with cellulose-containing materials, such as its packaging. That is why it is important to understand the potentially toxic effects that nanomaterials can have on human health, understanding that the different types of NC behave differently in terms of their ingestion, absorption, distribution, metabolism, and excretion. By analysing both in vitro and in vivo studies, the purpose of this paper is to present the most recent findings on the different types of NC and their safety when used in food. In addition, it provides an overview of relevant studies into NC and its health benefits when used as a food additive.
Collapse
Affiliation(s)
- A Cañas-Gutiérrez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia; Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia.
| | - C Gómez Hoyos
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - J Velásquez-Cock
- Facultad de Ingeniería Textil, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - P Gañán
- Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| | - O Triana
- Facultad de Biología, Universidad de Antioquia, Calle 67 No. 53-108, Medellín, Colombia
| | - J Cogollo-Flórez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - M Romero-Sáez
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia; Grupo Química Básica, Aplicada y Ambiente - Alquimia, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - N Correa-Hincapié
- Departamento de Calidad y Producción, Instituto Tecnológico Metropolitano, Calle 73 No. 76ª - 354, Medellín, Colombia
| | - R Zuluaga
- Facultad de Ingeniería Agroindustrial, Universidad Pontificia Bolivariana, Circular 1 No. 70-01, Medellín, Colombia
| |
Collapse
|
20
|
Arman S, Hadavi M, Rezvani-Noghani A, Bakhtparvar A, Fotouhi M, Farhang A, Mokaberi P, Taheri R, Chamani J. Cellulose nanocrystals from celery stalk as quercetin scaffolds: A novel perspective of human holo-transferrin adsorption and digestion behaviours. LUMINESCENCE 2024; 39:e4634. [PMID: 38286605 DOI: 10.1002/bio.4634] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/28/2023] [Accepted: 11/04/2023] [Indexed: 01/31/2024]
Abstract
In this study, cellulose nanocrystals (CNCs) were synthesized from celery stalks to be used as the platform for quercetin delivery. Additionally, CNCs and CNCs-quercetin were characterized using the results of scanning electron microscope (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, and zeta potential, while their interactions with human holo-transferrin (HTF) were also investigated. We examined their interaction under physiological conditions through the exertion of fluorescence, resonance light scattering, synchronized fluorescence spectroscopy, circular dichroism, three-dimensional fluorescence spectroscopy, and fluorescence resonance energy transfer techniques. The data from SEM and TEM exhibited the spherical shape of CNCs and CNCs-quercetin and also, a decrease was detected in the size of quercetin-loaded CNCs from 676 to 473 nm that indicated the intensified water solubility of quercetin. The success of cellulose acid hydrolysis was confirmed based on the XRD results. Apparently, the crystalline index of CNCs-quercetin was reduced by the interaction of CNCs with quercetin, which also resulted in the appearance of functional groups, as shown by FTIR. The interaction of CNCs-quercetin with HTF was also demonstrated by the induced quenching in the intensity of HTF fluorescence emission and Stern-Volmer data represent the occurrence of static quenching. Overall, the effectiveness of CNCs as quercetin vehicles suggests its potential suitability for dietary supplements and pharmaceutical products.
Collapse
Affiliation(s)
- Samaneh Arman
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Marzieh Hadavi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | | | - Anashid Bakhtparvar
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Melika Fotouhi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ali Farhang
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Parisa Mokaberi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Reza Taheri
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Jamshidkhan Chamani
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
21
|
Li M, Shi Z, He S, Hu Q, Cai P, Gan L, Huang J, Zhang Y. Gas barrier coating based on cellulose nanocrystals and its preservation effects on mango. Carbohydr Polym 2023; 321:121317. [PMID: 37739541 DOI: 10.1016/j.carbpol.2023.121317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/24/2023]
Abstract
Mango is the "king of tropical fruits" because of its attractive appearance, delicious taste, rich aroma, and high nutritional value. However, mango keeps fast metabolizing after harvest, leading to water loss, starch conversion into sugar, texture softening, and decay. Here, a gas barrier coating based on cellulose nanocrystals (CNCs) is proposed to control the post-harvest metabolism of mango. The results of gas barrier permeability show that CNCs enhance the barrier ability of the chitosan (CS) membrane on mango by 202 % and 63 % for oxygen and water vapor, respectively. The gas-barrier coating reduces the climb in pH and the decrease in firmness by 84.9 % and 45.8 %, respectively, decelerating the conversion process from starch to sugar. Besides, introducing clove essential oil (CEO), the CEO mainly adsorbs and crystalizes on the hydrophobic facets of CNCs, presenting high compatibility, increases the antibacterial rate to nearly 100 %. As a consequence, the preservation period of the mango coated by the CNC-based membrane is at least 7-day longer than the control group. Such a gas-barrier coating based on eco-friendly composites must have excellent potential in the preservation of mango, and even for other tropical fruits.
Collapse
Affiliation(s)
- Mingxia Li
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Zhenxu Shi
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China
| | - Shulin He
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Qiang Hu
- Beibu Gulf Institute of Marine Advanced Materials, Beihai 536000, China
| | - Ping Cai
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Lin Gan
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Jin Huang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China.
| | - Yongqiang Zhang
- College of Plant Protection, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Southwest University, Chongqing 400715, China; Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River, Ministry of Education, Chongqing 400715, China.
| |
Collapse
|
22
|
Shen R, Tian X, Yang Q, Zhang K, Zhang H, Wang X, Bai L, Wang W. Using nanocellulose to improve heat-induced cull cow meat myofibrillar protein gels: effects of particle morphology and content. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:7550-7559. [PMID: 37410998 DOI: 10.1002/jsfa.12834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/20/2023] [Accepted: 07/07/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Enhancing protein gel properties is essential to improve the texture of meat products. In this study, the improvement effects of three types of nanocellulose, i.e. rod-like cellulose nanocrystals (CNC), long-chain cellulose nanofibers (CNF) and spherical cellulose nanospheres (CNS) with different concentrations (1, 3, 5, 10, 15 and 20 g kg-1 ), on cull cow meat myofibrillar protein (MP) gel were investigated. RESULTS Compared with needle-shaped CNC and spherical CNS, the addition of 10 and 20 g kg-1 long-chain CNF had the most significant improvement effect on gel hardness and water-holding capacity, respectively (P < 0.05), increasing to 160.1 g and 97.8%, respectively. In addition, the incorporation of long-chain CNF shortened the T2 relaxation time and induced the formation of the densest network structure and promoted the phase transition of the gel. However, excessive filling of nanocellulose would destroy the structure of the gel, which was not conducive to the improvement of gel properties. Fourier transform infrared results showed that there was no chemical reaction between the three nanocellulose types and MP, but the addition of nanocellulose was conducive to gel formation. CONCLUSION The improvement of MP gel properties by adding nanocellulose mainly depends on its morphology and concentration. Nanocellulose with higher aspect ratio is more beneficial to the improvement of gel properties. For each nanocellulose type, there is an optimal addition amount for MP gel improvement. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ruixi Shen
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xiaojing Tian
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Qinghua Yang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Kai Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Huan Zhang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Xinhua Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Lei Bai
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Wenhang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
23
|
Xu H, Zhang J, Zhou Q, Li W, Liao X, Gao J, Zheng M, Liu Y, Zhou Y, Jiang L, Sui X, Xiao Y. Synergistic effect and mechanism of cellulose nanocrystals and calcium ion on the film-forming properties of pea protein isolate. Carbohydr Polym 2023; 319:121181. [PMID: 37567717 DOI: 10.1016/j.carbpol.2023.121181] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/06/2023] [Indexed: 08/13/2023]
Abstract
The current serious environmental problems have greatly encouraged the design and development of food packaging materials with environmental protection, green, and safety. This study aims to explore the synergistic effect and corresponding mechanism of cellulose nanocrystals (CNC) and CaCl2 to enhance the film-forming properties of pea protein isolate (PPI). The combination of 0.5 % CNC and 4.5 mM CaCl2 resulted in a 76.6 % increase in tensile strength when compared with pure PPI-based film. Meanwhile, this combination effectively improved the barrier performance, surface hydrophobicity, water resistance, and biodegradability of PPI-based film. The greater crystallinity, viscoelasticity, lower water mobility, and improved protein spatial conformation were also observed in CNC/CaCl2 composite film. Compared with the control, the main degradation temperature of composite film was increased from 326.23 °C to 335.43 °C. The CNC chains bonded with amino acid residue of pea protein at specific sites via non-covalent forces (e.g., hydrogen bonds, Van der Waals forces). Meanwhile, Ca2+ promoted the ordered protein aggregation at suitable rate and degree, accompanied by the formation of more disulfide bonds. Furthermore, proper Ca2+ could strengthen the cross-linking and interaction between CNC and protein, thereby establishing a stable network structure. The prepared composite films are expected to be used for strawberry preservation.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Lianzhou Jiang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaonan Sui
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
24
|
Ventura C, Pinto F, Lourenço AF, Pedrosa JFS, Fernandes SN, da Rosa RR, Godinho MH, Ferreira PJT, Louro H, Silva MJ. Assessing the Genotoxicity of Cellulose Nanomaterials in a Co-Culture of Human Lung Epithelial Cells and Monocyte-Derived Macrophages. Bioengineering (Basel) 2023; 10:986. [PMID: 37627871 PMCID: PMC10452089 DOI: 10.3390/bioengineering10080986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
Cellulose micro/nanomaterials (CMNMs) are innovative materials with a wide spectrum of industrial and biomedical applications. Although cellulose has been recognized as a safe material, the unique properties of its nanosized forms have raised concerns about their safety for human health. Genotoxicity is an endpoint that must be assessed to ensure that no carcinogenic risks are associated with exposure to nanomaterials. In this study, we evaluated the genotoxicity of two types of cellulose micro/nanofibrils (CMF and CNF) and one sample of cellulose nanocrystals (CNC), obtained from industrial bleached Eucalyptus globulus kraft pulp. For that, we exposed co-cultures of human alveolar epithelial A549 cells and THP-1 monocyte-derived macrophages to a concentration range of each CMNM and used the micronucleus (MN) and comet assays. Our results showed that only the lowest concentrations of the CMF sample were able to induce DNA strand breaks (FPG-comet assay). However, none of the three CMNMs produced significant chromosomal alterations (MN assay). These findings, together with results from previous in vitro studies using monocultures of A549 cells, indicate that the tested CNF and CNC are not genotoxic under the conditions tested, while the CMF display a low genotoxic potential.
Collapse
Affiliation(s)
- Célia Ventura
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal; (C.V.); (F.P.); (H.L.)
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Fátima Pinto
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal; (C.V.); (F.P.); (H.L.)
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | | | - Jorge F. S. Pedrosa
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Pólo II, R. Sílvio Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Susete N. Fernandes
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Lisbon, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Rafaela R. da Rosa
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Lisbon, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Maria Helena Godinho
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Lisbon, Portugal; (S.N.F.); (R.R.d.R.); (M.H.G.)
| | - Paulo J. T. Ferreira
- University of Coimbra, CIEPQPF, Department of Chemical Engineering, Pólo II, R. Sílvio Lima, 3030-790 Coimbra, Portugal; (J.F.S.P.); (P.J.T.F.)
| | - Henriqueta Louro
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal; (C.V.); (F.P.); (H.L.)
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- Department of Human Genetics, Instituto Nacional de Saúde Doutor Ricardo Jorge, Av Padre Cruz, 1649-016 Lisbon, Portugal; (C.V.); (F.P.); (H.L.)
- ToxOmics—Centre for Toxicogenomics and Human Health, NOVA Medical School, NOVA University Lisbon, 1169-056 Lisbon, Portugal
| |
Collapse
|
25
|
Xu H, Hao Z, Zhang J, Liu H, Deng C, Yu Z, Zheng M, Liu Y, Zhou Y, Xiao Y. Influence pathways of nanocrystalline cellulose on the digestibility of corn starch: Gelatinization, structural properties, and α-amylase activity perspective. Carbohydr Polym 2023; 314:120940. [PMID: 37173023 DOI: 10.1016/j.carbpol.2023.120940] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 04/07/2023] [Accepted: 04/19/2023] [Indexed: 05/15/2023]
Abstract
This work focused on the pathways by which NCC regulated the digestibility of corn starch. The addition of NCC changed the viscosity of the starch during pasting, improved the rheological properties and short-range order of the starch gel, and finally formed a compact, ordered, and stable gel structure. In this respect, NCC affected the digestion process by changing the properties of the substrate, which reduced the degree and rate of starch digestion. Moreover, NCC induced changes in the intrinsic fluorescence, secondary conformation, and hydrophobicity of α-amylase, which lowered its activity. Molecular simulation analyses suggested that NCC bonded with amino acid residues (Trp 58, Trp 59, and Tyr 62) at the active site entrance via hydrogen bonding and van der Waals forces. In conclusion, NCC decreased CS digestibility by modifying the gelatinization and structural properties of starch and inhibiting α-amylase activity. This study provides new insights into the mechanisms by which NCC regulates starch digestibility, which could be beneficial for the development of functional foods to tackle type 2 diabetes.
Collapse
Affiliation(s)
- Huajian Xu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Jinglei Zhang
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Huixia Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Deng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Mingming Zheng
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yingnan Liu
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| | - Yibin Zhou
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China
| | - Yaqing Xiao
- Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, Anhui Engineering Laboratory for Agro-products Processing, Department of Food Science and Engineering, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
26
|
Sztupecki W, Rhazi L, Depeint F, Aussenac T. Functional and Nutritional Characteristics of Natural or Modified Wheat Bran Non-Starch Polysaccharides: A Literature Review. Foods 2023; 12:2693. [PMID: 37509785 PMCID: PMC10379113 DOI: 10.3390/foods12142693] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/27/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Wheat bran (WB) consists mainly of different histological cell layers (pericarp, testa, hyaline layer and aleurone). WB contains large quantities of non-starch polysaccharides (NSP), including arabinoxylans (AX) and β-glucans. These dietary fibres have long been studied for their health effects on management and prevention of cardiovascular diseases, cholesterol, obesity, type-2 diabetes, and cancer. NSP benefits depend on their dose and molecular characteristics, including concentration, viscosity, molecular weight, and linked-polyphenols bioavailability. Given the positive health effects of WB, its incorporation in different food products is steadily increasing. However, the rheological, organoleptic and other problems associated with WB integration are numerous. Biological, physical, chemical and combined methods have been developed to optimise and modify NSP molecular characteristics. Most of these techniques aimed to potentially improve food processing, nutritional and health benefits. In this review, the physicochemical, molecular and functional properties of modified and unmodified WB are highlighted and explored. Up-to-date research findings from the clinical trials on mechanisms that WB have and their effects on health markers are critically reviewed. The review points out the lack of research using WB or purified WB fibre components in randomized, controlled clinical trials.
Collapse
Affiliation(s)
| | | | | | - Thierry Aussenac
- Institut Polytechnique Unilasalle, Université d’Artois, ULR 7519, 60026 Beauvais, France; (W.S.); (L.R.); (F.D.)
| |
Collapse
|
27
|
Biswal AK, Panda L, Chakraborty S, Pradhan SK, Dash MR, Misra PK. Production of a nascent cellulosic material from vegetable waste: Synthesis, characterization, functional properties, and its potency for a cationic dye removal. Int J Biol Macromol 2023:124959. [PMID: 37247704 DOI: 10.1016/j.ijbiomac.2023.124959] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/31/2023]
Abstract
The present work reports the production of cellulose nanocrystals, CNC30 and CNC60, developed using vegetable waste, i.e., bottle gourd peel through sulfuric acid hydrolysis with a 30 and 60 min hydrolysis process coupled with ultrasonication. The FTIR confirmed the absence of hemicellulose and lignin, and XRD confirmed the crystallinity of the cellulose nanocrystals. DLS studies indicated the hydrodynamic diameter of CNC30 and CNC60 to be 195.5 nm and 192.2 nm, respectively. The TEM image and SAED pattern established the shape of CNC60 to be spherical, with an average particle size of 38.32 nm. CNC60 possessed lesser negative potential and higher thermal stability than CNC30, possibly due to the demolition of the crystalline regions containing sulfate groups. The functional properties, such as swelling power, water, and oil holding capacities of CNC60, were superior to that of CNC30. The adsorption batch parameters yielded 95.68 % methylene dye removal by CNC60 against the predicted value of 96.16 % by the RSM-PSO hybrid approach. The analyses of adsorption isotherms, kinetics, and thermodynamic parameters revealed the nature of the adsorbed layer and adsorption mechanism. Overall observations recommend that CNC60 could be a good and potent functional agent in paper technology, food technology, water treatment, and biomedical applications.
Collapse
Affiliation(s)
- Achyuta Kumar Biswal
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Laxmipriya Panda
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Sourav Chakraborty
- Department of Food Processing Technology, Ghani Khan Choudhury Institute of Engineering and Technology, Malda 732141, West Bengal, India
| | - Subrat Kumar Pradhan
- Organic Chemistry Laboratory, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India
| | - Manas Ranjan Dash
- Department of Chemistry, DIT University, Dehradun 248009, Uttarakhand, India
| | - Pramila Kumari Misra
- Centre of Studies in Surface Science and Technology, School of Chemistry, Sambalpur University, Jyoti Vihar 768 019, Odisha, India.
| |
Collapse
|
28
|
Karim A, Raji Z, Karam A, Khalloufi S. Valorization of Fibrous Plant-Based Food Waste as Biosorbents for Remediation of Heavy Metals from Wastewater-A Review. Molecules 2023; 28:molecules28104205. [PMID: 37241944 DOI: 10.3390/molecules28104205] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/10/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Mobilization of heavy metals in the environment has been a matter of concern for several decades due to their toxicity for humans, environments, and other living organisms. In recent years, use of inexpensive and abundantly available biosorbents generated from fibrous plant-based food-waste materials to remove heavy metals has garnered considerable research attention. The aim of this review is to investigate the applicability of using fibrous plant-based food waste, which comprises different components such as pectin, hemicellulose, cellulose, and lignin, to remove heavy metals from wastewater. This contribution confirms that plant-fiber-based food waste has the potential to bind heavy metals from wastewater and aqueous solutions. The binding capacities of these biosorbents vary depending on the source, chemical structure, type of metal, modification technology applied, and process conditions used to improve functionalities. This review concludes with a discussion of arguments and prospects, as well as future research directions, to support valorization of fibrous plant-based food waste as an efficient and promising strategy for water purification.
Collapse
Affiliation(s)
- Ahasanul Karim
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Zarifeh Raji
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| | - Antoine Karam
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Seddik Khalloufi
- Department of Soils and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6, Canada
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
29
|
Liu Y, Wei Y, He Y, Qian Y, Wang C, Chen G. Large-Scale Preparation of Carboxylated Cellulose Nanocrystals and Their Application for Stabilizing Pickering Emulsions. ACS OMEGA 2023; 8:15114-15123. [PMID: 37151532 PMCID: PMC10157680 DOI: 10.1021/acsomega.2c08239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Cellulose nanocrystals (CNCs) with varied unique properties have been widely used in emulsions, nanocomposites, and membranes. However, conventional CNCs for industrial use were usually prepared through acid hydrolysis or heat-controlled methods with sulfuric acid. This most commonly used acid method generally suffers from low yields, poor thermal stability, and potential environmental pollution. Herein, we developed a high-efficiency and large-scale preparation strategy to produce carboxylated cellulose nanocrystals (Car-CNCs) via carboxymethylation-enhanced ammonium persulfate (APS) oxidation. After carboxymethylation, the wood fibers could form unique "balloon-like" structures with abundant exposed hydroxy groups, which facilitated exfoliating fibril bundles into individual nanocrystals during the APS oxidation process. The production process under controlled temperature, time period, and APS concentrations was optimized and the resultant Car-CNCs exhibited a typical structure with narrow diameter distributions. In particular, the final Car-CNCs exhibited excellent thermal stability (≈346.6 °C) and reached a maximum yield of 60.6%, superior to that of sulfated cellulose nanocrystals (Sul-CNCs) prepared by conventional acid hydrolysis. More importantly, compared to the common APS oxidation, our two-step collaborative process shortened the oxidation time from more than 16 h to only 30 min. Therefore, our high-efficiency method may pave the way for the up-scaled production of carboxylated nanocrystals. More importantly, Car-CNCs show potential for stabilizing Pickering emulsions that can withstand changeable environments, including heating, storage, and centrifugation, which is better than the conventional Sul-CNC-based emulsions.
Collapse
Affiliation(s)
- Yikang Liu
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yuan Wei
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yingying He
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Yangyang Qian
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
- College
of Tea (Pu’er), West Yunnan University
of Applied Sciences, Pu’er 665000, China
| | - Chunyu Wang
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| | - Gang Chen
- State
Key Laboratory of Pulp and Paper Engineering, College of Light Industry
and Engineering, South China University
of Technology, Guangzhou 510640, China
- Guangdong
Engineering Technology Research and Development Center of Specialty
Paper and Paper-Based Functional Materials, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
30
|
Xu H, Hao Z, Gao J, Zhou Q, Li W, Liao X, Zheng M, Zhou Y, Yu Z, Song C, Xiao Y. Complexation between rice starch and cellulose nanocrystal from black tea residues: Gelatinization properties and digestibility in vitro. Int J Biol Macromol 2023; 234:123695. [PMID: 36801275 DOI: 10.1016/j.ijbiomac.2023.123695] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/05/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
In this work, cellulose nanocrystal (CNC) was extracted from black tea waste and its effects on the physicochemical properties of rice starch were explored. It was revealed that CNC improved the viscosity of starch during pasting and inhibited its short-term retrogradation. The addition of CNC changed the gelatinization enthalpy and improved the shear resistance, viscoelasticity, and short-range ordering of starch paste, which meant that CNC made the starch paste system more stable. The interaction of CNC with starch was analyzed using quantum chemistry methods, and it was demonstrated that the hydrogen bonds were formed between starch molecules and the hydroxyl groups of CNC. In addition, the digestibility of starch gels containing CNC was significantly decreased because CNC could dissociate and act as an inhibitor of amylase. This study further expanded the understanding of the interactions between CNC and starch during processing, which could provide a reference for the application of CNC in starch-based foods and the development of functional foods with a low glycemic index.
Collapse
Affiliation(s)
- Huajian Xu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zongwei Hao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Junwei Gao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Qianxin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Weixiao Li
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Xiangxin Liao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Mingming Zheng
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China; Huzhou city Linghu Xinwang Chemical Co. Ltd., China
| | - Yibin Zhou
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China
| | - Zhenyu Yu
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| | - Yaqing Xiao
- State Key Laboratory of Tea Plant Biology and Utilization, Key Laboratory of Jianghuai Agricultural Product Fine Processing and Resource Utilization of Ministry of Agriculture and Rural Affairs, School of Tea and Food Science & Technology, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
31
|
Sartika D, Firmansyah AP, Junais I, Arnata IW, Fahma F, Firmanda A. High yield production of nanocrystalline cellulose from corn cob through a chemical-mechanical treatment under mild conditions. Int J Biol Macromol 2023; 240:124327. [PMID: 37015281 DOI: 10.1016/j.ijbiomac.2023.124327] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023]
Abstract
Agricultural biomass waste such as corn cob is available in large quantities and can be used as renewable materials for various applications. Corn cob was converted into nanocrystalline cellulose by using mild sulfuric acid concentrations (30 % w/v) at low temperature (50 °C) and a relatively shorter time extraction (30 min) combined with mechanical treatment using a conventional high-speed blender. NCC from cellulose and α-cellulose from corn cobs have been successfully isolated with relatively high yields and crystallinities of 50.07-65.33 % and 65.5-69.9 %, respectively. Scanning electron microscopy (SEM) evaluated the morphological variation and dimension from corn cob fiber (CF), delignification fiber (DF), cellulose, and α-cellulose, which shows that each pretreatment stage causes a decrease in fiber diameter from 16.56 to 5.48 μm. Transmission electron microscopy (TEM) images confirmed the nano-scale dimension with fiber diameters ranging between 9.35 nm and 6.51 nm. Thermogravimetric analysis shows that NCC has relatively high thermal stability ranging from 429 to 437 °C. Thus, this characteristic of NCC has the potential to be applied as a reinforcing agent in various fields of polymer composites. Finally, this study presents a method for isolating NCC from corncob waste using a conventional high-speed blender in a mild condition process with a relatively low cost, environmentally friendly pathway, and high yield that was still preserved.
Collapse
Affiliation(s)
- Dewi Sartika
- Faculty of Agriculture, Muhammadiyah University of Makassar, 90221 Makassar, South Sulawesi, Indonesia.
| | | | - Isnam Junais
- Faculty of Agriculture, Muhammadiyah University of Makassar, 90221 Makassar, South Sulawesi, Indonesia
| | - I Wayan Arnata
- Department of Agroindustrial Technology, Faculty of Agricultural Technology, Udayana University, Badung, 80361, Bali, Indonesia.
| | - Farah Fahma
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Indonesia
| | - Afrinal Firmanda
- Department of Agroindustrial Technology, Faculty of Agricultural Engineering and Technology, IPB University (Bogor Agricultural University), Indonesia
| |
Collapse
|
32
|
Francesconi S, Ronchetti R, Camaioni E, Giovagnoli S, Sestili F, Palombieri S, Balestra GM. Boosting Immunity and Management against Wheat Fusarium Diseases by a Sustainable, Circular Nanostructured Delivery Platform. PLANTS (BASEL, SWITZERLAND) 2023; 12:1223. [PMID: 36986912 PMCID: PMC10054448 DOI: 10.3390/plants12061223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusarium head blight (FHB) and Fusarium crown rot (FCR) are managed by the application of imidazole fungicides, which will be strictly limited by 2030, as stated by the European Green Deal. Here, a novel and eco-sustainable nanostructured particle formulation (NPF) is presented by following the principles of the circular economy. Cellulose nanocrystals (CNC) and resistant starch were obtained from the bran of a high amylose (HA) bread wheat and employed as carrier and excipient, while chitosan and gallic acid were functionalized as antifungal and elicitor active principles. The NPF inhibited conidia germination and mycelium growth, and mechanically interacted with conidia. The NPF optimally reduced FHB and FCR symptoms in susceptible bread wheat genotypes while being biocompatible on plants. The expression level of 21 genes involved in the induction of innate immunity was investigated in Sumai3 (FHB resistant) Cadenza (susceptible) and Cadenza SBEIIa (a mutant characterized by high-amylose starch content) and most of them were up-regulated in Cadenza SBEIIa spikes treated with the NPF, indicating that this genotype may possess an interesting genomic background particularly responsive to elicitor-like molecules. Quantification of fungal biomass revealed that the NPF controlled FHB spread, while Cadenza SBEIIa was resistant to FCR fungal spread. The present research work highlights that the NPF is a powerful weapon for FHB sustainable management, while the genome of Cadenza SBEIIa should be investigated deeply as particularly responsive to elicitor-like molecules and resistant to FCR fungal spread.
Collapse
Affiliation(s)
- Sara Francesconi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Riccardo Ronchetti
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Emidio Camaioni
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Stefano Giovagnoli
- Department of Pharmaceutical Sciences, University of Perugia, Via del Liceo 1, 06123 Perugia, Italy
| | - Francesco Sestili
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Samuela Palombieri
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| | - Giorgio Mariano Balestra
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via San Camillo de Lellis, snc, 01100 Viterbo, Italy
| |
Collapse
|
33
|
Prabsangob N. Plant-based cellulose nanomaterials for food products with lowered energy uptake and improved nutritional value-a review. NFS JOURNAL 2023. [DOI: 10.1016/j.nfs.2023.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
34
|
Sayago UFC, Ballesteros Ballesteros V. Development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Sci Rep 2023; 13:1970. [PMID: 36737449 PMCID: PMC9898558 DOI: 10.1038/s41598-023-28292-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 02/05/2023] Open
Abstract
Water care is an imperative duty in industries with effluents loaded with pollutants such as heavy metals, especially chromium (VI), extremely dangerous for humans and the environment. One way of treating water is possible through a continuous system with dry and crushed vegetable biomass of cellulose xanthogenate because it can adsorb heavy metals, especially due to its low production costs. Through continuous systems and with the waste of PET plastics, it is possible to develop a water treatment process adapting this system and biomass. The objective of this research is the development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Where a mass balance conducted to determine the adsorption capacity of this heavy metal, corroborating it through the Thomas model. The treatment process eliminated around 95% of Cr (VI) present in the water, in addition, biomass reuse cycles carried out, which maintained a considerable adsorption capacity in all the cycles conducted through EDTA reagent.
Collapse
|
35
|
Sayago UFC, Ballesteros Ballesteros V. Development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Sci Rep 2023; 13:1970. [DOI: https:/doi.org/10.1038/s41598-023-28292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 01/16/2023] [Indexed: 06/06/2024] Open
Abstract
AbstractWater care is an imperative duty in industries with effluents loaded with pollutants such as heavy metals, especially chromium (VI), extremely dangerous for humans and the environment. One way of treating water is possible through a continuous system with dry and crushed vegetable biomass of cellulose xanthogenate because it can adsorb heavy metals, especially due to its low production costs. Through continuous systems and with the waste of PET plastics, it is possible to develop a water treatment process adapting this system and biomass. The objective of this research is the development of a treatment for water contaminated with Cr (VI) using cellulose xanthogenate from E. crassipes on a pilot scale. Where a mass balance conducted to determine the adsorption capacity of this heavy metal, corroborating it through the Thomas model. The treatment process eliminated around 95% of Cr (VI) present in the water, in addition, biomass reuse cycles carried out, which maintained a considerable adsorption capacity in all the cycles conducted through EDTA reagent.
Collapse
|
36
|
Bangar SP, Kajla P, Ghosh T. Valorization of wheat straw in food packaging: A source of cellulose. Int J Biol Macromol 2023; 227:762-776. [PMID: 36563802 DOI: 10.1016/j.ijbiomac.2022.12.199] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022]
Abstract
Wheat straw (WS) is one of the abundant categories of agricultural waste, which is usually abandoned and burned yearly, thus creating environmental issues. Traditionally, it is used for low-value purposes, mainly in cattle feeding or agricultural mulch, and the rest is burnt or thrown away. WS is a valuable candidate as raw material for being used as reinforcing fibers to fabricate biocomposites. Among existing strategies, one of the potential strategies to utilize such lignocellulosic biomasses includes the extraction of cellulose as a potential candidate in the fabrication of sustainable packaging. Exploring WS as a valuable source of cellulose could be a key strategy for enabling biopolymers in packaging, which relies on developing tailor-made materials from non-food and low-cost resources. In this regard, the valorization of WSs for packaging can add value to these underutilized residues and successfully contribute to the circular economy concept. The review addresses the valorization of WS as a source of cellulose and its nanostructured forms for food packaging applications. The review also discusses cellulose derivatives extraction using conventional or innovative techniques (microwave-assisted extraction, fractionation, mechanical fibrillation, steam-explosion, microfludization, enzymatic hydrolysis, etc.). The different applications of these extracted biopolymers in the packaging are also summarized.
Collapse
Affiliation(s)
- Sneh Punia Bangar
- Department of Food, Nutrition and Packaging Sciences, Clemson University, Clemson 29634, USA.
| | - Priyanka Kajla
- Guru Jambheshwar University of Science &Technology, Hisar 125001, Haryana, India
| | - Tabli Ghosh
- Department of Food Engineering and Technology, Tezpur University, Assam, India
| |
Collapse
|
37
|
Vinzant K, Rashid M, Khodakovskaya MV. Advanced applications of sustainable and biological nano-polymers in agricultural production. FRONTIERS IN PLANT SCIENCE 2023; 13:1081165. [PMID: 36684740 PMCID: PMC9852866 DOI: 10.3389/fpls.2022.1081165] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Though still in its infancy, the use of nanotechnology has shown promise for improving and enhancing agriculture: nanoparticles (NP) offer the potential solution to depleted and dry soils, a method for the controlled release of agrochemicals, and offer an easier means of gene editing in plants. Due to the continued growth of the global population, it is undeniable that our agricultural systems and practices will need to become more efficient in the very near future. However, this new technology comes with significant worry regarding environmental contamination. NP applied to soils could wash into aquifers and contaminate drinking water, or NP applied to food crops may carry into the end product and contaminate our food supply. These are valid concerns that are not likely to be fully answered in the immediate future due to the complexity of soil-NP interactions and other confounding variables. Therefore, it is obviously preferred that NP used outdoors at this early stage be biodegradable, non-toxic, cost-effective, and sustainably manufactured. Fortunately, there are many different biologically derived, cost-efficient, and biocompatible polymers that are suitable for agricultural applications. In this mini-review, we discuss some promising organic nanomaterials and their potential use for the optimization and enhancement of agricultural practices.
Collapse
|
38
|
Xiao Y, Xu H, Zhou Q, Li W, Gao J, Liao X, Yu Z, Zheng M, Zhou Y, Sui X, Liu Y. Influence mechanism of wheat bran cellulose and cellulose nanocrystals on the storage stability of soy protein isolate films: Conformation modification and molecular interaction perspective. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2023.108475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Rampedi PN, Ogunrombi MO, Wesley-Smith J, Adeleke OA. A Micro-Configured Multiparticulate Reconstitutable Suspension Powder of Fixed Dose Rifampicin and Pyrazinamide: Optimal Fabrication and In Vitro Quality Evaluation. Pharmaceutics 2022; 15:pharmaceutics15010064. [PMID: 36678693 PMCID: PMC9861895 DOI: 10.3390/pharmaceutics15010064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022] Open
Abstract
The scarcity of age-appropriate pharmaceutical formulations is one of the major challenges impeding successful management of tuberculosis (TB) prevalence in minors. To this end, we designed and assessed the quality of a multiparticulate reconstitutable suspension powder containing fixed dose rifampicin and pyrazinamide (150 mg/300 mg per 5 mL) which was prepared employing solid−liquid direct dispersion coupled with timed dehydration, and mechanical pulverization. The optimized formulation had a high production yield (96.000 ± 3.270%), displayed noteworthy powder flow quality (9.670 ± 1.150°), upon reconstitution the suspension flow property was non-Newtonian and was easily redispersible with gentle manual agitation (1.720 ± 0.011 strokes/second). Effective drug loading was attained for both pyrazinamide (97.230 ± 2.570%w/w) and rifampicin (97.610 ± 0.020%w/w) and drug release followed a zero-order kinetic model (R2 = 0.990) for both drugs. Microscopic examinations confirmed drug encapsulation efficiency and showed that the particulates were micro-dimensional in nature (n < 700.000 µm). The formulation was physicochemically stable with no chemically irreversible drug-excipient interactions based on the results of characterization experiments performed. Findings from organoleptic evaluations generated an overall rating of 4.000 ± 0.000 for its attractive appearance and colour 5.000 ± 0.000 confirming its excellent taste and extremely pleasant smell. Preliminary cytotoxicity studies showed a cell viability above 70.000% which indicates that the FDC formulation was biocompatible. The optimized formulation was environmentally stable either as a dry powder or reconstituted suspension. Accordingly, a stable and palatable FDC antimycobacterial reconstitutable oral suspension powder, intended for flexible dosing in children and adolescents, was optimally fabricated.
Collapse
Affiliation(s)
- Penelope N. Rampedi
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Modupe O. Ogunrombi
- Department of Clinical Pharmacology and Therapeutics, School of Medicine, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - James Wesley-Smith
- Electron Microscope Unit, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - Oluwatoyin A. Adeleke
- Division of Pharmaceutical Sciences, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
- Faculty of Health, College of Pharmacy, Dalhousie University, Halifax, NS B3H 4R2, Canada
- Correspondence: or
| |
Collapse
|
40
|
Hydrophilic co-assembly of wheat gluten proteins and wheat bran cellulose improving the bioavailability of curcumin. Food Chem 2022; 397:133807. [DOI: 10.1016/j.foodchem.2022.133807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 12/19/2022]
|
41
|
Synthesis of Cellulose Nanocrystals/HKUST-1 Composites and Their Applications: Crystal Violet Removal and Doxorubicin Loading. Polymers (Basel) 2022; 14:polym14224991. [PMID: 36433118 PMCID: PMC9699351 DOI: 10.3390/polym14224991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/10/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
This study developed a novel composite material containing cellulose nanocrystals (CNCs) and HKUST-1. Here, the addition of CNCs was used to enhance the characteristics of HKUST-1 in terms of surface area, adsorption ability, and functional groups. Here, the fabrication of CNCs@HKUST-1 composites was carried out by adding CNCs into the fabrication process of HKUST-1. The addition of CNCs provides additional functional groups on the surface of composite material which can be used to attach other organic compounds, such as in waste management and drug delivery systems. Here, CNCs@HKUST-1 composites were tested as a material for crystal violet (CV) removal and doxorubicin (DOX) loading. The removal capacity of CNCs@HKUST-1 composite towards CV molecules reached 1182.25 ± 27.74 mg/g, while the loading capacity for DOX drugs was around 1514.94 ± 11.67 mg/g. Both applications showed that CNCs@HKUST-1 composite had higher adsorption capacity and ability compared to its precursor materials, i.e., CNCs and HKUST-1.
Collapse
|
42
|
Parametric optimization of the production of cellulose nanocrystals (CNCs) from South African corncobs via an empirical modelling approach. Sci Rep 2022; 12:18665. [PMID: 36333383 PMCID: PMC9636206 DOI: 10.1038/s41598-022-22865-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
In this study, cellulose nanocrystals (CNCs) were obtained from South African corncobs using an acid hydrolysis process. The delignification of corncobs was carried out by using alkali and bleaching pretreatment. Furthermore, the Box-Behnken Design (BBD) was used as a design of experiment (DOE) for statistical experimentations that will result in logical data to develop a model that explains the effect of variables on the response (CNCs yield). The effects (main and interactive) of the treatment variables (time, temperature, and acid concentration) were investigated via the response methodology approach and the obtained model was used in optimizing the CNCs yield. Surface morphology, surface chemistry, and the crystallinity of the synthesized CNC were checked using scanning electron microscopy (SEM), a Fourier Transform Infra-red spectroscopy (FTIR), and an X-ray diffraction (XRD) analysis, respectively. The SEM image of the raw corncobs revealed a smooth and compact surface morphology. Results also revealed that CNCs have higher crystallinity (79.11%) than South African waste corncobs (57.67%). An optimum yield of 80.53% CNCs was obtained at a temperature of 30.18 °C, 30.13 min reaction time, and 46 wt% sulfuric acid concentration. These optimized conditions have been validated to confirm the precision. Hence, the synthesized CNCs may be suitable as filler in membranes for different applications.
Collapse
|
43
|
Ajiboye TO, Imade EE, Oyewo OA, Onwudiwe DC. Silver functionalized gC3N4: Photocatalytic potency for chromium(VI) reduction, and evaluation of the antioxidant and antimicrobial properties. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
44
|
Vital N, Ventura C, Kranendonk M, Silva MJ, Louro H. Toxicological Assessment of Cellulose Nanomaterials: Oral Exposure. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3375. [PMID: 36234501 PMCID: PMC9565252 DOI: 10.3390/nano12193375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Cellulose nanomaterials (CNMs) have emerged recently as an important group of sustainable bio-based nanomaterials (NMs) with potential applications in multiple sectors, including the food, food packaging, and biomedical fields. The widening of these applications leads to increased human oral exposure to these NMs and, potentially, to adverse health outcomes. Presently, the potential hazards regarding oral exposure to CNMs are insufficiently characterised. There is a need to understand and manage the potential adverse effects that might result from the ingestion of CNMs before products using CNMs reach commercialisation. This work reviews the potential applications of CNMs in the food and biomedical sectors along with the existing toxicological in vitro and in vivo studies, while also identifying current knowledge gaps. Relevant considerations when performing toxicological studies following oral exposure to CNMs are highlighted. An increasing number of studies have been published in the last years, overall showing that ingested CNMs are not toxic to the gastrointestinal tract (GIT), suggestive of the biocompatibility of the majority of the tested CNMs. However, in vitro and in vivo genotoxicity studies, as well as long-term carcinogenic or reproductive toxicity studies, are not yet available. These studies are needed to support a wider use of CNMs in applications that can lead to human oral ingestion, thereby promoting a safe and sustainable-by-design approach.
Collapse
Affiliation(s)
- Nádia Vital
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Célia Ventura
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Michel Kranendonk
- NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Maria João Silva
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| | - Henriqueta Louro
- National Institute of Health Dr. Ricardo Jorge, Department of Human Genetics, 1649-016 Lisbon, Portugal
- Centre for Toxicogenomics and Human Health (ToxOmics), NOVA Medical School, Universidade NOVA de Lisboa, 1169-056 Lisbon, Portugal
| |
Collapse
|
45
|
Yang J, Luo Z, Liu F, Han L, He C, Wang M. Nanocellulose Prepared from Buckwheat Bran: Physicochemical Characterization, Cytotoxicity Evaluation, and Inhibition Effect on Fat Digestion and Absorption. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:11603-11612. [PMID: 36083862 DOI: 10.1021/acs.jafc.2c03482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cellulose nanocrystal (CNC) is a sustainable biomaterial that has been used in many aspects of the food industry, but its effect on fat digestion and absorption is still underexplored. In this study, three CNCs were prepared from buckwheat bran. Their physicochemical properties were characterized, based on which the acetic acid-hydrolyzed CNC (ACCNC) with high absorption capacity was selected for the cytotoxicity evaluation and as a possible inhibitor for fat digestion and absorption in vitro and in vivo. ACCNC was proved to be nontoxic in the MTT assay and animal feeding tests. Especially, with the addition of ACCNC, the hydrolysis of fat was significantly reduced during the simulated digestion in vitro. In vivo testing also confirmed that ACCNC intake significantly reduced the elevated triglyceride, body weight, and fat accumulation levels. This study highlights the potential role of ACCNC prepared from buckwheat bran as an inhibitor for fat digestion and absorption.
Collapse
Affiliation(s)
- Jiachuan Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| | - Zhixin Luo
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| | - Lin Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| | - Caian He
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| | - Min Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Xianyang 712100, P. R. China
| |
Collapse
|
46
|
Wu Y, Wu W, Farag MA, Shao P. Functionalized cellulose nanocrystal embedded into citrus pectin coating improves its barrier, antioxidant properties and potential application in food. Food Chem 2022; 401:134079. [PMID: 36115226 DOI: 10.1016/j.foodchem.2022.134079] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 08/20/2022] [Accepted: 08/28/2022] [Indexed: 02/01/2023]
Abstract
Due to the hydrophilic of the pectin material, the coating has poor barrier properties and a negative preservation effect on fresh fruits. In this study, citrus pectin coating with improved barrier and antioxidant properties was prepared by embedding with functional cellulose nanocrystals (CNC). It was assessed that cellulose nanocrystals grafted with p-coumaric acid (CNC-P) were uniformly dispersed in the pectin matrix to improve coating barrier properties. The addition of 8 % CNC-P to the pectin coating led to a decrease in water vapor and oxygen permeability from the coating by 12.6 % and 22.3 %, respectively. Additionally, the grafted p-coumaric acid (PA) introduced antioxidant properties to the cellulose nanocrystals. The fresh-cut fruits preservation assay showed that the coating containing CNC-P exerted a stronger inhibition effect of the browning process within 8 h than other coatings. This study suggests that pectin coating embedded with CNC-P has the potential to be used in food packaging.
Collapse
Affiliation(s)
- Yingying Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Weina Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo, Egypt
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Key Laboratory of Food Macromolecular Resources Processing Technology Research, China National Light Industry, Zhejiang, Hangzhou 310014, China.
| |
Collapse
|
47
|
Wang L, Li Z, Liu Y. Ultrasonic‐assisted extraction and purification of xylo‐oligosaccharides from wheat bran. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lidong Wang
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
- Department of National Coarse Cereals Engineering Research Center Heilongjiang Bayi Agricultural University Daqing China
| | - Zhenjiang Li
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
| | - Ying Liu
- College of Food Science Heilongjiang Bayi Agricultural University Daqing Heilongjiang China
| |
Collapse
|
48
|
Wang Q, Jiang Y, Chen W, Julian McClements D, Ma C, Liu X, Liu F. Development of pH-Responsive Active Packaging Materials Based on Purple Corncob and Its Application in Meat Freshness Monitoring. Food Res Int 2022; 161:111832. [DOI: 10.1016/j.foodres.2022.111832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/04/2022]
|
49
|
Preparation and characterization of okara cellulose crystals as the emulsifier in a pickering emulsion. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01528-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Salim MH, Kassab Z, Abdellaoui Y, García-Cruz A, Soumare A, Ablouh EH, El Achaby M. Exploration of multifunctional properties of garlic skin derived cellulose nanocrystals and extracts incorporated chitosan biocomposite films for active packaging application. Int J Biol Macromol 2022; 210:639-653. [PMID: 35513099 DOI: 10.1016/j.ijbiomac.2022.04.220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
For many years, garlic has been used as a condiment in food and traditional medicine. However, the garlic skin, which accounts for 25% of the garlic bulk, is considered agricultural waste. In this study, cellulose nanocrystals (CNCs) and garlic extract (GE) from garlic skin were isolated and used as fillers to manufacture biocomposite films. The films were characterized in terms of UV barrier, thermal, mechanical, biodegradability, and antimicrobial activity. The chitosan-containing films and CNCs have significantly improved the films' tensile strength, Young's modulus, and elongation but decreased the film transparency compared to chitosan films. The combination of the CNCs and GE, on the other hand, slightly reduced the mechanical properties. The addition of CNCs slightly decreased the film transparency, while the addition of GE significantly improved the UV barrier properties. Thermal studies revealed that the incorporation of CNC and GE had minimal effect on the thermal stability of the chitosan films. The degradability rate of the chitosan composite films was found to be higher than that of the neat chitosan films. The antimicrobial properties of films were studied against Escherichia coli, Streptomyces griseorubens, Streptomyces alboviridis, and Staphylococcus aureus, observing that their growth was considerably inhibited by the addition of GE in composite films. Films incorporating both CNCs and GE from garlic skin hold more promise for active food packaging applications due to a combination of enhanced physical characteristics and antibacterial activity.
Collapse
Affiliation(s)
- Mohamed Hamid Salim
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Youness Abdellaoui
- Faculty of Engineering, Environmental Engineering Department, Autonomous University of Yucatan, Yucatán, Mexico
| | - Ariel García-Cruz
- Autonomous University of Durango, Campus Saltillo. Boulevard Fundadores No. 8812, Misión Santa Lucía, Colonia Misión Cerritos, zc: 25016 Saltillo, Coahuila, Mexico
| | - Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| |
Collapse
|