1
|
Chen Y, Luo C, Huang X, Li W, Yan H, Ji H, Zhou J, Liao H. Prediction of change in suitable habitats of Senna obtusifolia and Senna tora under climate change. Sci Rep 2024; 14:30904. [PMID: 39730691 DOI: 10.1038/s41598-024-81883-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/29/2024] [Indexed: 12/29/2024] Open
Abstract
Senna obtusifolia (L.) Irwin & Barneby and Senna tora (L.) Roxb represent important medicinal resources in traditional Chinese medicine for more than two millennia. Sustainable resource utilization and preservation strategies for Senna species necessitate a thorough understanding of the climatic factors governing their distribution patterns. Therefore, this study aimed to identify the key climate variables shaping the current and potential future global distribution of both Senna species. To achieve this, the MaxEnt ecological niche model was employed, integrating species occurrence data with relevant environmental variables. The results indicated that Bio13 and Bio14 were the most critical variables affecting distribution of S. tora, while Bio6 and Bio14 were crucial for S. obtusifolia. The moderate and high suitability habitats of S. obtusifolia and S. tora consist of ca. 189.69 × 104 km2 and 129.07 × 104 km2, respectively, under current situation. Moreover, the global distribution of both species under various climate scenarios revealed that the suitable habitats of both Senna species will reach the maximum during the 2081-2100 period under the SSP585 scenario. Projections across all four climate scenarios indicate a general northward migration in the core distribution of both Senna species. Intriguingly, the observed high degree of ecological niche overlap between the two species aligns with their close phylogenetic relationship. These findings provide valuable insights into the potential future distribution and ecological niche of Senna species, informing sustainable utilization and preservation strategies for Senna resources.
Collapse
Affiliation(s)
- Yineng Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Chenlu Luo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Xue Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Wenjie Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Han Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Huiyue Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, Sichuan, China.
| |
Collapse
|
2
|
Huang E, Tang J, Song S, Yan H, Yu X, Luo C, Chen Y, Ji H, Chen A, Zhou J, Liao H. Caffeic acid O-methyltransferase from Ligusticum chuanxiong alleviates drought stress, and improves lignin and melatonin biosynthesis. FRONTIERS IN PLANT SCIENCE 2024; 15:1458296. [PMID: 39359625 PMCID: PMC11445181 DOI: 10.3389/fpls.2024.1458296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a major constraint on plant growth and agricultural productivity. Caffeic acid O-methyltransferase (COMT), an enzyme involved in the methylation of various substrates, plays a pivotal role in plant responses to abiotic stress. The involvement of COMTs in drought response, particularly through the enhancement of lignin and melatonin biosynthesis, remains poorly understood. In this study, LcCOMT was firstly proposed to be associated with the biosynthesis of both lignin and melatonin, as demonstrated through sequence comparison, phylogenetic analysis, and conserved motif identification. In vitro enzymatic assays revealed that LcCOMT effectively methylates N-acetylserotonin to melatonin, albeit with a higher Km value compared to caffeic acid. Site-directed mutagenesis of residues Phe171 and Asp269 resulted in a significant reduction in catalytic activity for caffeic acid, with minimal impact on N-acetylserotonin, underscoring the specificity of these residues in substrate binding and catalysis. Under drought conditions, LcCOMT expression was significantly upregulated. Overexpression of LcCOMT gene in Arabidopsis plants conferred enhanced drought tolerance, characterized by elevated lignin and melatonin levels, increased chlorophyll and carotenoid content, heightened activities of antioxidant enzymes peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD), and reduced malondialdehyde (MDA) and hydrogen peroxide (H2O2) accumulation. This study is among the few to demonstrate that COMT-mediated drought tolerance is achieved through the simultaneous promotion of lignin and melatonin biosynthesis. LcCOMT represents the first functionally characterized COMT in Apiaceae family, and it holds potential as a target for genetic enhancement of drought tolerance in future crop improvement strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Cui X, Shen J, Wang J, Li C, Li F, Li J. A Conserved Tryptophan (Trp10) at the Hydrophobic Core Modulates the Stability and Inhibitory Activity of Potato I Type Inhibitors. Protein Pept Lett 2024; 31:736-747. [PMID: 39323332 DOI: 10.2174/0109298665333930240905111039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND Different inhibitor families have their own conserved three-dimensional structures, but how these structures determine whether a protein can become an inhibitor is still unknown. The buckwheat trypsin inhibitor (BTI) pertains to the Potato I type inhibitor family, which is a simple and essential bio-molecule that serves as a model for the investigation of protease-inhibitor interaction. OBJECTIVE To study the effects of mutations at Trp10 and Ile25 in the hydrophobic cavity (scaffold) of rBTI on its inhibitory activity and stability. METHODS Site-directed mutagenesis and molecular modeling were performed using the sequence of BTI. The hydrogen bonds formed by all amino acids and conformational differences of Trp53 were analyzed in the tertiary structures of rBTI and mutants. RESULTS Mutant rBTI-W10A almost completely lost its inhibitory activity (retaining 10%), while rBTI-I25A retained about 50% of its inhibitory activity. Both rBTI-W10A and rBTI-I25A could be degraded by trypsin. The hydrogen bond analysis results showed that mutating Trp10 or Ile25 weakened the specific cohesion interactions in the hydrophobic core of rBTI, disrupting the tight hydrogen bond network in the cavity. This further led to difficulty in maintaining the binding loop conformation, ultimately causing the Trp53 to undergo conformational changes. It was also difficult for residues in the mutants to form hydrogen bonds with amino acids in bovine trypsin; thus, the mutants could not stably bind to trypsin. CONCLUSION Our findings suggest that the hydrophobic core is also an important factor in the maintenance of inhibitory activity and stability of rBTI.
Collapse
Affiliation(s)
- Xiaodong Cui
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P.R. China
- Xinghuacun College of Shanxi University, (Shanxi Institute of Brewing Technology and Industry), Taiyuan, 030006, P.R. China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006, P.R. China
| | - Jiahui Shen
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P.R. China
- Xinghuacun College of Shanxi University, (Shanxi Institute of Brewing Technology and Industry), Taiyuan, 030006, P.R. China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006, P.R. China
| | - Jiajie Wang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, 030006, P.R. China
- Xinghuacun College of Shanxi University, (Shanxi Institute of Brewing Technology and Industry), Taiyuan, 030006, P.R. China
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006, P.R. China
| | - Chen Li
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006, P.R. China
- School of Life Science, Shanxi University, Taiyuan, 030006, P.R. China
| | - Fang Li
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan,030032, P.R. China
| | - Jiao Li
- Shanxi Key Laboratory of Biotechnology, Taiyuan, 030006, P.R. China
- School of Life Science, Shanxi University, Taiyuan, 030006, P.R. China
| |
Collapse
|
4
|
Liao H, Quan H, Huang B, Ji H, Zhang T, Chen J, Zhou J. Integrated transcriptomic and metabolomic analysis reveals the molecular basis of tissue-specific accumulation of bioactive steroidal alkaloids in Fritillaria unibracteata. PHYTOCHEMISTRY 2023; 214:113831. [PMID: 37598994 DOI: 10.1016/j.phytochem.2023.113831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 08/16/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
Fritillaria unibracteata is an endangered medicinal plant whose bulb has been used as a Chinese herb to suppress cough, asthma and excessive phlegm for centuries. Steroidal alkaloids, which are synthesized via the steroid synthesis pathways, are their significant bioactive constituents. However, few studies on genes involved in steroidal alkaloid biosynthesis in F. unibracteata have been reported, mainly due to the lack of the F. unibracteata genome. In this paper, comparative transcriptomic and metabolomic analyses of four different tissues of F. unibracteata (leaves, flowers, stems, and bulbs) were performed. Imperialine, peiminine, and peimisine were among the significant bioactive compounds that were considerably abundant in bulb tissue, according to the metabolomic findings. Then, 83.60 Gb transcriptome sequencing of four different tissues was performed, of which one gene encoding phosphomevalonate kinase was directly functionally characterized to verify the accuracy of sequences obtained from the transcriptome. A total of 9217 differentially expressed unigenes (DEGs) were identified in four different tissues of F. unibracteata. GO and KEGG enrichments revealed that phenylpropanoid biosynthesis, MVA-mediated terpenoid backbone biosynthesis, and steroid biosynthesis were enriched in bulb tissue, whereas enrichment of MEP-mediated terpenoid backbone biosynthesis, photosynthesis, photosynthesis-antenna protein and carotenoid biosynthesis was observed in aerial tissues. Moreover, clustering analysis indicated that the downstream steroid biosynthesis pathway was more important in steroidal alkaloid biosynthesis compared to the upstream terpenoid backbone biosynthesis pathway. Hence, MVA-mediated biosynthesis of steroidal alkaloids was proposed, in which 15 bulb-clustered DEGs were positively correlated with a high accumulation of bioactive steroid alkaloids, further validating our proposal. In addition, 36 CYP450s showing a positive correlation with bioactive steroidal alkaloids provided candidate enzymes to catalyze the subsequent steps of steroidal alkaloid biosynthesis. In addition, the transcription factors and ABC transporters clustered in bulb tissue might be responsible for the regulation and transportation of steroidal alkaloid biosynthesis. Protein-protein interaction analysis implied a highly complex steroid alkaloid biosynthesis network in which delta (24)-sterol reductase might be one of the central catalysts. Based on the integrated transcriptome and metabolome, this current study is a first step in understanding the tissue-specific biosynthesis of steroidal alkaloids in F. unibracteata. Furthermore, key genes and regulators identified herein could facilitate metabolic engineering to improve steroidal alkaloids in F. unibracteata.
Collapse
Affiliation(s)
- Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Huige Quan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Binhan Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Huiyue Ji
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Tian Zhang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jiao Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China.
| |
Collapse
|
5
|
Chen Y, Zhang Y, Qi Q, Liang F, Wang N, Chen Q, Li X, Sun S, Wang X, Bai K, Wang W, Jiao Y. Preparation and activity evaluation of angiotensin-I converting enzyme inhibitory peptides from protein hydrolysate of mulberry leaf. Front Nutr 2023; 9:1064526. [PMID: 36825069 PMCID: PMC9941179 DOI: 10.3389/fnut.2022.1064526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/04/2022] [Indexed: 02/10/2023] Open
Abstract
Angiotensin-I converting enzyme (ACE) inhibitory peptides drew wide attention in the food industry because of their natural reliability, non-toxicity, and safety. However, the characteristics of ACE inhibitory peptides obtained from protein hydrolysate of mulberry leaf prepared by Flavourzyme were still unclear. Based on the single-factor test, the Plackett-Burman test and response surface test were used to determine the key factors affecting the ACE inhibition rate in mulberry leaf protein hydrolysate and the optimum conditions of enzymatic hydrolysis. The results showed that the optimum technical parameters were as follows: the ratio of material to liquid is 1: 25 (w / v, g/mL), the Flavourzyme to substrate ratio was 3,000 U/g, the temperature of enzymatic hydrolysis was 50°C, pH was 6.3, and the time of enzymatic hydrolysis was 2.9 h. The ACE inhibitory peptides in the mulberry leaf protein hydrolysates were purified by ultrafiltration and gel filtration, aiming to obtain the highest active component. The 12 peptide sequences were identified by reverse liquid chromatography-mass spectrometry, and then, they were docked to the crystal structure of human angiotensin-I converting enzyme (1O8A), and the interaction mechanisms of 12 peptide sequences and 1O8A were analyzed. The docking results showed that among the 12 peptide sequences, ERFNVE (792.37 Da), TELVLK (351.72 Da), MELVLK (366.72 Da), and FDDKLD (376.67 Da), all had the lowest docking energy, and inhibition constant. The chemosynthetic ERFNVE (IC50: 2.65 mg/mL), TELVLK (IC50: 0.98 mg/mL), MELVLK (IC50:1.90 mg/mL) and FDDKLD (IC50:0.70 mg/mL) demonstrated high ACE-inhibitory activity with competitive inhibition mode. These results indicated that the ACE-inhibiting peptides from mulberry leaf protein hydrolyzed (FHMP) had the potential activities to inhibit ACE and could be used as functional food or drugs to inhibit ACE. This work provides positive support for mining the biological activity of mulberry leaves in the treatment of hypertension.
Collapse
Affiliation(s)
- Yu Chen
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China,Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yu Zhang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China,Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou, China
| | - Qianhui Qi
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Feng Liang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,College of Food Science and Engineering, Bohai University, Jinzhou, China
| | - Nan Wang
- Zhejiang Shuren University, Hangzhou, China
| | - Qihe Chen
- School of Biological Systems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Xue Li
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,Key Laboratory of Agricultural Product Information Traceability, Ministry of Agriculture and Rural Affairs of China, Hangzhou, China,Zhejiang Provincial Key Laboratory of Food Safety, Hangzhou, China
| | - Suling Sun
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xinquan Wang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Kaiwen Bai
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China
| | - Wei Wang
- Institute of Agricultural Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou, China,*Correspondence: Wei Wang,
| | - Yingchun Jiao
- College of Agriculture and Animal Husbandry, Qinghai University, Xining, China,Yingchun Jiao,
| |
Collapse
|
6
|
Qin Y, Li Q, An Q, Li D, Huang S, Zhao Y, Chen W, Zhou J, Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway. Int J Biol Macromol 2022; 213:574-588. [PMID: 35643154 DOI: 10.1016/j.ijbiomac.2022.05.161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/05/2022]
Abstract
Drought is one of the key threatening environmental factors for plant and agriculture. Phenylalanine ammonia lyase (PAL) is a key enzyme involved in plant defense against abiotic stress, however, the role of PAL in drought tolerance remains elusive. Here, a PAL member (FuPAL1) containing noncanonical Ala-Ser-Gly triad was isolated from Fritillaria unibracteata, one important alpine pharmaceutical plant. FuPAL1, mainly distributed in cytosol, was more conserved than FuCOMT and FuCHI at both nucleotide and amino acid levels. FuPAL1 was overexpressed in Escherichia coli and the purified recombinant FuPAL1 protein showed catalytic preference on L-Phe than L-Tyr. Homology modeling and site-mutation of FuPAL1 exhibited FuPAL1 took part in the ammonization process by forming MIO-like group, and Phe141, Ser208, Ileu218 and Glu490 played key roles in substrate binding and (or) catalysis. HPLC analysis showed that lignin and salicylic acid levels increased but total flavonoid levels decreased in FuPAL1 transgenic Arabidopsis compared to wild-type plants. Moreover, FuPAL1 transgenic Arabidopsis significantly enhanced its drought tolerance, which suggested that FuPAL1 mediated tolerance to drought by inducing the biosynthesis and accumulation of salicylic acid and lignin. Taken together, our results confirmed that the FuPAL1 played an important role in drought tolerance, and FuPAL1 might be a valuable target for genetic improvement of drought resistance in future.
Collapse
Affiliation(s)
- Yu Qin
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiue Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Dexin Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Sipei Huang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Yongyang Zhao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Weijia Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| |
Collapse
|
7
|
Feng W, Shi H, Xu W, Song P. Heterologous expression and physicochemical characteristics identification of Kunitz protease inhibitor in Brassica napus. 3 Biotech 2022; 12:81. [PMID: 35251883 PMCID: PMC8882505 DOI: 10.1007/s13205-022-03149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/11/2022] [Indexed: 11/01/2022] Open
Abstract
A Kunitz protease inhibitor gene (RTI; rti) was cloned from rapeseed and expressed in a Pichia pastoris expression system for the first time. After isolation and purification, the physical and chemical characteristics of the inhibitor were analyzed. The results showed that the induced expression level of the recombinant RTI reached 628 mg/L, and the specific activity of the inhibitor reached 69.6 TIU/mg protein at the shake flask fermentation level; the recombinant RTI retained more than 70% inhibitory activity between 30 and 90 °C and more than 80% inhibitory activity between pH 2.0-11.0. The metal ions Cu2+ and CO2+ and the organic reagents methanol, ethanol, acetone, and chloroform inhibit its activity. The recombinant RTI interacts with trypsin in a noncompetitive manner and has a strong and specific inhibitory effect on trypsin, a typical Kunitz trypsin inhibitor from plants. Combined with its good physical and chemical properties, recombinant RTI has the potential to be developed into an insect resistance protein.
Collapse
Affiliation(s)
- Wei Feng
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Haiying Shi
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Wei Xu
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| | - Peng Song
- grid.411351.30000 0001 1119 5892School of Life Sciences, Liaocheng University, Liaocheng, 252000 China
| |
Collapse
|
8
|
Song S, Chen A, Zhu J, Yan Z, An Q, Zhou J, Liao H, Yu Y. Structure basis of the caffeic acid O-methyltransferase from Ligusiticum chuanxiong to understand its selective mechanism. Int J Biol Macromol 2022; 194:317-330. [PMID: 34838855 DOI: 10.1016/j.ijbiomac.2021.11.135] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/05/2021] [Accepted: 11/20/2021] [Indexed: 02/08/2023]
Abstract
Caffeic acid O-methyltransferase from Ligusticum chuanxiong (LcCOMT) showed strict regiospecificity despite a relative degree of preference. Compared with caffeic acid, methyl caffeate was the preferential substrate by its low Km and high Kcat. In this study, we obtained the SAM binary (1.80 Å) and SAH binary (1.95 Å) complex LcCOMT crystal structures, and established the ternary complex structure with methyl caffeate by molecular docking. The active site of LcCOMT included phenolic substrate pocket, SAM/SAH ligand pocket and conserved catalytic residues as well. The regiospecificity of LcCOMT that permitted only 3-hydroxyl group to be methylated arise from the interactions between the active site and the phenyl ring. However, the propanoid tail governed the relative preference of LcCOMT. The ester group in methyl caffeate stabilized the anionic intermediate caused by His268-Asp269 pair, whereas caffeic acid was unable to stabilize the anionic intermediate due to the adjacent carboxylate anion in the propanoid tail. Ser183 residue formed an additional hydrogen bond with SAH and its role was identified by S183A mutation. Ile318 residue might be a potential site for determination of substrate preference, and its mutation led to the change of tertiary conformation. The results supported the selective mechanism of LcCOMT.
Collapse
Affiliation(s)
- Simin Song
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Anqi Chen
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jianquan Zhu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Zicheng Yan
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Qiuju An
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China
| | - Jiayu Zhou
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Hai Liao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan 610031, China.
| | - Yamei Yu
- Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Collaborative Innovation Center of Biotherapy, Chengdu, Sichuan 610041, China.
| |
Collapse
|
9
|
Deryusheva EI, Machulin AV, Galzitskaya OV. Structural, Functional, and Evolutionary Characteristics of Proteins with Repeats. Mol Biol 2021. [DOI: 10.1134/s0026893321040038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Meena S, Kanthaliya B, Joshi A, Khan F, Arora J. Biologia futura: medicinal plants-derived bioactive peptides in functional perspective-a review. Biol Futur 2021; 71:195-208. [PMID: 34554518 DOI: 10.1007/s42977-020-00042-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Bioactive peptides (BPs) are 3-20 amino acid residues, with a molecular weight lower than 6 kDa; originated from the breakdown of proteins by endogenous and exogenous peptidases. While intact in protein these peptides do not exert any biological activity, but as they release from their parent protein, they exert various pharmacological activities such as antidiabetic, antihypertensive, anticancerous, anti-inflammatory, antimicrobial, antioxidant, and immunomodulatory. Such peptides exist in all living organism like plants, animals, marine organism and also present in food products derived from them. BPs obtained from dairy food products, cereals, vegetables have been gaining much more importance now-a-days, but little work has been done on bioactive peptides obtained from medicinal plants. Some of the medicinal plants such as Tinospora cordifolia Sterculia foetida, Benincasa hispida, Parkia speciosa, Linum usitatissimum, Salvia hispanica and Ziziphus jujube have been explored for bioactive peptides. Current review is aimed to provide a complete information of medicinal plants derived BPs along with the surge of new materials, new plants which will provide more solutions for handling some of the major human health problems of twenty-first century. This review will also be helpful to researchers in providing valuable information about the extraction, separation, characterization of BPs, their known peptide sequences and various pharmacological activities exerted by medicinal plants-derived bioactive peptides.
Collapse
Affiliation(s)
- Supriya Meena
- Laboratory of Bio-molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Bhanupriya Kanthaliya
- Laboratory of Bio-molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Abhishek Joshi
- Laboratory of Bio-molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Farhana Khan
- Laboratory of Bio-molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India
| | - Jaya Arora
- Laboratory of Bio-molecular Technology, Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, 313001, India.
| |
Collapse
|
11
|
In vitro screening of peptidase inhibitory activity in some plants of North India. Heliyon 2020; 6:e05203. [PMID: 33088962 PMCID: PMC7566102 DOI: 10.1016/j.heliyon.2020.e05203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 05/05/2020] [Accepted: 10/07/2020] [Indexed: 11/21/2022] Open
Abstract
In the present study, trypsin and chymotrypsin inhibitory activity of some plants of different families was evaluated. A total of 55 plants were screened, out of which six showed the maximum trypsin inhibitory activity namely Acacia concinna, Caesalpinia bonducella, Lathyrus sativus, Mucuna pruriens, Psoralea corylifolia and Sapindus mukorossi. Results suggested that the plants showing trypsin inhibitory activity (TIA) also have chymotrypsin inhibitory activity (CIA). Both trypsin and chymotrypsin inhibitory activities were high in seeds compared to leaves followed by flowers. It was also observed that TIA was maximally present in Sapindaceae family whereas CIA was maximum in fabaceae family followed by others.
Collapse
|
12
|
Bendre AD, Shukla E, Ramasamy S. Functional Stability and Structural Transitions of a Kunitz trypsin Inhibitor from Chickpea (CaTI2). Protein J 2020; 39:350-357. [PMID: 32671517 DOI: 10.1007/s10930-020-09911-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Enzymes are important tools for various applications. We have studied structural transitions and functional stability of a Kunitz trypsin inhibitor from Chickpea (CaTI2), a potent insect gut-protease inhibitor, under different stress conditions like non-neutral pH, elevated temperature and co-solvent concentrations. CaTI2 was cloned and expressed in an eukaryotic system P. pastoris and was investigated for conformational transitions using circular dichroism spectroscopy, differential scanning fluorimetry and activity assay. Native CaTI2 has a sheet dominant structure with 40% β sheets and possess a single tryptophan residue situated in the hydrophobic core of the enzyme. The recombinant inhibitor maintained its maximum activity under alkaline pH with its secondary structure intact between pH 6-10. CaTI2 was observed to be thermally stable up to 55 °C with a Tm of 61.3 °C above which the protein unfolds. On treating with chemical denaturant (urea), the CaTI2 lost its inhibitory potential and native conformation beyond 2 M urea concentration. Moreover, the protein unfolded at lower temperatures as the concentration of denaturant increased, suggesting more complex structural changes. Further, the stability of the inhibitor was found to be directly proportional to the solvent polarity. The data, herein offers significant information of inhibitor stability and activity which could be exploited for its further development into an effective pesticide.
Collapse
Affiliation(s)
- Ameya D Bendre
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India. .,National Centre for Cell Science, Ganeshkhind, Pune, 411007, India.
| | - Ekta Shukla
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.,National Centre for Cell Science, Ganeshkhind, Pune, 411007, India
| | - Sureshkumar Ramasamy
- Division of Biochemical Sciences, CSIR-National Chemical Laboratory, Pune, 411008, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|