1
|
Xia S, Fang X, Wu W, Wang G, Chen H, Hu Z, Wang LS, Liu R, Gao H. Preparation and characterization of novel natural pigment-indicating film: Application in kiwifruit freshness monitoring. Food Chem 2025; 463:141491. [PMID: 39378719 DOI: 10.1016/j.foodchem.2024.141491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
The marketability of natural pigment-based indicator films is impeded by their weaker color rendering and stability compared with synthetic pigments. Here, we developed novel colorimetric indicators by blending polyvinyl alcohol (PVA) with carboxymethyl cellulose (CMC) and combining alizarin and curcumin. Compared with the individual materials, the PVA and CMC composite films demonstrated superior thermal stability and water resistance. The manufacturing process of these colorimetric indicators was optimized using response surface methodology. The optimum conditions were as follows: PVA at 3.92 g/100 mL; plate pour amount, 48.6 mL; pigment content, 5.8 g/100 mL; pigment ratio, 0.76. The optimized film showed a robust response to CO2 (a color difference of 65.06 ± 2.43). The color difference of the optimized film improved by 98.5 % and 16.86 % for kiwifruit stored at room and low temperatures, respectively. This substantial color change aids in identifying the optimal consumption window for kiwifruit, boosting indicator precision and kiwifruit freshness accuracy.
Collapse
Affiliation(s)
- Si Xia
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiangjun Fang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Weijie Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Guannan Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Huizhi Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhiwen Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Li-Shu Wang
- Department of Medicine, Medical College of Wisconsin, Milwaukee, Wisconsin, Department of Hematology and Hematopoietic Cell Transplantation, Comprehensive Cancer Center, City of Hope National Medical Center, Duarte, CA, United States
| | - Ruilin Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Haiyan Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Post-Harvest Fruit Processing, Key Laboratory of Post-Harvest Vegetable Preservation and Processing (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory of Intelligent Logistics and Processing of Fresh Food, Key Laboratory of Light Industry Fruit and Vegetable Preservation and Processing, Food Science Institute, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
2
|
Song W, Wu N, He Y, Zhao H, Xu J, Ren L. Intelligent color changing packaging film based on esterified starch and black rice anthocyanins. Food Chem X 2024; 24:101930. [PMID: 39525064 PMCID: PMC11550056 DOI: 10.1016/j.fochx.2024.101930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/09/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Intelligent packaging film has received more and more attention because it can help consumers obtain more intuitive information about the packaging, provide better preservation and advanced convenience. In this study, black rice anthocyanin (BRA) was added into composite film formed by starch (S) and esterified starch (ES). As the BRA content increased, the thickness and the total color difference of the S/ES-BRA film increased. The opacity of S/ES-BRA film decreased relative to that of the film without BRA, but increased with the increase of anthocyanin. Compared with S/ES film, the elongation at break of S/ES-BRA0.5 film increased from 33.1 % to 45.4 %, and the tensile strength decreased from 7.3 to 5.8 MPa. S/ES-BRA film had response to different pH values and underwent color changes in different buffer solutions. Intelligent color changing packaging film will used to monitor food quality, water quality and soil properties.
Collapse
Affiliation(s)
- Wei Song
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Nan Wu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Yikai He
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Huaixiang Zhao
- College of Engineering and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jian Xu
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| | - Lili Ren
- Key Laboratory of Bionic Engineering (Ministry of Education), College of Biological and Agricultural Engineering, Jilin University, Changchun 130022, China
| |
Collapse
|
3
|
Yar MS, Ibeogu IH, Bako HK, Alnadari F, Bilal M, Rehman F, Zhu J, Zhou T, Zhao Z, Li C. A novel carboxymethyl cellulose/gum xanthan and citric acid-based film that enhances the precision of blackcurrant anthocyanin-induced color detection for beef spoilage tracking. Food Chem 2024; 461:140905. [PMID: 39173260 DOI: 10.1016/j.foodchem.2024.140905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/28/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024]
Abstract
Leveraging blackcurrant anthocyanin (BC) as an indicator and carboxymethyl cellulose (CMC), gum xanthan (GX), and citric acid (CA) as film fabricating materials, an innovative amine-responsive beef freshness intelligent film, known as CGC-BC, was successfully created. It was found that the physical characteristics, sensitivity to the biogenic amine reaction, and original color of the film were all highly influenced by the pH of the film-forming solutions. The film's freshness monitoring ability was assessed at 4, 25, and 35 °C, and various color changes were employed to monitor beef deterioration. ΔE values and the visual color difference of the low-concentration (SCG-BC-0.08 and SCG-BC-0.16) ammonia-sensitive indicator films demonstrated significant color changes than the high-concentration (SCG-BC-0.24 and SCG-BC-0.32) films. The films biodegradation (37.16 to 51.49%) ability was enhanced with increase in the proportions of BC. As the TVB-N and pH values of beef increased with the different temperatures and time and different color changes were observed from red to pink, black to brown, and yellow.
Collapse
Affiliation(s)
- Muhammad Shahar Yar
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Isaiah Henry Ibeogu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Hadiza Kabir Bako
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Fawze Alnadari
- College of Food Science and Technology, Nanjing Agricultural University, China
| | - Muhammad Bilal
- College of Food Science and Technology, Nanjing Agricultural University, China
| | - Faiza Rehman
- Department of Food Science and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Jiaying Zhu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Tianming Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Zerun Zhao
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China
| | - Chunbao Li
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, MOST; Key Laboratory of Meat Processing, MOA; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control; College of Food Science and Technology, Nanjing Agricultural University, Weigang 1#, 210095, Nanjing, PR China.
| |
Collapse
|
4
|
Jiang G, Yang Y, Sheng W, Yang L, Yang H, Tang T, Wang C, Tian Y. Preparation and characterization of κ-carrageenan/dextran films blended with nano-ZnO and anthocyanin for intelligent food packaging. Int J Biol Macromol 2024; 282:137203. [PMID: 39489236 DOI: 10.1016/j.ijbiomac.2024.137203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/26/2024] [Accepted: 10/31/2024] [Indexed: 11/05/2024]
Abstract
The κ-carrageenan/microbial-originated dextran-based multifunctional intelligent packaging films, integrated with natural anthocyanins as a colorant and ZnO as an antibacterial agent, were successfully developed using a casting method. Their applicability and functionality were systematically assessed through various analytical techniques. The addition of dextran, anthocyanins, and ZnO in the films resulted in an increased tensile strength (from 13.66 ± 0.53 to 29.70 ± 1.29 MPa) and elongation at break (from 16.69 ± 1.05 % to 39.49 ± 0.73 %), and decreased water solubility (from 64.94 ± 0.34 % to 32.84 ± 1.55 %) and water vapor barrier property (from 8.29 ± 0.12 × 10-10 g/m•s•Pa to 6.92 ± 0.1 × 10-10 g/m•s•Pa). Spectroscopic analysis revealed that the dextran, ZnO and anthocyanins were uniformly dispersed within the film-forming substrates, achieved through hydrogen bonds and electrostatic interactions. The addition of anthocyanins and ZnO not only enhanced the antibacterial and antioxidant properties of the film but also provided it with good pH sensitivity and color stability, making it highly promising for use in shrimp freshness monitoring. All the films were shown to be biodegradable, decomposing completely in soil within 30 days. Overall, these results suggest that the films could serve as a potential replacement for plastic food packaging and additionally monitor the freshness of food.
Collapse
Affiliation(s)
- Guangyang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Yicheng Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - WenYang Sheng
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Li Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Huan Yang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China
| | - Tingting Tang
- College of agriculture and forestry science and technology, Chongqing Three Gorges Vocational College, Chongqing, PR China
| | - Chenzhi Wang
- Institute of Agro-products Processing Science and Technology, Institute of Food Nutrition and Health, Sichuan Academy of Agricultural Sciences, Chengdu 610066, PR China.
| | - Yongqiang Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; Key Laboratory of Leather Chemistry and Engineering, Sichuan University, Ministry of Education, Chengdu 610065, PR China.
| |
Collapse
|
5
|
Yun D, Wu Y, Yong H, Tang C, Chen D, Kan J, Liu J. Recent Advances in Purple Sweet Potato Anthocyanins: Extraction, Isolation, Functional Properties and Applications in Biopolymer-Based Smart Packaging. Foods 2024; 13:3485. [PMID: 39517269 PMCID: PMC11545044 DOI: 10.3390/foods13213485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Petroleum-based plastic packaging materials have negative impacts on the environment and food safety. Natural biopolymer-based food packaging materials are the proper substitutes for plastic-based ones, which is because biopolymers are nontoxic, biodegradable and even edible. The incorporation of bioactive and functional substances into a biopolymer-based film matrix can produce novel smart packaging materials. Anthocyanins, one class of natural colorants with potent antioxidant activity and pH-response color-changing ability, are suitable for producing biopolymer-based smart packaging films. The purple sweet potato is a functional food rich in anthocyanins. In the past decade, numerous studies have reported the extraction of anthocyanins from purple sweet potato and the utilization of purple sweet potato anthocyanins (PSPAs) in biopolymer-based smart packaging film production. However, no specific review has summarized the recent advances on biopolymer-based smart packaging films containing PSPAs. Therefore, in this review, we aim to systematically summarize the progress on the extraction, isolation, characterization, purification and functional properties of PSPAs. Moreover, we thoroughly introduce the preparation methods, physical properties, antioxidant and antimicrobial activity, pH sensitivity, stability and applications of biopolymer-based smart packaging films containing PSPAs. Factors affecting the extraction and functional properties of PSPAs as well as the properties of biopolymer-based films containing PSPAs are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China; (D.Y.); (Y.W.); (H.Y.); (C.T.); (D.C.); (J.K.)
| |
Collapse
|
6
|
Li N, Jiang D, Zhou Z, Lu Y, Lei-Zhong, Law WC, Tang CY. Development of carboxymethyl cellulose/starch films enriched with ZnO-NPs and anthocyanins for antimicrobial and pH-indicating food packaging. Int J Biol Macromol 2024; 282:136814. [PMID: 39454908 DOI: 10.1016/j.ijbiomac.2024.136814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/10/2024] [Accepted: 10/21/2024] [Indexed: 10/28/2024]
Abstract
Active packaging, which can monitor food freshness and extend the shelf life, has gained significant attention in recent years. This study aims to develop a novel carboxymethyl cellulose (CMC)/starch/anthocyanins/ZnO active films with enhanced properties and specific functionalities. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) revealed that the addition of anthocyanins and nano-ZnO particles (ZnO-NPs) led to heterogeneous microstructures and a slight decrease in the crystallinity. Fourier transform infrared spectroscopy (FTIR) indicated that there were no chemical interactions among film components. Active films containing ZnO-NPs exhibited improved ductility, as well as enhanced light barrier and water resistance properties. Notably, a shift from hydrophilic to hydrophobic behavior of the films was observed with high ZnO-NP content, as evidenced by a significant increase in the water contact angle (from 63.44° to 114.22°). Furthermore, the presence of only 1 % ZnO-NPs resulted in efficient inhibition of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) growth. Moreover, active films containing both anthocyanins and ZnO-NPs were highly sensitive to pH changes in buffer solutions (pH 2-11). Based on the results, a recommended film formulation for future active packaging applications is a 80:20 CMC/starch blend with 3 % ZnO-NPs and 0.1 g anthocyanins.
Collapse
Affiliation(s)
- Nannan Li
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Dongyang Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Zeguang Zhou
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Yanyue Lu
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China
| | - Lei-Zhong
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Chemical Engineering, Guangxi Minzu University, Nanning, Guangxi 530006, China.
| | - Wing Cheung Law
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Chak Yin Tang
- Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China.
| |
Collapse
|
7
|
Chen Z, Wei Y, Liu R, Hu C, Sun Y, Yao C, Wu Z, Li B, Luo Z, Huang C. Sodium carboxymethyl cellulose hydrogels containing montmorillonite-NaClO 2 for postharvest preservation of Chinese bayberries. Food Chem 2024; 454:139799. [PMID: 38815326 DOI: 10.1016/j.foodchem.2024.139799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 05/01/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
Owing to their lack of outer skin, Chinese bayberries are highly susceptible to mechanical damage during picking, which accelerates bacterial invasion and rotting, shortening their shelf life. In this study, montmorillonite (MMT) was used to absorb an aqueous sodium chlorite solution embedded in a carboxymethyl cellulose sodium hydrogel after freeze drying, and the hydrogel was crosslinked by Al3+ ions. Al3+ hydrolyzed to produce H+, creating an acidic environment within the hydrogel and reacting with NaClO2 to slowly release ClO2. We prepared a ClO2 slow-release hydrogel gasket with 0.5 wt% MMT-NaClO2 and investigated its storage effect on postharvest Chinese bayberries. Its inhibition rates against Escherichia coli and Listeria monocytogenes were 98.84% and 98.96%, respectively. The results showed that the gasket preserved the appearance and nutritional properties of the berries. The antibacterial hydrogel reduced hardness loss by 26.57% and ascorbic acid loss by 46.36%. This new storage method could also be applicable to other fruits and vegetables.
Collapse
Affiliation(s)
- Zhanpeng Chen
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuting Wei
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Ren Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chi Hu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yuqing Sun
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Chunguang Yao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Zhaolong Wu
- Institute of Grand Health, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Bingzheng Li
- Institute of Grand Health, Guangxi Academy of Sciences, Nanning, Guangxi 530007, China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, Hangzhou 310058, People's Republic of China
| | - Chongxing Huang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China.
| |
Collapse
|
8
|
Liu J, Huang J, Jiang L, Lin J, Ge Y, Hu Y. Chitosan/polyvinyl alcohol food packaging incorporated with purple potato anthocyanins and nano-ZnO: Application on the preservation of hairtail (Trichiurus haumela) during chilled storage. Int J Biol Macromol 2024; 277:134435. [PMID: 39098679 DOI: 10.1016/j.ijbiomac.2024.134435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
The objective of this work was to evaluate the potential application of chitosan/PVA food packaging films incorporating nano-ZnO and purple potato anthocyanins for preserving chilled hairtail pieces. The hairtail pieces were packaged with chitosan/PVA (CP) and chitosan/PVA/nano-ZnO/purple potato anthocyanins (CPZP), respectively, and Control named without any packaging. The changes in pH, total volatile basic nitrogen (TVB-N), total bacterial colony (TVC), thiobarbituric acid (TBA), color value, and sensory evaluation scores of hairtail pieces were periodically determined. Notably, pH, TVC, TVB-N and TBA values of CPZP group on day 15 were 11.67 %, 23.71 %, 80.73 %, and 35.07 %, respectively, lower than Control group. In addition, CPZP group also performed the best in color and sensory evaluation. These results indicated that CPZP, an active food packaging, could extend the shelf-life of hairtail at least 6 days. Overall, chitosan/PVA food films incorporated with nano-ZnO and purple potato anthocyanins (180 mg/100 mL) provides a potential application in food preservation.
Collapse
Affiliation(s)
- Jialin Liu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China; Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayin Huang
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022; Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Lei Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jianhong Lin
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingliang Ge
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute; Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022.
| |
Collapse
|
9
|
Xiaowei H, Wanying Z, Zhihua L, Junjun Z, Ning Z, Jiyong S, Xiaodong Z, Tingting S, Xiaobo Z. pH-triggered bilayer film based on carboxymethyl cellulose/zein/Eudragit L100 with purple cabbage anthocyanin for monitoring pork freshness. Int J Biol Macromol 2024; 278:134358. [PMID: 39089560 DOI: 10.1016/j.ijbiomac.2024.134358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/27/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
A novel pH-triggered bilayer film was composed of zein (Z), carboxymethylcellulose (CMC), Eudragit L100 (L100), and purple cabbage anthocyanin (PCA), followed by casting for monitoring pork freshness during storage at 4 °C and 25 °C. This bilayer film was employed to encapsulate anthocyanins, preventing anthocyanins oxidation and photodegradation. Additionally, under pH 6, this film ruptures and releases anthocyanins, inducing a sudden color change in the indicator film, significantly reducing errors in freshness indications. Notably, the ZCLP8% film had excellent stability and pH response properties. The performance of the ZCLP8% film in monitoring pork freshness was evaluated. When the concentration of pork TVB-N reached 15.59 mg/100 g (pH = 6.35), the bilayer film was ruptured, and the release rate of PCA was 85.52 %, which was a significant change in the color of the bilayer film compared with that at pH = 5. Therefore, this work addresses the limitation that anthocyanin-based intelligent films are subject to judgment errors when applied, opening new possibilities for food freshness differentiation monitoring.
Collapse
Affiliation(s)
- Huang Xiaowei
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhao Wanying
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Li Zhihua
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China.
| | - Zhang Junjun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zhang Ning
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shi Jiyong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Zhai Xiaodong
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Shen Tingting
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China
| | - Zou Xiaobo
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., 212013 Zhenjiang, Jiangsu, China; College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
10
|
Faria CSV, Vieira JM, Vicente AA, Martins JT. Locust Bean Gum/κ-Carrageenan Film Containing Blueberry or Beetroot Extracts as Intelligent Films to Monitoring Hake ( Merluccius merluccius) Freshness. Foods 2024; 13:3088. [PMID: 39410122 PMCID: PMC11475751 DOI: 10.3390/foods13193088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
The main goal of this work was to develop bio-based and ecofriendly intelligent films as freshness indicators to monitor European hake (Merluccius merluccius) quality during storage by using a visual, non-destructive, and real-time technique. Locust bean gum (LBG)/κ-carrageenan (Car) films incorporating blueberry extract (BLE) or beetroot extract (BEE) were developed and their effectiveness to detect hake deterioration during 7 days of storage at 4 °C was evaluated. A visible color response from pink to blue was observed on the BLE films at the end of hake storage, which correlated with the hake deterioration profile, namely an increase in pH values (from 6.60 ± 0.04 to 8.02 ± 0.03), total viable count (TVC, from 4.61 ± 0.36 to 8.61 ± 0.21 log CFU/g), and total volatile basic nitrogen content (TVB-N, from 10.21 ± 1.97 to 66.78 ± 4.81 mg/100 g) beyond the spoilage threshold. The results of this study are very promising, since it was possible to develop a new effective intelligent bio-based responsive indicator film incorporating natural dye BLE, which has the potential to contribute to food waste reduction and improve food safety by detecting the hake freshness status.
Collapse
Affiliation(s)
- Carla S. V. Faria
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
| | - Jorge M. Vieira
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - António A. Vicente
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana T. Martins
- CEB—Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal (J.M.V.); (A.A.V.)
- LABBELS—Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
11
|
Tang Q, Hu J, Liu F, Gui X, Tu Y. Preparation of a colorimetric hydrogel indicator reinforced with modified aramid nanofiber employing natural anthocyanin to monitor shrimp freshness. J Food Sci 2024; 89:5461-5472. [PMID: 39138626 DOI: 10.1111/1750-3841.17290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/10/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
The pH-responsive hydrogels have potential applications in food visualization detection, but their fragile mechanical properties limit their applicability. The excellent mechanical properties and thermal stability of aramid nanofibers (ANFs) can improve the structural stability of hydrogels. In this study, the surface properties of ANFs were enhanced through modification to improve their surface activity. The modified ANFs, designated as ANF-SN, were produced following treatment with a mixture of sulfuric acid (H2SO4) and nitric acid (HNO3), which led to increased reactivity and dispersibility of the ANFs due to the proliferation of active groups on their nanofiber surface. The preferred anthocyanin extract from purple sweet potatoes (purple sweet potato extract [PSPE]) had significant color responses to pH (2-12) and ammonia vapor. A stable dual-network colorimetric hydrogel was fabricated by combining ANF-SN, polyvinyl alcohol/sodium alginate (PVA/SA), and PSPE through a two-step method (freeze-thawing and staining). Characterization analysis showed that the strong acid modification of ANFs effectively improved their chemical reactivity. ANF-SN was better than ANF in promoting the formation of hydrogen bond networks, enhancing hydrogel network structures, and improving the viscoelasticity of hydrogels. The optimal hydrogel indicator PVA/SA/ANF-SN/PSPE had good color responsiveness and sensitivity to ammonia. It can also be used to further determine shrimp freshness value using a smartphone and RGB color-picking software.
Collapse
Affiliation(s)
- Qiushi Tang
- Colege of light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, P. R. China
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Jiwen Hu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, P. R. China
- Incubator of Nanxiong CAS Co., Ltd, Nanxiong, P. R. China
| | - Feng Liu
- Colege of light Chemical Industry and Materials Engineering, Shunde Polytechnic, Foshan, P. R. China
| | - Xuefeng Gui
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, P. R. China
- Incubator of Nanxiong CAS Co., Ltd, Nanxiong, P. R. China
| | - Yuanyuan Tu
- Guangzhou Institute of Chemistry, Chinese Academy of Sciences, Guangzhou, P. R. China
- University of Chinese Academy of Sciences, Beijing, P. R. China
- Guangdong Provincial Key Laboratory of Organic Polymer Materials for Electronics, Guangzhou, P. R. China
- CAS Engineering Laboratory for Special Fine Chemicals, Guangzhou, P. R. China
- Incubator of Nanxiong CAS Co., Ltd, Nanxiong, P. R. China
| |
Collapse
|
12
|
Zhang M, Zhang M, Zhao Z, Zhu J, Wan X, Lv Y, Tang C, Xu B. Preparation and characterization of intelligent and active bi-layer film based on carrageenan/pectin for monitoring freshness of salmon. Int J Biol Macromol 2024; 276:133769. [PMID: 38992533 DOI: 10.1016/j.ijbiomac.2024.133769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/28/2024] [Accepted: 07/07/2024] [Indexed: 07/13/2024]
Abstract
This work aimed to develop and characterize a novel bi-layer film (BIF) for monitoring the freshness of salmon. The indicator layer consists of carrageenan (Car), pectin (PEC) and purple sweet potato anthocyanin (PSPA), and the antibacterial layer consists of Car and magnolol (Mag). The results showed that the Car/Mag2 had the optimal water resistance: the static water contact angle of 80.36 ± 0.92 °, moisture content of 31.38 ± 0.86 %, swelling degree of 92.96 ± 0.46 %, and water solubility of 40.08 ± 1.17 %, and showed excellent antibacterial properties against E. coli and S. aureus with antibacterial rate of 86.13 % ± 0.10 % and 97.53 % ± 0.02 %, respectively. Then BIFs with different PSPA concentration were tested. The morphology, mechanical and water vapor properties (WVP) of the BIFs were studied, and its application in salmon preservation was evaluated. The mechanical properties and WVP test results showed that the BIF0.2 had the optimal Tensile strength (TS) and WVP values. The BIFs showed distinguishable color changes between the pH ranges of 3-10. The shelf life of salmon packaged by BIF0.2 was prolonged by 2 days. Moreover, the BIF0.2 was able to effectively monitor salmon freshness. In conclusion, the BIF has great potential for monitoring salmon meat freshness.
Collapse
Affiliation(s)
- Meng Zhang
- School of Life and Health, Dalian University, Dalian 116622, China
| | - Miao Zhang
- School of Life and Health, Dalian University, Dalian 116622, China
| | - Zhixin Zhao
- School of Life and Health, Dalian University, Dalian 116622, China
| | - Jiajun Zhu
- School of Life and Health, Dalian University, Dalian 116622, China
| | - Xue Wan
- China Certification & Inspection Group Liaoning Co., Ltd, Dalian 116001, China
| | - Ying Lv
- China Certification & Inspection Group Liaoning Co., Ltd, Dalian 116001, China
| | - Chuan Tang
- School of Life and Health, Dalian University, Dalian 116622, China.
| | - Baoli Xu
- Department of Pharmacy, Affiliated Zhongshan Hospital of Dalian University, Dalian 116001, China.
| |
Collapse
|
13
|
Kumar Y, Bist Y, Thakur D, Nagar M, Saxena DC. A review on the role of pH-sensitive natural pigments in biopolymers based intelligent food packaging films. Int J Biol Macromol 2024; 276:133869. [PMID: 39009261 DOI: 10.1016/j.ijbiomac.2024.133869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/08/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
As food packaging evolves, consumer interests are shifting from traditional to intelligent food packaging systems. Intelligent packaging includes active components that display changes in a visual or interactive form perceivable by consumers. This offers real-time monitoring of the quality and shelf life of the packaged food and enhances transparency. For example, pH-sensitive natural pigment-based films change color in response to variations in pH levels, enabling the film/labels to reflect alterations in the acidity or basicity of the food inside the package. Natural pigments like anthocyanins, curcumin, betalains, chlorophyll, and carotenoids have been comprehensively reported for developing biodegradable pH-sensitive films of starch, protein, chitosan, and cellulose. Natural pigments offer great compatibility with these biopolymers and improve the other performance parameters of the films. However, these films still lack the strength and versatility of petroleum-based synthetic plastic films. But these films can be used as an indicator and combined with primary packaging to monitor freshness, time-temperature, and leak for muscle foods, dairy products, fruits and vegetables, and bakery products. Therefore, this review provides a detailed overview of pH-sensitive pigments, their compatibility with natural polymers, their role in film performance in monitoring, and their food packaging applications.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| | - Yograj Bist
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Diksha Thakur
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Mohit Nagar
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India
| | - Dharmesh Chandra Saxena
- Department of Food Engineering and Technology, Sant Longowal Institute of Engineering and Technology, Longowal, Punjab, India.
| |
Collapse
|
14
|
Kuswandi B, Seftyani M, Pratoko DK. Edible colorimetric label based on immobilized purple sweet potato anthocyanins onto edible film for packaged mushrooms freshness monitoring. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2024; 61:1811-1822. [PMID: 39049922 PMCID: PMC11263321 DOI: 10.1007/s13197-024-05960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2023] [Accepted: 02/21/2024] [Indexed: 07/27/2024]
Abstract
An edible colorimetric label has been developed to determine the freshness level of mushrooms, i.e. white oyster mushrooms (Pleurotus ostreatus). The edible indicator label has been fabricated based on purple sweet potato (Ipomoea batatas L.) anthocyanins (PSPA) immobilized onto an edible film made of chitosan and cornstarch with added PVA. The freshness parameters of the mushrooms were pH, weight loss, texture, and sensory evaluation. The results showed that the colorimetric label was dark purple when the mushroom was fresh, and turn to light purple when the mushroom was still fresh, and finally green when the mushroom was no longer fresh. The color value (mean Red) of the label was measured using the ImageJ program, where its color value (mean Red) increased with decreasing freshness level of the mushrooms. The edible label can distinguish fresh mushrooms from spoilage, making it suitable to be used in a packaged mushroom as a freshness indicator.
Collapse
Affiliation(s)
- Bambang Kuswandi
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Mita Seftyani
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| | - Dwi Koko Pratoko
- Chemo and Biosensors Group, Faculty of Pharmacy, University of Jember, Jl. Kalimantan 37, Jember, 68121 Indonesia
| |
Collapse
|
15
|
Mercanti N, Macaluso M, Pieracci Y, Brazzarola F, Palla F, Verdini PG, Zinnai A. Enhancing wine shelf-life: Insights into factors influencing oxidation and preservation. Heliyon 2024; 10:e35688. [PMID: 39170578 PMCID: PMC11336860 DOI: 10.1016/j.heliyon.2024.e35688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/26/2024] [Accepted: 08/01/2024] [Indexed: 08/23/2024] Open
Abstract
Background Understanding the shelf life of wine is complex and involves factors such as aroma preservation, flavour development and market acceptance. Ageing potential, crucial for flavour complexity, exposes wine to oxidation, influenced by oxygen, temperature and light, with an impact on quality. This type of oxidation is non-enzymatic, is catalyzed by metal ions and alters colour and flavour. Scope and approach This review examines the dynamics of wine preservation, focusing on oxidation and the impact of closure. Corks allow controlled oxygen transfer, while screw caps offer a nearly hermetic closure. Oxygen transfer rates vary, with natural corks having fluctuating rates and synthetic corks causing over-exposure. Additives such as sulphur dioxide and alternative substitute such as lysozyme and ascorbic acid are examined for their role in preventing oxidation and ensuring microbiological stability. Key findings and conclusions Closure choice significantly affects wine preservation. Balancing oxygen exposure, temperature, and light is vital. Effective management, including the strategic use of preservatives and additives, is crucial for maintaining quality and extending shelf life. This review underscores the delicate equilibrium necessary for preserving wine quality from production to consumption.
Collapse
Affiliation(s)
- Nicola Mercanti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Ylenia Pieracci
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Department of Pharmacy, Via Bonanno 33, 56124, Pisa, Italy
| | | | - Fabrizio Palla
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Piero Giorgio Verdini
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Pisa, Largo Bruno Pontecorvo, 3, Pisa, 56127, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
- Interdepartmental Research Centre “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| |
Collapse
|
16
|
Yun D, Li C, Sun J, Xu F, Tang C, Liu J. A comparative study on the structure, physical property and halochromic ability of shrimp freshness indicators produced from nine varieties of steamed purple sweet potato. Food Chem 2024; 449:139222. [PMID: 38583398 DOI: 10.1016/j.foodchem.2024.139222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Nine varieties of purple sweet potato were steamed and used for the production of shrimp freshness indicators. The impact of purple sweet potato's variety on the structure, physical property and halochromic ability of indicators was determined. Results showed different varieties of purple sweet potato had different starch, crude fiber, pectin, protein, fat and total anthocyanin contents. The microstructure, crystallinity, moisture content, water vapor permeability, tensile strength and elongation at break of indicators were affected by crude fiber content in purple sweet potato. The color, transmission and halochromic ability of indicators was associated with the total anthocyanin content in purple sweet potato. Freshness indicators produced from Fuzi No. 1, Ganzi No. 6, Ningzi No. 2, Ningzi No. 4, Qining No. 2 and Qining No. 18 of purple sweet potato were suitable to indicate shrimp freshness. This study provides useful information on screening suitable varieties of purple sweet potato for intelligent packaging.
Collapse
Affiliation(s)
- Dawei Yun
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chenchen Li
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai Area, Xuzhou 221131, Jiangsu, PR China
| | - Fengfeng Xu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Chao Tang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, PR China.
| |
Collapse
|
17
|
Xue S, Li C, Xiong Z. Preparation of Complex Polysaccharide Gels with Zanthoxylum bungeanum Essential Oil and Their Application in Fish Preservation. Gels 2024; 10:533. [PMID: 39195062 DOI: 10.3390/gels10080533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024] Open
Abstract
In this study, novel functional ZEO-complex gels were prepared using sodium alginate, inulin, grape seed extract (GSE), and Zanthoxylum bungeanum essential oil (ZEO) as the primary raw materials. The effect of the addition of inulin, GSE, and ZEO on water vapor permeability (WVP), tensile strength (TS), and elongation at break (EAB) of ZEO-complex polysaccharide gels was investigated. A comprehensive score (Y) for evaluating the characteristics of ZEO-complex polysaccharide gels was established by principal component analysis. MATLAB analysis and box-Behnken design describe each factor's four-dimensional and three-dimensional interactions. It was found that Y could reach the maximum value when the ZEO addition was at a moderate level (C = 2%). The optimum preparation process of ZEO-complex polysaccharide gels was as follows: the addition of inulin was at 0.84%, the addition of GSE was at 0.04%, and the addition of ZEO was at 2.0785%; in this way, the Y of ZEO-complex polysaccharide gels reached the maximum (0.82276). Optical scanning and X-ray diffraction tests confirmed that the prepared ZEO-complex gels have a smooth and continuous microstructure, good water insulation, and mechanical properties. The storage test results show that ZEO-complex polysaccharide gels could play a significant role in the storage and fresh-keeping of grass carp, and the physicochemical properties of complex polysaccharide gels were improved by adding ZEO. In addition, according to the correlation of fish index changes during storage, adding ZEO in complex polysaccharide gels was closely correlated with the changes in fish TBARS and TVB-N oxidation decay indices. In conclusion, the ZEO-complex polysaccharide gels prepared in this study had excellent water insulation, mechanical properties, and outstanding fresh-keeping effects on grass carp.
Collapse
Affiliation(s)
- Shan Xue
- College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, China
- Research Institute of Zhangzhou-Taiwan Leisure Food and Tea Beverage, Zhangzhou 363000, China
- Zhangzhou Food Science Research Institute, Zhangzhou 363000, China
| | - Chao Li
- College of Biological Science and Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhouyi Xiong
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
18
|
Lim HJ, Tang SY, Chan KW, Manickam S, Yu LJ, Tan KW. A starch/gelatin-based Halochromic film with black currant anthocyanin and Nanocellulose-stabilized cinnamon essential oil Pickering emulsion: Towards real-time Salmon freshness assessment. Int J Biol Macromol 2024; 274:133329. [PMID: 38908640 DOI: 10.1016/j.ijbiomac.2024.133329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/29/2024] [Accepted: 06/19/2024] [Indexed: 06/24/2024]
Abstract
Neoterically, food packaging systems designed solely for prolonging shelf life or monitoring freshness could not fulfil the dynamic demands of consumers. In this current investigation, using the solvent casting method, a versatile halochromic indicator was created by integrating black currant anthocyanin and cinnamon essential oil-loaded Pickering emulsion into a starch/gelatin matrix. The resulting indicator film underwent scrutiny for its structural, pH-sensitive, antioxidant, and antimicrobial attributes. Unexpectedly, the amalgamation of anthocyanin and essential oil led to decreased antioxidant activity, dropping from 73.23 ± 2.17 to 28.87 ± 2.50 mg Trolox equivalent/g sample. Additionally, no discernible antimicrobial properties were detected in the composite film sample against both Staphylococcus aureus and Escherichia coli. Fourier transform infrared analyses unveiled robust intermolecular interactions among the film-forming components, providing insights into the observed antagonistic effect. The indicator film displayed distinctive colour changes corresponding to the fresh (greyish-brown), onset of decomposition (khaki), and spoiled (dark green) stages of the stored fish sample. This highlights its promising potential for providing real-time indications of food spoilage. These findings are important for the efficient design of composite films incorporating anthocyanins and essential oils. They serve as a guide towards their potential use as multifunctional packaging materials in the food industry.
Collapse
Affiliation(s)
- Hong Jun Lim
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia
| | - Siah Ying Tang
- Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, School of Engineering, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor Darul Ehsan, Malaysia
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering Department, Faculty of Engineering, Universiti Teknologi Brunei, Bandar Seri Begawan BE1410, Brunei Darussalam
| | - Lih Jiun Yu
- Faculty of Engineering, Technology, and Built Environment, UCSI University Kuala Lumpur, Campus, No. 1, Jalan Menara Gading, UCSI Heights (Taman Connaught), Cheras 56000, Kuala Lumpur, Malaysia
| | - Khang Wei Tan
- School of Energy and Chemical Engineering, Xiamen University Malaysia, 43900, Sepang, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Lan W, Zhou M, Zhang B, Liu S, Yan P, Xie J. Effects of chitosan-gentianic acid derivatives on the quality and shelf life of seabass (Lateolabrax maculatus) during refrigerated storage. Int J Biol Macromol 2024; 274:133276. [PMID: 38906360 DOI: 10.1016/j.ijbiomac.2024.133276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Chitosan is a natural polymer material with antibacterial, biodegradable and biocompatibility. At present, the research is mainly to enhance the antibacterial and antioxidant activity of chitosan by grafting with phenolic acids to further expand its application in food. In this study, the effect of chitosan-g-gentisic acid graft copolymer (CS-g-GA) on the shelf life of refrigerated seabass (Lateolabrax maculatus) was investigated. The results of microbial analysis demonstrated that GA and CS-g-GA treatment could effectively inhibit the growth of microorganisms. In addition, physicochemical analysis showed that GA and CS-g-GA treatment could reduce the increase of pH value, thiobarbituric acid reactive substances (TBARS), total volatile base nitrogen (TVB-N) and K-value, delay water loss, maintain texture and color, and postpone the decrease of sensory score. Compared with the control sample, CS-g-GA could keep the quality of Lateolabrax japonicus and extend its shelf-life for another 9 days. In summary, CS-g-GA has good application and development prospects for the preservation of seabass.
Collapse
Affiliation(s)
- Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| | - Mingxing Zhou
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Shucheng Liu
- College of Food Science & Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Peiling Yan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China.
| |
Collapse
|
20
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Enhancing the Biodegradability, Water Solubility, and Thermal Properties of Polyvinyl Alcohol through Natural Polymer Blending: An Approach toward Sustainable Polymer Applications. Polymers (Basel) 2024; 16:2141. [PMID: 39125167 PMCID: PMC11314078 DOI: 10.3390/polym16152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers-corn starch (CS) and hydroxypropyl methylcellulose (HPMC)-to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science's contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
21
|
Yücetepe M, Tuğba Özaslan Z, Karakuş MŞ, Akalan M, Karaaslan A, Karaaslan M, Başyiğit B. Unveiling the multifaceted world of anthocyanins: Biosynthesis pathway, natural sources, extraction methods, copigmentation, encapsulation techniques, and future food applications. Food Res Int 2024; 187:114437. [PMID: 38763684 DOI: 10.1016/j.foodres.2024.114437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/04/2024] [Accepted: 04/27/2024] [Indexed: 05/21/2024]
Abstract
Numerous datasets regarding anthocyanins have been noted elsewhere. These previous studies emphasized that all processes must be carried out meticulously from the source used to obtain anthocyanins to their inclusion in relevant applications. However, today, full standardization has not yet been achieved for these processes. For this, presenting the latest developments regarding anthocyanins under one roof would be a useful approach to guide the scientific literature. The current review was designed to serve the stated points. In this context, their biosynthesis pathway was elaborated. Superior potential of fruits and certain by-products in obtaining anthocyanins was revealed compared to their other counterparts. Health-promoting benefits of anthocyanins were detailed. Also, the situation of innovative techniques (ultrasound-assisted extraction, subcritical water extraction, pulse electrical field extraction, and so on) in the anthocyanin extraction was explained. The stability issues, which is one of the most important problems limiting the use of anthocyanins in applications were discussed. The role of copigmentation and various encapsulation techniques in solving these stability problems was summarized. This critical review is a map that provides detailed information about the processes from obtaining anthocyanins, which stand out with their functional properties, to their incorporation into various systems.
Collapse
Affiliation(s)
- Melike Yücetepe
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Zeynep Tuğba Özaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Mehmet Şükrü Karakuş
- Harran University, Application and Research Center for Science and Technology, Şanlıurfa, Turkey
| | - Merve Akalan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Asliye Karaaslan
- Harran University, Vocational School, Food Processing Programme, Şanlıurfa, Turkey
| | - Mehmet Karaaslan
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey
| | - Bülent Başyiğit
- Harran University, Engineering Faculty, Food Engineering Department, Şanlıurfa, Turkey.
| |
Collapse
|
22
|
Karimi Alavijeh D, Heli B, Ajji A. Development of a Sensitive Colorimetric Indicator for Detecting Beef Spoilage in Smart Packaging. SENSORS (BASEL, SWITZERLAND) 2024; 24:3939. [PMID: 38931722 PMCID: PMC11207943 DOI: 10.3390/s24123939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024]
Abstract
This study aimed to fabricate and characterize a novel colorimetric indicator designed to detect ammonia (NH3) and monitor meat freshness. The sensing platform was constructed using electrospun nanofibers made from polylactic acid (PLA), which were then impregnated with anthocyanins as a natural pH-sensitive dye, extracted from red cabbage. This research involved investigating the relationship between the various concentrations of anthocyanins and the colorimetric platform's efficiency when exposed to ammonia vapor. Scanning electron microscope (SEM) results were used to examine the morphology and structure of the nanofiber mats before and after the dip-coating process. The study also delved into the selectivity of the indicator when exposed to various volatile organic compounds (VOCs) and their stability under extreme humidity levels. Furthermore, the platform's sensitivity was evaluated as it encountered ammonia (NH3) in concentrations ranging from 1 to 100 ppm, with varying dye concentrations. The developed indicator demonstrated an exceptional detection limit of 1 ppm of MH3 within just 30 min, making it highly sensitive to subtle changes in gas concentration. The indicator proved effective in assessing meat freshness by detecting spoilage levels in beef over time. It reliably identified spoilage after 10 h and 7 days, corresponding to bacterial growth thresholds (107 CFU/mL), both at room temperature and in refrigerated environments, respectively. With its simple visual detection mechanism, the platform offered a straightforward and user-friendly solution for consumers and industry professionals alike to monitor packaged beef freshness, enhancing food safety and quality assurance.
Collapse
Affiliation(s)
| | | | - Abdellah Ajji
- Département de Génie Chimique, Polytechnique Montréal, Montréal, QC H3C 3A7, Canada; (D.K.A.); (B.H.)
| |
Collapse
|
23
|
Pan C, Li X, Jiao Y, Fan G, Long Y, Cheng Q, Yang H. Deep-eutectic-solvent modulation of self-assembled multi-responsive films based on polyvinyl alcohol/cellulose nanocrystal and grape skin red for highly sensitive food monitoring. Int J Biol Macromol 2024; 269:132005. [PMID: 38777686 DOI: 10.1016/j.ijbiomac.2024.132005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/21/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
To enhance the mechanics performance, sensitivity and response range of multi-responsive photonic films, herein, a facile method for fabricating multi-responsive films is demonstrated using the evaporative self-assembly of a mixture of grape skin red (GSR), cellulose nanocrystal (CNC), polyvinyl alcohol (PVA) and deep eutectic solvent (DES). The prepared materials exhibited excellent thermal stability, strain properties, solvent resistance, ultraviolet (UV) resistance and antioxidant activity. Compared to a pure PVA film, the presence of GSR strengthened the antioxidant property of the film by 240.1 % and provided excellent UV barrier capability. The additional cross-linking of DES and CNC promoted more efficient phase fusion, yielding a film strain of 41.5 %. The addition of hydrophilic compound GSR, wetting and swelling due to the DES and the surface inhomogeneity of the films rendered the multi-responsive films high sensitivity, wide response range and multi-cyclic stability in environments with varying pH and humidity. A sample application showed that a PVA/CNC/DES film has the potential to differentiate between fresh, sub-fresh and fully spoiled shrimps. The above results help in designing intelligent thin film materials that integrate antioxidant properties, which help in monitoring the changes in food freshness and food packaging.
Collapse
Affiliation(s)
- Cheng Pan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China; Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China.
| | - Xiaofei Li
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| | - Yinao Jiao
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Guozhi Fan
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Yifei Long
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Qunpeng Cheng
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
24
|
Yue R, Zhang Y, Liu J, Sun J. Preparation of Steamed Purple Sweet Potato-Based Films Containing Mandarin Essential Oil for Smart Packaging. Molecules 2024; 29:2314. [PMID: 38792175 PMCID: PMC11124375 DOI: 10.3390/molecules29102314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Anthocyanin-rich steamed purple sweet potato (SPSP) is a suitable raw material to produce smart packaging films. However, the application of SPSP-based films is restricted by the low antimicrobial activity of anthocyanins. In this study, SPSP-based smart packaging films were produced by adding mandarin essential oil (MEO) as an antimicrobial agent. The impact of MEO content (3%, 6%, and 9%) on the structures, properties, and application of SPSP-based films was measured. The results showed that MEO created several pores within films and reduced the hydrogen bonding system and crystallinity of films. The dark purple color of the SPSP films was almost unchanged by MEO. MEO significantly decreased the light transmittance, water vapor permeability, and tensile strength of the films, but remarkably increased the oxygen permeability, thermal stability, and antioxidant and antimicrobial properties of the films. The SPSP-MEO films showed intuitive color changes at different acid-base conditions. The purple-colored SPSP-MEO films turned blue when chilled shrimp and pork were not fresh. The MEO content greatly influenced the structures, physical properties, and antioxidant and antimicrobial activities of the films. However, the MEO content had no impact on the color change ability of the films. The results suggested that SPSP-MEO films have potential in the smart packaging of protein-rich foods.
Collapse
Affiliation(s)
- Ruixue Yue
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| | - Yiren Zhang
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jun Liu
- College of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China;
| | - Jian Sun
- Xuzhou Institute of Agricultural Sciences, Jiangsu Xuhuai Area, Xuzhou 221131, China;
| |
Collapse
|
25
|
Ekrem Parlak M, Irmak Sahin O, Neslihan Dundar A, Türker Saricaoglu F, Smaoui S, Goksen G, Koirala P, Al-Asmari F, Prakash Nirmal N. Natural colorant incorporated biopolymers-based pH-sensing films for indicating the food product quality and safety. Food Chem 2024; 439:138160. [PMID: 38086233 DOI: 10.1016/j.foodchem.2023.138160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024]
Abstract
The current synthetic plastic-based packaging creates environmental hazards that impact climate change. Hence, the topic of the current research in food packaging is biodegradable packaging and its development. In addition, new smart packaging solutions are being developed to monitor the quality of packaged foods, with dual functions as food preservation and quality indicators. In the creation of intelligent and active food packaging, many natural colorants have been employed effectively as pH indicators and active substances, respectively. This review provides an overview of biodegradable polymers and natural colorants that are being extensively studied for pH-indicating packaging. A comprehensive discussion has been provided on the current status of the development of intelligent packaging systems for food, different incorporation techniques, and technical challenges in the development of such green packaging. Finally, the food industry and environmental protection might be revolutionized by pH-sensing biodegradable packaging enabling real-time detection of food product quality and safety.
Collapse
Affiliation(s)
- Mahmud Ekrem Parlak
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Oya Irmak Sahin
- Department of Chemical Engineering, Faculty of Engineering, Yalova University, 76200 Yalova, Turkey
| | - Ayse Neslihan Dundar
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Furkan Türker Saricaoglu
- Department of Food Engineering, Faculty of Engineering and Natural Science, Bursa Technical University, 16310 Yıldırım/BURSA, Turkey
| | - Slim Smaoui
- Laboratory of Microbial Biotechnology and Engineering Enzymes (LMBEE), Center of Biotechnology of Sfax (CBS), University of Sfax, Road of Sidi Mansour Km 6, P.O. Box 1177, 3018 Sfax, Tunisia
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Pankaj Koirala
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand
| | - Fahad Al-Asmari
- Department of Food Science and Nutrition, College of Agriculture and Food Sciences, King Faisal University, P.O. Box 400, Al-Ahsa, 31982 Al-Hofuf, Saudi Arabia
| | - Nilesh Prakash Nirmal
- Institute of Nutrition, Mahidol University, 999 Phutthamonthon 4 Road, Salaya, Nakhon Pathom 73170, Thailand.
| |
Collapse
|
26
|
Gao L, Sun H, Nagassa M, Li X, Pei H, Liu S, Gu Y, He S. Edible film preparation by anthocyanin extract addition into acetylated cassava starch/sodium carboxymethyl cellulose matrix for oxidation inhibition of pumpkin seeds. Int J Biol Macromol 2024; 267:131439. [PMID: 38593902 DOI: 10.1016/j.ijbiomac.2024.131439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/01/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
In this study, an edible film was fabricated by incorporating anthocyanin extract from black rice (AEBR) into acetylated cassava starch (ACS)/carboxymethyl-cellulose (CMC) to enhance the shelf life of pumpkin seeds. The effects of AEBR on the rheological properties of film-forming solutions, as well as the structural characterization and physicochemical properties of the film, were evaluated. Rheological properties of solutions revealed that AEBR was evenly dispersed into polymer matrix and bound by hydrogen bonds, as confirmed by Fourier transform infrared spectroscopy analysis. The appropriate AEBR addition could be compatible with polymer matrix and formed a compact film structure, improving the mechanical properties, barrier properties, and opacity. However, with further addition of AEBR, the tensile strength and water vapor permeability decreased and the tight structure was destroyed. After being stored separately under thermal and UV light accelerated conditions for 20 days, the peroxide value and acid value of roasted pumpkin seeds coated with the AEBR film showed a significant reduction. Moreover, the storage stability of AEBR was improved through the embedding of ACS/CMC biopolymers. These results indicated that AEBR film could effectively delay pumpkin seeds oxidation and prolong their shelf life as an antioxidant material.
Collapse
Affiliation(s)
- Lingyan Gao
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hanju Sun
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| | - Merga Nagassa
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Xiao Li
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Hui Pei
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shuyun Liu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Yingying Gu
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China
| | - Shudong He
- School of Food and Biological Engineering, Engineering Research Center of Bio-process of Ministry of Education, Key Laboratory for Agricultural Products Procssing of Anhui Province, Hefei University of Technology, Hefei 230009, Anhui, PR China.
| |
Collapse
|
27
|
Wu JH, Liao JH, Hu TG, Zong MH, Wen P, Wu H. Fabrication of multifunctional ethyl cellulose/gelatin-based composite nanofilm for the pork preservation and freshness monitoring. Int J Biol Macromol 2024; 265:130813. [PMID: 38479667 DOI: 10.1016/j.ijbiomac.2024.130813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/01/2024] [Accepted: 03/10/2024] [Indexed: 03/18/2024]
Abstract
In this study, an active and intelligent nanofilm for monitoring and maintaining the freshness of pork was developed using ethyl cellulose/gelatin matrix through electrospinning, with the addition of natural purple sweet potato anthocyanin. The nanofilm exhibited discernible color variations in response to pH changes, and it demonstrated a higher sensitivity towards volatile ammonia compared with casting film. Notably, the experimental findings regarding the wettability and pH response performance indicated that the water contact angle between 70° and 85° was more favorable for the smart response of pH sensitivity. Furthermore, the film exhibited desirable antioxidant activities, water vapor barrier properties and also good antimicrobial activities with the incorporation of ε-polylysine, suggesting the potential as a food packaging film. Furthermore, the application preservation outcomes revealed that the pork packed with the nanofilm can prolong shelf life to 6 days, more importantly, a distinct color change aligned closely with the points indicating the deterioration of the pork was observed, changing from light pink (indicating freshness) to light brown (indicating secondary freshness) and then to brownish green (indicating spoilage). Hence, the application of this multifunctional film in intelligent packaging holds great potential for both real-time indication and efficient preservation of the freshness of animal-derived food items.
Collapse
Affiliation(s)
- Jia-Hui Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Jia-Hui Liao
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Teng-Gen Hu
- Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510640, China
| | - Min-Hua Zong
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China
| | - Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China.
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, China.
| |
Collapse
|
28
|
Pang H, Wu Y, Tao Q, Xiao Y, Ji W, Li L, Wang H. Active cellulose acetate/purple sweet potato anthocyanins@cyclodextrin metal-organic framework/eugenol colorimetric film for pork preservation. Int J Biol Macromol 2024; 263:130523. [PMID: 38428771 DOI: 10.1016/j.ijbiomac.2024.130523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 02/27/2024] [Indexed: 03/03/2024]
Abstract
As a natural pH-sensing colorant, purple sweet potato anthocyanins (PSPAs) have demonstrated great potential in colorimetric film for freshness monitoring. However, the photothermal instability of PSPAs is still a challengeable issue. Herein, γ-cyclodextrin metal-organic framework (CD-MOF) loaded with PSPAs (PSPAs@CD-MOF, i.e., PM) and eugenol (EUG) were incorporated in cellulose acetate (CA) matrix for developing a smart active colorimetric film of CA/PM/EUG, where PM and EUG were hydrogen-bonded with CA. Attentions were focused on the photothermal colorimetric stability, colorimetric response, and antibacterial activity of the films. The presence of PM and EUG endowed the film outstanding UV-blocking performance and enhanced the barrier against water vapor and oxygen. Target film of CA/PM15/EUG10 had good photothermal colorimetric stability due to the protection of CD-MOF on PSPAs and the color changes with pH-stimuli were sensitive and reversible. In addition to antioxidant activity, CA/PM15/EUG10 had antibacterial activity against Escherichia coli and Staphylococcus aureus. The application trial results indicated that the CA/PM15/EUG10 was valid to indicate pork freshness and extended the shelf-life by 100 % at 25 °C, which has demonstrated a good perspective on smart active packaging for freshness monitoring and shelf-life extension.
Collapse
Affiliation(s)
- Huaiting Pang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yimin Wu
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Qianlan Tao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Yewen Xiao
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Wei Ji
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China
| | - Linlin Li
- School of Food and Biological Engineering, Hefei University of Technology, 230601 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China
| | - Hualin Wang
- School of Chemistry and Chemical Engineering, Hefei University of Technology, 230009 Hefei, Anhui, China; Anhui Province Engineering Research Center of Flexible and Intelligent Materials, 230009 Hefei, Anhui, China; Province Key Laboratory of Agricultural Products Modern Processing, 230601 Hefei, Anhui, China.
| |
Collapse
|
29
|
Wanniarachchi PC, Upul Kumarasinghe KG, Jayathilake C. Recent advancements in chemosensors for the detection of food spoilage. Food Chem 2024; 436:137733. [PMID: 37862988 DOI: 10.1016/j.foodchem.2023.137733] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 07/10/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023]
Abstract
The need for reliable sensors has become a major requirement to confirm the quality and safety of food commodities. Chemosensors are promising sensing tools to identify contaminants and food spoilage to ensure food safety. Chemosensing materials are evolving and becoming potential mechanisms to enable onsite and real-time monitoring of food safety. This review summarizes the information about the basic four types of chemosensors (colorimetric, optical, electrochemical, and piezoelectric) employed in the food sector, the latest advancements in the development of chemo-sensing mechanisms, and their food applications, with special emphasis on the future outlook of them. In this review, we discuss the novel chemosensors developed from the year 2018 to 2022 to detect spoilage in some common types of food like fish, meat, milk, cheese and soy sauce. This work will provide a fundamental step toward further development and innovations of chemosensors targeting different arenas in the food industry.
Collapse
Affiliation(s)
| | - K G Upul Kumarasinghe
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, Nugegoda 10250, Sri Lanka
| | - Chathuni Jayathilake
- School of Medicine, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| |
Collapse
|
30
|
Wen P, Wu J, Wu J, Wang H, Wu H. A Colorimetric Nanofiber Film Based on Ethyl Cellulose/Gelatin/Purple Sweet Potato Anthocyanins for Monitoring Pork Freshness. Foods 2024; 13:717. [PMID: 38472830 DOI: 10.3390/foods13050717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
In this study, colorimetric indicator nanofiber films based on ethyl cellulose (EC)/gelatin (G) incorporating purple sweet potato anthocyanins (PSPAs) were designed via electrospinning technology for monitoring and maintaining the freshness of pork. The film presented good structural integrity and stability in a humid environment with water vapor permeability (WVP) of 6.07 ± 0.14 × 10-11 g·m-1s-1Pa-1 and water contact angle (WCA) of 81.62 ± 1.43°. When PSPAs were added into the nanofiber films, the antioxidant capacity was significantly improved (p < 0.05) with a DPPH radical scavenging rate of 68.61 ± 1.80%. The nanofiber films showed distinguishable color changes as pH changes and was highly sensitive to volatile ammonia than that of casting films. In the application test, the film color changed from light pink (fresh stage) to light brown (secondary freshness stage) and then to brownish green (spoilage stage), indicating that the nanofiber films can be used to detect the real-time freshness of pork during storage. Meanwhile, it could prolong the shelf life of pork by inhibiting the oxidation degree. Hence, these results suggested that the EC/G/PSPA film has promising future for monitoring freshness and extending shelf life of pork.
Collapse
Affiliation(s)
- Peng Wen
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jinling Wu
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Jiahui Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| | - Hong Wang
- College of Food Science, Guangdong Provincial Key Laboratory of Food Quality and Safety, South China Agricultural University, Guangzhou 510642, China
| | - Hong Wu
- School of Food Science and Engineering, South China University of Technology/Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510641, China
| |
Collapse
|
31
|
Elhadef K, Chaari M, Akermi S, Ben Hlima H, Ennouri M, Abdelkafi S, Agriopoulou S, Ali DS, Boulekbache-Makhlouf L, Mellouli L, Smaoui S. pH-sensitive films based on carboxymethyl cellulose/date pits anthocyanins: A convenient colorimetric indicator for beef meat freshness tracking. FOOD BIOSCI 2024; 57:103508. [DOI: 10.1016/j.fbio.2023.103508] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
|
32
|
Zhang C, Qu L, Liu H, Cai D, Yuan Y, Wang S. pH-responsive color-indicating film of pea protein isolate cross-linked with dialdehyde carboxylated cellulose nanofibers for pork freshness monitoring. Int J Biol Macromol 2024; 257:128671. [PMID: 38070796 DOI: 10.1016/j.ijbiomac.2023.128671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/27/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
The limited mechanical performance and responsiveness of protein-based smart packaging materials have hindered their development. To address these issues, this study prepared a pH-responsive smart film by introducing dialdehyde carboxylated cellulose nanofibers (DCCNFs) as the cross-linking agent capable of covalently reacting with proteins, and bilberry extract (BE) as a pH-responsive indicator into pea protein isolate (PPI) matrix. The results demonstrated that adding DCCNF and BE enhanced the PPI film's thermal stability, density, and UV barrier properties. Tensile tests revealed significant improvements in both tensile strength and elongation at the break for the resulting film. Furthermore, films containing DCCNF and BE exhibited lower moisture content, swelling ratio, water vapor permeability, and relative oxygen transmission compared to PPI films. Notably, the anthocyanins in BE endowed the film with visual color changes corresponding to different pH values. This feature enabled the film to monitor pork freshness; a transition from acidic to alkaline in pork samples was accompanied by a color change from brown to brownish green in the film as storage time increased. Overall, these findings highlight that this developed film possesses excellent physicochemical properties and sensitive pH response capabilities, making it a promising candidate for future smart packaging applications.
Collapse
Affiliation(s)
- Chi Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Luping Qu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Huan Liu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Danni Cai
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China
| | - Yi Yuan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| | - Shaoyun Wang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, PR China.
| |
Collapse
|
33
|
Doğan V, Evliya M, Nesrin Kahyaoglu L, Kılıç V. On-site colorimetric food spoilage monitoring with smartphone embedded machine learning. Talanta 2024; 266:125021. [PMID: 37549568 DOI: 10.1016/j.talanta.2023.125021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/15/2023] [Accepted: 07/31/2023] [Indexed: 08/09/2023]
Abstract
Real-time and on-site food spoilage monitoring is still a challenging issue to prevent food poisoning. At the onset of food spoilage, microbial and enzymatic activities lead to the formation of volatile amines. Monitoring of these amines with conventional methods requires sophisticated, costly, labor-intensive, and time consuming analysis. Here, anthocyanins rich red cabbage extract (ARCE) based colorimetric sensing system was developed with the incorporation of embedded machine learning in a smartphone application for real-time food spoilage monitoring. FG-UV-CD100 films were first fabricated by crosslinking ARCE-doped fish gelatin (FG) with carbon dots (CDs) under UV light. The color change of FG-UV-CD100 films with varying ammonia vapor concentrations was captured in different light sources with smartphones of various brands, and a comprehensive dataset was created to train machine learning (ML) classifiers to be robust and adaptable to ambient conditions, resulting in 98.8% classification accuracy. Meanwhile, the ML classifier was embedded into our Android application, SmartFood++, enabling analysis in about 0.1 s without internet access, unlike its counterpart using cloud operation via internet. The proposed system was also tested on a real fish sample with 99.6% accuracy, demonstrating that it has a great advantage as a potent tool for on-site real-time monitoring of food spoilage by non-specialized personnel.
Collapse
Affiliation(s)
- Vakkas Doğan
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey
| | - Melodi Evliya
- Department of Food Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | | | - Volkan Kılıç
- Department of Electrical and Electronics Engineering, Izmir Katip Celebi University, 35620 Izmir, Turkey.
| |
Collapse
|
34
|
Xiao Z, Liu C, Rong X, Sameen DE, Guo L, Zhang J, Chu X, Chen M, Liu Y, Qin W. Development of curcumin-containing polyvinyl alcohol/chitosan active/intelligent films for preservation and monitoring of Schizothorax prenanti fillets freshness. Int J Biol Macromol 2023; 253:127343. [PMID: 37820899 DOI: 10.1016/j.ijbiomac.2023.127343] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
Active/intelligent films for the preservation and monitoring of Schizothorax prenanti fillets freshness were prepared by combining curcumin (CUR) with polyvinyl alcohol/chitosan (PVA/CS) matrix. SEM images showed that the CUR with a maximum content of 1.5 % (w/w) was evenly distributed in the composite matrix. The addition of CUR did not affect the chemical structure of PVA/CS matrix, as confirmed by FTIR investigation. When 1.5 % (w/w) CUR was added, the water vapor barrier property, tensile strength and antioxidant activity of the composite film were the best, which were 5.38 ± 0.25 × 10-11 g/m·s·Pa, 62.05 ± 1.68 MPa and 85.50 ± 3.63 %, respectively. Water solubility of PVA/CS/CUR-1.5 % film was reduced by approximately 27 % compared to PVA/CS film. After adding CUR, the antibacterial properties of the composite film increased significantly. Although the addition of CUR reduced the biodegradability of PVA/CS film, the PVA/CS/CUR-1.5 % film degraded >60 % within 5 weeks. By measuring pH, weight loss, total volatile base‑nitrogen (TVB-N), thiobarbituric acid reactive substances (TBARS), and total viable counts (TVC), the preservation effect of the composite films on the fish freshness was evaluated. The fish shelf life treated by PVA/CS/CUR-1.5 % film expanded from 3-6 days to 12-15 days at 4 °C. In addition, when PVA/CS/CUR-1.5 % film was used to monitor the fish freshness, it exhibited clear color fluctuations, from yellow to orange and to red, corresponding to first-grade freshness, second-grade freshness, and rottenness of the fish, respectively. As a result, the films can be successfully used for Schizothorax prenanti fillets preservation and deterioration monitoring.
Collapse
Affiliation(s)
- Zhenkun Xiao
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Chunyan Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xingyu Rong
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Dur E Sameen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Lu Guo
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Jie Zhang
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Xiyao Chu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Mingrui Chen
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China
| | - Yaowen Liu
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan 625014, China.
| |
Collapse
|
35
|
Yan M, Wang W, Xu Q, Zou Q, Chen W, Lan D, Wang Y. Novel oxidation indicator films based on natural pigments and corn starch/carboxymethyl cellulose. Int J Biol Macromol 2023; 253:126630. [PMID: 37657563 DOI: 10.1016/j.ijbiomac.2023.126630] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/18/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023]
Abstract
The existing oil oxidation detection methods are unsuitable for consumers to identify oil oxidation in a domestic setting. This study aims to develop indicator films detecting the degree of lipid oxidation with the naked eye. Purple sweet potato pigment (PSP) was chosen as a color indicator due to its response to hydrogen peroxide. The novel oxidation indicator films were prepared using corn starch, carboxymethyl cellulose (CMC), and varying concentrations of PSP. Fourier transform infrared spectroscopy spectra and scanning electron microscopy analysis confirmed the successful dispersion of PSP in the films. Thermal stability, light resistance, ultraviolet light resistance, mechanical resistance, and flexibility of films containing PSP were improved, enhancing the potential application in detecting oxidized substances. All the films exhibited noticeable color changes when exposed to different concentrations of hydrogen peroxide. These differences were more pronounced with higher levels of PSP. When these films were used to determine the degree of lipid oxidation, the ∆E value of the CS-PSP-0.25 % film showed a linear relationship (R2 = 0.929) with the peroxide value, unlike other films. Therefore, it is reliable to infer the peroxide value of edible oil by observing the color of the films, which helps customers avoid consuming expired oils.
Collapse
Affiliation(s)
- Menglei Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weifei Wang
- Sericultural & Argi-Food Research Institute, Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, No. 133 Yiheng Street, Dongguanzhuang Road, Tianhe District, Guangzhou 510610, China
| | - Qingqing Xu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qian Zou
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Wen Chen
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Dongming Lan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghua Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; Guangdong Yue-shan Special Nutrition Technology Co. Ltd., Foshan 528000, China.
| |
Collapse
|
36
|
Li G, Zhan J, Huang J, Xu E, Yuan C, Chen J, Yao Q, Hu Y. Enhanced fresh-keeping capacity of printed surimi by Ca 2+-nano starch-lutein and its nondestructive freshness monitoring based on 4D printed anthocyanin. Int J Biol Macromol 2023; 252:126543. [PMID: 37634781 DOI: 10.1016/j.ijbiomac.2023.126543] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
To solve undiscernible freshness changes of printed functional surimi while maintaining printed shape, 4D printable color-changing material were prepared. Firstly, based on results of printing properties and fresh-keeping of Ca2+-NS-L-surimi, it showed better printing effects (enhanced mechanical strength) and good preservation (inhibition of amino acids decomposition, bacterial growth). However, freshness changes of printed Ca2+-NS-L-surimi were not distinguished directly. To avoid that, 4D printable color-changing material-anthocyanin-hydroxypropyl methyl cellulose-xanthan gum-carrageenan (AHXK) was prepared for indicating freshness through discoloration. Printing results showed AHX with 5 % K had the most suitable mechanical strength (appropriate gel strength, texture, rheology) for printing. Based on that, AHXK had stable color (ΔE fluctuation <5) and was sensitive to pH and ammonia (obvious discoloration; ΔE > 10). Actual freshness monitoring results (co-printing of AHXK-surimi) exhibited significant discolorations, especially for HXK with 0.75 % A. It became green during refrigeration of 3-5 d (keeping fresh, ΔE < 4), brighter green at 7 d (decreased freshness, ΔE > 6), turned yellow at 9 d (spoilage, ΔE > 16), which were distinguished significantly with naked eyes rather than traditional freshness determining. In conclusion, printed AHXK-functional surimi exhibited good printing, preservation and nondestructive freshness monitoring, facilitating application of 3D printed functional surimi.
Collapse
Affiliation(s)
- Gaoshang Li
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Junqi Zhan
- School of food science and biotechnology, Zhejiang Gongshang University, Hangzhou 310000, Zhejiang, China
| | - Jiayin Huang
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China; College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China
| | - Enbo Xu
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chunhong Yuan
- Department of Food Production and Environmental Management, Faculty of Agriculture, Iwate University, Ueda 4-3-5, Morioka, 020-8551, Japan
| | - Jianchu Chen
- Institute of Food Engineering, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qian Yao
- Key Laboratory of Medicinal and Edible Plants Resources Development of Sichuan Education Department, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China
| | - Yaqin Hu
- College of Food Science and Engineering, Yazhou Bay Innovation Institute, Hainan Tropical Ocean University, Marine Food Engineering Technology Research Center of Hainan Province, Collaborative Innovation Center of Marine Food Deep Processing, Hainan Key Laboratory of Herpetological Research, Sanya 572022, China.
| |
Collapse
|
37
|
Yaashikaa PR, Kamalesh R, Senthil Kumar P, Saravanan A, Vijayasri K, Rangasamy G. Recent advances in edible coatings and their application in food packaging. Food Res Int 2023; 173:113366. [PMID: 37803705 DOI: 10.1016/j.foodres.2023.113366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 10/08/2023]
Abstract
The food packaging industries are facing the challenge of food waste generation. This can be addressed through the use of edible coating materials. These coatings aid in extending the shelf life of food products, reducing waste. The key components of these coatings include food-grade binding agents, solvents, and fillers. The integration of polysaccharide, protein, lipids, bioactive and composite-based materials with edible coating matrix aids to combat substantial post-harvest loss of highly perishable commodities and elevates the quality of minimally processed food. The aim of this review is to introduce the concept of edible coatings and discuss the different coating materials used in the food industry, along with their properties. Additionally, this review aims to classify the coating types based on characteristic features and explore their application in various food processing industries. This review provides a comprehensive overview of edible coatings, including the integration of polysaccharides, proteins, lipids, bioactive, and composite-based materials into the coating matrix. This review also addresses the significant post-harvest loss of highly perishable commodities and emphasizes the enhancement of quality in minimally processed food. Furthermore, the antimicrobial, anti-corrosive, and edible characteristics are highlighted, showcasing their potential applications in different food packaging industries. Moreover, it also discusses the challenges, safety and regulatory aspects, current trends, and future perspectives, aiming to shed light on the commercialization and future investigation of edible coatings.
Collapse
Affiliation(s)
- P R Yaashikaa
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India.
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai 602195, Tamil Nadu, India
| | - K Vijayasri
- Department of Biotechnology, Center for Food Technology, Anna University, Chennai 600025, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| |
Collapse
|
38
|
Nadi M, Razavi SMA, Shahrampour D. Fabrication of green colorimetric smart packaging based on basil seed gum/chitosan/red cabbage anthocyanin for real-time monitoring of fish freshness. Food Sci Nutr 2023; 11:6360-6375. [PMID: 37823104 PMCID: PMC10563753 DOI: 10.1002/fsn3.3574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 10/13/2023] Open
Abstract
Novel green intelligent films based on basil seed gum (BSG)/chitosan containing red cabbage extract (RCA) (0, 2.5, 5, and 10, % (v/v)) as a colorimetric indicator for food freshness detection were fabricated by casting method. The physicochemical, barrier, mechanical, and antioxidant characteristics, as well as sensitivity to pH and ammonia gas of smart edible packaging films, were investigated. The interaction of anthocyanin extract as a natural dye with biopolymers in films characterized by FTIR spectroscopy and SEM images revealed their suitable compatibility. The film with maximum anthocyanin content (10% (v/v)) appeared robust color changes against various pH and ammonia gas levels. The color of indicator films when exposed to alkaline, neutral and acidic buffers are indicated with green, blue, and red colors, respectively. The DPPH radical scavenging activity of smart BSG/chitosan films improved from 23% to 90.32% with increasing RCA content from 2.5 to 10% (v/v). Generally, the incorporation of RCA in film structure enhanced their solubility, WVP, ΔE, turbidity, and flexibility, and reduced tensile strength. The observations successfully confirmed the efficacy of pH-sensitive indicator smart film based on BSG/chitosan for evaluation of fish spoilage during storage.
Collapse
Affiliation(s)
- Maryam Nadi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Seyed Mohammad Ali Razavi
- Center of Excellence in Native Natural Hydrocolloids of IranFerdowsi University of Mashhad (FUM)MashhadIran
| | - Dina Shahrampour
- Department of Food Safety and Quality ControlResearch Institute of Food Science and Technology (RIFST)MashhadIran
| |
Collapse
|
39
|
Woszczak L, Khachatryan K, Krystyjan M, Witczak T, Witczak M, Gałkowska D, Makarewicz M, Khachatryan G. Physicochemical and Functional Properties and Storage Stability of Chitosan-Starch Films Containing Micellar Nano/Microstructures with Turmeric and Hibiscus Extracts. Int J Mol Sci 2023; 24:12218. [PMID: 37569594 PMCID: PMC10418456 DOI: 10.3390/ijms241512218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
The dynamic development of the food industry and the growing interest of consumers in innovative solutions that increase the comfort and quality of life push the industry towards seeking pioneering solutions in the field of food packaging. Intelligent and active packaging, which affects the quality and durability of food products and allows one to determine their freshness, is still a modern concept. The aim of our study was to obtain two types of films based on chitosan and starch with micellar nanostructures containing extracts from turmeric rhizomes and hibiscus flowers. The presence of spherical nanostructures was confirmed using a scanning electron microscope. The structural and optical properties of the obtained composites were characterised by Fourier-transform infrared (FTIR), UltraViolet-Visible (UV-VIS), and photoluminescence (PL) spectroscopy. Scanning electron microscopy (SEM) analysis confirmed the presence of spherical micellar structures with a size of about 800 nm in the obtained biocomposites. The presence of nano-/microstructures containing extracts affected the mechanical properties of the composites: it weakened the strength of the films and improved their elongation at break (EAB). Films with nano-/microparticles were characterised by a higher water content compared to the control sample and lower solubility, and they showed stronger hydrophilic properties. Preliminary storage tests showed that the obtained biocomposites are sensitive to changes occurring during the storage of products such as cheese or fish. In addition, it was found that the film with the addition of turmeric extract inhibited the growth of microorganisms during storage. The results suggest that the obtained bionanocomposites can be used as active and/or intelligent materials.
Collapse
Affiliation(s)
- Liliana Woszczak
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Karen Khachatryan
- Laboratory of Nanomaterials and Nanotechnology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (L.W.); (K.K.)
| | - Magdalena Krystyjan
- Department of Carbohydrates Technology and Cereal Processing, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Teresa Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Mariusz Witczak
- Department of Engineering and Machinery for Food Industry, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland; (T.W.); (M.W.)
| | - Dorota Gałkowska
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Małgorzata Makarewicz
- Department of Fermentation Technology and Microbiology, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| | - Gohar Khachatryan
- Department of Food Quality Analysis and Assessment, Faculty of Food Technology, University of Agriculture, Balicka Street 122, 30-149 Krakow, Poland;
| |
Collapse
|
40
|
A visual bi-layer indicator based on mulberry anthocyanins with high stability for monitoring Chinese mitten crab freshness. Food Chem 2023; 411:135497. [PMID: 36696720 DOI: 10.1016/j.foodchem.2023.135497] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
In this study, a bilayer film (BIF) was fabricated to improve the stability of an anthocyanin-based freshness indicator film. The sensor layer consists of gellan gum (GG) and mulberry anthocyanin (MAE) for freshness indication. The oxygen barrier layer was constructed from chitosan (CS), polyvinyl alcohol (PVA), sodium alginate (SA), and pullulan (Pu) to the protection of MAE from oxidation. The highest antioxidant activity of BIF was 91.28 %. BIF was used to monitor the Chinese mitten crab freshness. The total volatile basic nitrogen (TVB-N) level was increased to 31.23 mg/100 g on day 8, and the color of the indicator presented a visible change from pink to dark green. The acquired results revealed a good correlation between TVB-N, pH, and color change of the indicator. The research indicated that the BIF was applied for freshness monitoring of Chinese mitten crab and displayed significant color changes that would be effective in commercial environments.
Collapse
|
41
|
Yan J, Yu H, Yang Z, Li L, Qin Y, Chen H. Development of Smart Films of a Chitosan Base and Robusta Coffee Peel Extract for Monitoring the Fermentation Process of Pickles. Foods 2023; 12:2337. [PMID: 37372548 DOI: 10.3390/foods12122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 06/04/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Smart film is widely used in the field of food packaging. The smart film was prepared by adding anthocyanin-rich Robusta coffee peel (RCP) extract into a chitosan (CS)-glycerol (GL) matrix by a solution-casting method. By changing the content of RCP (0, 10%, 15% and 20%) in the CS-GL film, the related performance indicators of CS-GL-RCP films were studied. The results showed that the CS-GL-RCP films had excellent mechanical properties, and CS-GL-RCP15 film maintained the tensile strength (TS) of 16.69 MPa and an elongation-at-break (EAB) of 18.68% with RCP extract. CS-GL-RCP films had the best UV-vis light barrier property at 200-350 nm and the UV transmittance was close to 0. The microstructure observation results showed that CS-GL-RCP films had a dense and uniform cross section, which proved that the RCP extract had good compatibility with the polymer. In addition, the CS-GL-RCP15 film was pH-sensitive and could exhibit different color changes with different pH solutions. So, the CS-GL-RCP15 film was used to detect the fermentation process of pickles at 20 ± 1 °C for 15 days. The pickles were stored in a round pickle container after the boiling water had cooled. The color of the CS-GL-RCP15 film changed significantly, which was consistent with the change of pickles from fresh to mature. The color of the smart film changed significantly with the maturity of pickles, and the difference of ΔE of film increased to 8.89 (15 Days), which can be seen by the naked eye. Therefore, CS-GL-RCP films prepared in this study provided a new strategy for the development of smart packaging materials.
Collapse
Affiliation(s)
- Jiatong Yan
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Hongda Yu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Zhouhao Yang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Lin Li
- School of Life Healthy and Technology, Dongguan University of Technology, Dongguan 523830, China
| | - Yuyue Qin
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| | - Haiyan Chen
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650550, China
| |
Collapse
|
42
|
Sadi A, Ferfera-Harrar H. Cross-linked CMC/Gelatin bio-nanocomposite films with organoclay, red cabbage anthocyanins and pistacia leaves extract as active intelligent food packaging: colorimetric pH indication, antimicrobial/antioxidant properties, and shrimp spoilage tests. Int J Biol Macromol 2023; 242:124964. [PMID: 37247593 DOI: 10.1016/j.ijbiomac.2023.124964] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 05/31/2023]
Abstract
Multifunctional food packaging films were produced from crosslinked carboxymethyl cellulose/gelatin (CMC/Ge) bio-nanocomposites incorporated with Ge-montmorillonite (OM) nanofiller, anthocyanins (ATH) from red cabbage as colorimetric pH-indicator, and pistacia leaves extract (PE) as active agent. The influence of additives on the structural, physical, and functional properties of the films was investigated. The results showed that ATH and PE caused color alteration and reduced transparency. However, they improved the UV light barrier ability by 98 %, with less impact from OM, despite its well-dispersed state in the matrix. Increasing PE content in the bio-nanocomposite films caused an increase in compactness and surface roughness, reduction in moisture content (15.10-12.33 %), swelling index (354.55-264.58 %), surface wettability (contact angle 80.1-92.49°), water vapor permeability (7.37-5.69 × 1010 g m-1s-1Pa-1), and nano-indentation mechanical parameters, without affecting the thermal stability. ATH-included films demonstrated color pH-sensitivity with improved ATH color stability through the ATH-Al3+ chelates formation. PE-added films exhibited effective antioxidant activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical, reaching 93 % of inhibition, and antimicrobial properties with biocidal effects for PE-rich film. The shrimp spoilage test showed that the T-1.5PE film offered the strongest active intelligent response. The CMC/Ge-based bio-nanocomposite films endowed with antioxidant/antimicrobial properties and colorimetric pH-sensitivity have promising potential for food packaging application.
Collapse
Affiliation(s)
- Amina Sadi
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria
| | - Hafida Ferfera-Harrar
- Materials Polymer Laboratory, Department of Macromolecular Chemistry, Faculty of Chemistry, University of Sciences and Technology Houari Boumediene USTHB, B.P. 32 El-Alia, 16111 Algiers, Algeria.
| |
Collapse
|
43
|
Ma L, Long T, Yuan S, Qi P, Han L, Hao J. A pH-indicating smart tag based on porous hydrogel as food freshness sensors. J Colloid Interface Sci 2023; 647:32-42. [PMID: 37244174 DOI: 10.1016/j.jcis.2023.05.145] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 05/29/2023]
Abstract
HYPOTHESIS The pH-indicating smart packaging and tags are identified within the general research and pH colorimetric smart tags are effective, non-invasive methods for indicating food freshness on a real-time basis, but their sensitivity is limited. EXPERIMENTS In Herin, we developed a porous hydrogel with high sensitivity, water content, modulus, and safety. Hydrogels were prepared with gellan gum, starch, and anthocyanin. The phase separations provide an adjustable porous structure, which can enhance the capture and transformation of gas from food spoilage, hence improving the sensitivity. Hydrogel is physically crosslinked by the entanglement of chains through freeze-thawing cycles, and porosity can be adjusted by the addition of starch, so avoiding the use of toxicity crosslinkers and porogen. FINDINGS Our study demonstrates that the gel undergoes an obvious color shift during the spoilage of milk and shrimp, revealing its potential application as a smart tag signaling food freshness.
Collapse
Affiliation(s)
- Lin Ma
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Teng Long
- School of Materials Science and Engineering, Shandong University, Jinan 250100, PR China
| | - Shideng Yuan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Ping Qi
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Lin Han
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China
| | - Jingcheng Hao
- Key Laboratory of Colloid and Interface Chemistry (Shandong University), Ministry of Education, Jinan 250100, PR China.
| |
Collapse
|
44
|
Wang S, Zhang P, Li Y, Li J, Li X, Yang J, Ji M, Li F, Zhang C. Recent advances and future challenges of the starch-based bio-composites for engineering applications. Carbohydr Polym 2023; 307:120627. [PMID: 36781278 DOI: 10.1016/j.carbpol.2023.120627] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023]
Abstract
Starch is regarded as one of the most promising sustainable materials due to its abundant yield and excellent biodegradability. From the perspective of practical engineering applications, this paper systematically describes the development of starch-based bio-composites in the past decade. Packaging properties, processing characteristics, and current challenges for the efficient processing of starch-based bio-composites are reviewed in industrial packaging. Green coatings, binders, adsorbents, flocculants, flame retardants, and emulsifiers are used as examples to illustrate the versatility of starch-based bio-composites in chemical agent applications. In addition, the work compares the application of starch-based bio-composites in conventional spinning with emerging spinning technologies and describes the challenges of electrostatic spinning for preparing nanoscale starch-based fibers. In terms of flexible electronics, the starch-based bio-composites are regard as a solid polymer electrolyte and easily modified porous material. Moreover, we describe the applications of the starch-based gels in tissue engineering, controlled drug release, and medical dressings. Finally, the theoretical input and technical guidance in the advanced sustainable engineering application of the starch-based bio-composites are provided in the work.
Collapse
Affiliation(s)
- Shen Wang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Pengfei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Yanhui Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Junru Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Xinlin Li
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Jihua Yang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China
| | - Maocheng Ji
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Fangyi Li
- Key Laboratory of High Efficiency and Clean Mechanical Manufacture (M of E), School of Mechanical Engineering, Shandong University, Jinan 250061, China
| | - Chuanwei Zhang
- College of Mechanical and Electrical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
45
|
Tabassum Z, Mohan A, Mamidi N, Khosla A, Kumar A, Solanki PR, Malik T, Girdhar M. Recent trends in nanocomposite packaging films utilising waste generated biopolymers: Industrial symbiosis and its implication in sustainability. IET Nanobiotechnol 2023; 17:127-153. [PMID: 36912242 PMCID: PMC10190667 DOI: 10.1049/nbt2.12122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 03/14/2023] Open
Abstract
Uncontrolled waste generation and management difficulties are causing chaos in the ecosystem. Although it is vital to ease environmental pressures, right now there is no such practical strategy available for the treatment or utilisation of waste material. Because the Earth's resources are limited, a long-term, sustainable, and sensible solution is necessary. Currently waste material has drawn a lot of attention as a renewable resource. Utilisation of residual biomass leftovers appears as a green and sustainable approach to lessen the waste burden on Earth while meeting the demand for bio-based goods. Several biopolymers are available from renewable waste sources that have the potential to be used in a variety of industries for a wide range of applications. Natural and synthetic biopolymers have significant advantages over petroleum-based polymers in terms of cost-effectiveness, environmental friendliness, and user-friendliness. Using waste as a raw material through industrial symbiosis should be taken into account as one of the strategies to achieve more economic and environmental value through inter-firm collaboration on the path to a near-zero waste society. This review extensively explores the different biopolymers which can be extracted from several waste material sources and that further have potential applications in food packaging industries to enhance the shelf life of perishables. This review-based study also provides key insights into the different strategies and techniques that have been developed recently to extract biopolymers from different waste byproducts and their feasibility in practical applications for the food packaging business.
Collapse
Affiliation(s)
- Zeba Tabassum
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Anand Mohan
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| | - Narsimha Mamidi
- Department of Chemistry and NanotechnologyThe School of Engineering and ScienceTecnologico de MonterreyMonterreyNuevo LeonMexico
- Wisconsin Center for NanoBioSystmesUniversity of WisconsinMadisonWisconsinUSA
| | - Ajit Khosla
- School of Advanced Materials and NanotechnologyXidian UniversityXi'anChina
| | - Anil Kumar
- Gene Regulation LaboratoryNational Institute of ImmunologyNew DelhiIndia
| | | | - Tabarak Malik
- Department of Biomedical SciencesInstitute of HealthJimma UniversityJimmaEthiopia
| | - Madhuri Girdhar
- School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraPunjabIndia
| |
Collapse
|
46
|
Ren G, He Y, Lv J, Zhu Y, Xue Z, Zhan Y, Sun Y, Luo X, Li T, Song Y, Niu F, Huang M, Fang S, Fu L, Xie H. Highly biologically active and pH-sensitive collagen hydrolysate-chitosan film loaded with red cabbage extracts realizing dynamic visualization and preservation of shrimp freshness. Int J Biol Macromol 2023; 233:123414. [PMID: 36708891 DOI: 10.1016/j.ijbiomac.2023.123414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/13/2023] [Accepted: 01/21/2023] [Indexed: 01/26/2023]
Abstract
Accurate and efficient detection of food freshness is of great significance to guarantee food safety. Herein, pH sensitive colorimetric films with considerable biological activities have been prepared by combining red cabbage anthocyanin extracts (RCE) with collagen hydrolysate-chitosan (CH-CS) matrix film. The formation mechanism of CH-CS-RCE films was discussed by SEM, FT-IR and XRD, which showed that RCE was successfully fixed in CH-CS film through hydrogen bonding and electrostatic interaction. The CH-CS-RCE films exhibited good mechanical properties, high barrier ability, excellent thermal stability, significant antioxidant and antimicrobial activity, and especially sensitive response to pH and ammonia. Fickian diffusion was the main mechanism for the release of RCE from CH-CS-RCE films and such release mechanism facilitated the maintenance of functional features of films. During the storage of shrimps at 4 °C, CH-CS-RCE2% showed a remarkable preservation effect on shrimps, and their shelf life was prolonged from 2 d to 5 d. Furthermore, CH-CS-RCE2% provided a dynamic visual color switching to detect the freshness of shrimp, realizing real-time monitoring of freshness. Color information (RGB) extracted via smartphone APP was used to enhance the accuracy and universality of freshness indication. Thus, this multifunctional film has great potential in food preservation and freshness monitoring.
Collapse
Affiliation(s)
- Gerui Ren
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying He
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Junfei Lv
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ying Zhu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Zhengfang Xue
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yujing Zhan
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yufan Sun
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Xin Luo
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Ting Li
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Yuling Song
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Fuge Niu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Min Huang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Sheng Fang
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Linglin Fu
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China
| | - Hujun Xie
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, People's Republic of China.
| |
Collapse
|
47
|
Chen K, Li J, Li L, Wang Y, Qin Y, Chen H. A pH indicator film based on sodium alginate/gelatin and plum peel extract for monitoring the freshness of chicken. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
48
|
Dong S, Zhang Y, Lu D, Gao W, Zhao Q, Shi X. Multifunctional intelligent film integrated with purple sweet potato anthocyanin and quercetin-loaded chitosan nanoparticles for monitoring and maintaining freshness of shrimp. Food Packag Shelf Life 2023. [DOI: 10.1016/j.fpsl.2022.101022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
49
|
Alnadari F, Al-Dalali S, Nasiru MM, Frimpong EB, Hu Y, Abdalmegeed D, Dai Z, AL-Ammari A, Chen G, Zeng X. A new natural drying method for food packaging and preservation using biopolymer-based dehydration film. Food Chem 2023; 404:134689. [DOI: 10.1016/j.foodchem.2022.134689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/21/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
50
|
Meng M, Sun Y, Qi Y, Xu J, Sun J, Bai Y, Han L, Han R, Hou L, Sun H. Structural characterization and induction of tumor cell apoptosis of polysaccharide from purple sweet potato (Ipomoea batatas (L.) Lam). Int J Biol Macromol 2023; 235:123799. [PMID: 36828088 DOI: 10.1016/j.ijbiomac.2023.123799] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 02/08/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
The carbohydrate is the main ingredient of purple sweet potato. A polysaccharide, named PSP, was separated and purified from purple sweet potato by extraction with hot water, precipitation with ethanol, deproteinization with Sevag reagent and column chromatography with Sephadex G-100. The purity and structure were studied with HPLC, UV-Vis, GC-MS and NMR. The PSP is a neutral polysaccharide with Mw of 470 kDa. The monosaccharide composition of PSP contained D-xylose, d-glucose, D-galactose with ratio of 1.0: 8.3: 1.3. The backbone of PSP was composed of the residues of →6)-D-Glcp-(1 → and →2, 6)-D-Glcp-(1→. The branches of PSP contained the residues of →3)-D-Galp-(1→, and D-Xylp-(1→. The antitumor activity in vitro of PSP was analyzed with HT-29 cells. And the SEM, AO staining, MDC staining and hoechst 33342 staining were performed to study the effect on apoptosis of HT-29 cells by PSP. The results revealed that the PSP can significantly inhibit the proliferation of HT-29 cells from induction apoptosis. The manuscript provided valuable knowledges on structural characteristics of the polysaccharides from purple sweet potato.
Collapse
Affiliation(s)
- Meng Meng
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Ying Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yanlong Qi
- Synthetical Test Site of Xinjiang Academy of Agricultural Sciences, No. 1, Xiaokang Road, New Urban District, Urumqi 830000, China
| | - Jin Xu
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Jingge Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yuhe Bai
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lirong Han
- Key Laboratory of Public Health Safety of Hebei Province, Ministry of Education & College of Public Health, Hebei University, Baoding 071002, China
| | - Ran Han
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Lihua Hou
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Huiqing Sun
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Science and Engineering, Tianjin University of Science and Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China.
| |
Collapse
|