1
|
Abtahi MS, Fotouhi A, Rezaei N, Akalin H, Ozkul Y, Hossein-Khannazer N, Vosough M. Nano-based drug delivery systems in hepatocellular carcinoma. J Drug Target 2024; 32:977-995. [PMID: 38847573 DOI: 10.1080/1061186x.2024.2365937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/22/2024] [Accepted: 06/02/2024] [Indexed: 06/19/2024]
Abstract
The high recurrence rate of hepatocellular carcinoma (HCC) and poor prognosis after medical treatment reflects the necessity to improve the current chemotherapy protocols, particularly drug delivery methods. Development of targeted and efficient drug delivery systems (DDSs), in all active, passive and stimuli-responsive forms for selective delivery of therapeutic drugs to the tumour site has been extended to improve efficacy and reduce the severe side effects. Recent advances in nanotechnology offer promising breakthroughs in the diagnosis, treatment and monitoring of cancer cells. In this review, the specific design of DDSs based on the different nano-particles and their surface engineering is discussed. In addition, the innovative clinical studies in which nano-based DDS was used in the treatment of HCC were highlighted.
Collapse
Affiliation(s)
- Maryam Sadat Abtahi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biotechnology, School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Hilal Akalin
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Yusuf Ozkul
- Department of Medical Genetics, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nikoo Hossein-Khannazer
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
2
|
Wang X, Yang Y, Zhao S, Wu D, Li L, Zhao Z. Chitosan-based biomaterial delivery strategies for hepatocellular carcinoma. Front Pharmacol 2024; 15:1446030. [PMID: 39161903 PMCID: PMC11330802 DOI: 10.3389/fphar.2024.1446030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024] Open
Abstract
Background Hepatocellular carcinoma accounts for 80% of primary liver cancers, is the most common primary liver malignancy. Hepatocellular carcinoma is the third leading cause of tumor-related deaths worldwide, with a 5-year survival rate of approximately 18%. Chemotherapy, although commonly used for hepatocellular carcinoma treatment, is limited by systemic toxicity and drug resistance. Improving targeted delivery of chemotherapy drugs to tumor cells without causing systemic side effects is a current research focus. Chitosan, a biopolymer derived from chitin, possesses good biocompatibility and biodegradability, making it suitable for drug delivery. Enhanced chitosan formulations retain the anti-tumor properties while improving stability. Chitosan-based biomaterials promote hepatocellular carcinoma apoptosis, exhibit antioxidant and anti-inflammatory effects, inhibit tumor angiogenesis, and improve extracellular matrix remodeling for enhanced anti-tumor therapy. Methods We summarized published experimental papers by querying them. Results and Conclusions This review discusses the physicochemical properties of chitosan, its application in hepatocellular carcinoma treatment, and the challenges faced by chitosan-based biomaterials.
Collapse
Affiliation(s)
- Xianling Wang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Shuang Zhao
- Endoscopy Center, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Di Wu
- First Digestive Endoscopy Department, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Le Li
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhifeng Zhao
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
3
|
Chen LJ, Yu TC, Huang BH, Tso KC, Song YF, Yin GC, Yang JS, Wu PW. Synthesis of novel chitosan/sodium hyaluronate/iridium hydrogel nanocomposite for wound healing application. Int J Biol Macromol 2024; 270:132351. [PMID: 38754679 DOI: 10.1016/j.ijbiomac.2024.132351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
A novel chitosan/sodium hyaluronate/iridium (CHI/SH/Ir) hydrogel nanocomposite with a unique microstructure containing vertically aligned pores is fabricated via an electrophoresis technique. The formation of orderly vertical pores in CHI/SH/Ir hydrogel nanocomposite is due to the confinement of hydrogen bubbles produced from the water electrolysis during electrophoresis that limits their lateral movement and coalescence. In a wet state, the diameter for the vertical pores is 600-700 μm. With a thickness of 500 μm, the CHI/SH/Ir hydrogel nanocomposite exhibits a porosity of 76.7 % and a water uptake of 350 %. Its tensile strength is almost doubled to 8.7 MPa, as compared to that of counterpart without the addition of iridium. In CHI/SH/Ir hydrogel nanocomposite, the iridium nanoparticles are homogeneously distributed with an average size of 3 nm. The CHI/SH/Ir electrophoresis suspension exhibits a negligible cytotoxicity. In cell migration test using the human keratinocytes HaCaT cells, the CHI/SH/Ir hydrogel nanocomposite reveals a relative migration of 122.15 ± 9.02 % (p < 0.001) as compared to the blank sample. The presence of vertically aligned pores with the use of SH and iridium nanoparticles indicates a promising opportunity in wound healing application.
Collapse
Affiliation(s)
- Li-Jie Chen
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Tsung-Chun Yu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Bo-Han Huang
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Kuang-Chih Tso
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Yen-Fang Song
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Gung-Chian Yin
- National Synchrotron Radiation Research Center, Hsinchu 300, Taiwan
| | - Jai-Sing Yang
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Pu-Wei Wu
- Department of Materials Science and Engineering, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan.
| |
Collapse
|
4
|
Hamouda RA, Aljohani ES. Assessment of Silver Nanoparticles Derived from Brown Algae Sargassum vulgare: Insight into Antioxidants, Anticancer, Antibacterial and Hepatoprotective Effect. Mar Drugs 2024; 22:154. [PMID: 38667771 PMCID: PMC11051400 DOI: 10.3390/md22040154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Algae are used as safe materials to fabricate novel nanoparticles to treat some diseases. Marine brown alga Sargassum vulgare are used to fabricate silver nanoparticles (Sv/Ag-NPs). The characterization of Sv/Ag-NPs was determined by TEM, EDX, Zeta potential, XRD, and UV spectroscopy. The Sv/Ag-NPs were investigated as antioxidant, anticancer, and antibacterial activities against Gram-positive bacteria Bacillus mojavensis PP400982, Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. The activity of the Sv/Ag-NPs was evaluated as hepatoprotective in vitro in comparison with silymarin. The UV-visible spectrum of Sv/Ag-NPs appeared at 442 nm; the size of Sv/Ag-NPs is in range between 6.90 to 16.97 nm, and spherical in shape. Different concentrations of Sv/Ag-NPs possessed antioxidant, anticancer activities against (HepG-2), colon carcinoma (HCT-116), cervical carcinoma (HeLa), and prostate carcinoma (PC-3) with IC50 50.46, 45.84, 78.42, and 100.39 µg/mL, respectively. The Sv/Ag-NPs induced the cell viability of Hep G2 cells and hepatocytes treated with carbon tetrachloride. The Sv/Ag-NPs exhibited antibacterial activities against Staphylococcus caprae PP401704, Staphylococcus capitis PP402689, and Staphylococcus epidermidis PP403851. This study strongly suggests the silver nanoparticles derived from Sargassum vulgare showed potential hepato-protective effect against carbon tetrachloride-induced liver cells, and could be used as anticancer and antibacterial activities.
Collapse
Affiliation(s)
- Ragaa A. Hamouda
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 32897, Egypt
| | - Ebtehail S. Aljohani
- Department of Biology, College of Sciences and Arts Khulais, University of Jeddah, Jeddah 21959, Saudi Arabia;
| |
Collapse
|
5
|
Zeng ZP, Lai CR, Zheng WJ. Ag 2 O-TiO 2 -NTs enhance osteogenic activity in vitro by modulating TNF-α/β-catenin signaling in bone marrow-derived mesenchymal stem cells. Chem Biol Drug Des 2024; 103:e14501. [PMID: 38453253 DOI: 10.1111/cbdd.14501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 02/26/2024] [Indexed: 03/09/2024]
Abstract
The toxic effects of nanoparticles-silver oxide (Ag2 O) limited its use. However, loading Ag2 O nanoparticles into titanium dioxide (TiO2 ) nanotubes (Ag2 O-TiO2 -NTs) has more efficient biological activity and safety. The aim of this study was to observe the effect of Ag2 O-TiO2 -NTs on osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and its mechanism. The enzyme activity of lactate dehydrogenase (LDH) and the expression of RUNX family transcription factor 2 (Runx2), OPN, OCN in BMSCs were detected by quantitative real time polymerase chain reaction. At 14 days of induction, the mineralization ability and alkaline phosphatase (ALP) activity of cells in each group were observed by Alizarin Red S staining and ALP staining. In addition, the protein levels of tumor necrosis factor-α (TNF-α) and β-catenin in BMSCs of each group were observed by western blot. After 14 days of the induction, the mineralization ability and ALP activity of BMSCs in the Ag2 O-TiO2 -NTs group were significantly enhanced compared with those in the Ag2 O and TiO2 groups. Western blot analysis showed that the BMSCs in the Ag2 O-TiO2 -NTs group exhibited much lower protein level of TNF-α and higher protein level of β-catenin than those in the Ag2 O and TiO2 groups.Ag2 O-TiO2 -NTs enhance the osteogenic activity of BMSCs by modulating TNF-α/β-catenin signaling.
Collapse
Affiliation(s)
- Zhan-Peng Zeng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| | - Chang-Rong Lai
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wei-Jie Zheng
- Department IV of Orthopedics, Panyu Hospital of Traditional Chinese Medicine, Guangzhou, China
| |
Collapse
|
6
|
Mohamed MR, Osman SA, Hassan AA, Raafat AI, Refaat MM, Fathy SA. Gemcitabine and synthesized silver nanoparticles impact on chemically induced hepatocellular carcinoma in male rats. Int J Immunopathol Pharmacol 2024; 38:3946320241263352. [PMID: 39046434 PMCID: PMC11271163 DOI: 10.1177/03946320241263352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 06/02/2024] [Indexed: 07/25/2024] Open
Abstract
Objective: Gemcitabine (GEM) is a deoxycytidine analog chemotherapeutic drug widely used to treat many cancers. Silver nanoparticles (AgNPs) are important nanomaterials used to treat many diseases. Using gamma radiation in nanoparticle preparation is a new eco-friendly method. This study aims to evaluate the efficiency of co-treating gemcitabine and silver nanoparticles in treating hepatocellular carcinoma. Method: The AgNPs were characterized using UV-visible spectroscopy, XRD, TEM, and EDX. The MTT cytotoxicity in vitro assay of gemcitabine, doxorubicin, and cyclophosphamide was assessed against Wi38 normal fibroblast and HepG2 HCC cell lines. After HCC development, rats received (10 µg/g b.wt.) of AgNPs three times a week for 4 weeks and/or GEM (5 mg/kg b.wt.) twice weekly for 4 weeks. Liver function enzymes were investigated. Cytochrome P450 and miR-21 genes were studied. Apoptosis was determined by using flow cytometry, and apoptotic modifications in signaling pathways were evaluated via Bcl-2, Bax, Caspase-9, and SMAD-4. Results: The co-treatment of GEM and AgNPs increased apoptosis by upregulating Bax and caspase 9 while diminishing Bcl2 and SMAD4. It also improved cytochrome P450 m-RNA relative expression. The results also proved the cooperation between GEM and AgNPs in deactivating miR21. The impact of AgNPs as an adjuvant treatment with GEM was recognized. Conclusions: The study showed that co-treating AgNPs and GEM can improve the efficiency of GEM alone in treating HCC. This is achieved by enhancing intrinsic and extrinsic apoptotic pathways while diminishing some drawbacks of using GEM alone.
Collapse
Affiliation(s)
- Mohamed R Mohamed
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Soheir A Osman
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Asmaa A Hassan
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Mahmoud M Refaat
- Radiation Biology Department, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Shadia A Fathy
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
7
|
Mawale KS, Giridhar P. Chitosan nanoparticles modulate plant growth, and yield, as well as thrips infestation in Capsicum spp. Int J Biol Macromol 2024; 254:127682. [PMID: 37918609 DOI: 10.1016/j.ijbiomac.2023.127682] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/03/2023] [Accepted: 10/24/2023] [Indexed: 11/04/2023]
Abstract
The objective of this study was to investigate the physiological and biochemical effects of Chitosan nanoparticles on Capsicum annuum plants. The particle size, polydispersity index, composition, and structure of the synthesized chitosan-based nanoparticles (Chitosan (CS), Chitosan-Silver (CSAg), and Chitosan-Copper (CSCu) NPs) were determined by analyzing the zeta potential, FTIR, TEM, and XRD. The seedlings showed improved physiological and biochemical characteristics when 1, 10, and 20 ppm concentrations of nanoparticles (CS, CSAg, and CSCu) were used for 24-h seed priming. The application of nanoparticles in different concentrations (0, 20, 40, 60, 80, and 100 ppm) on the leaves of Capsicum spp. plants resulted in improved physiological traits and protection against thrips by 70-85 %. Furthermore, it enhanced the content of chlorophyll (20-75 %), carotenoids (20-30 %), total phenolics (20-45 %), total flavonoids (40-125 %), reducing sugars (15-40 %), total antioxidant activity (10-82 %), FRAP (10-100 %), DPPH (76-83 mg mL-1) activity, and total capsaicinoids (125-142 %). Therefore, the use of chitosan-based nanoparticles could be considered an environmentally friendly approach to enhance secondary metabolite production, disease resistance, and growth in Capsicum spp. plants for sustainable production.
Collapse
Affiliation(s)
- Kiran Suresh Mawale
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parvatam Giridhar
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysuru 570020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
8
|
Kandile NG, Ahmed ME, Mohamed MI, Mohamed HM. Therapeutic applications of sustainable new chitosan derivatives and its nanocomposites: Fabrication and characterization. Int J Biol Macromol 2024; 254:127855. [PMID: 37939771 DOI: 10.1016/j.ijbiomac.2023.127855] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/14/2023] [Accepted: 11/01/2023] [Indexed: 11/10/2023]
Abstract
Chitosan (CS) is a biologically active biopolymer used in different medical applications due to its biodegradability, biocompatibility, and nontoxicity. Nanotechnology is an exciting and quick developing field in medical applications. Nanoparticles have shown great potential in the treatment of cancer and inflammation. In the present work modification of chitosan and its (Ag, Au, or ZnO) nanocomposites by N-aminophthalimide (NAP) occurred through the reaction with epichlorohydrin (ECH) as a crosslinker in the presence or absence of glutaraldehyde (GA) under different reaction conditions using microwave irradiation to give modified chitosan derivatives CS-2, CS-6, and their nanocomposites. Modified chitosan derivatives were characterized using different tools. CS-2 and CS-6 derivatives displayed enhancement of thermal stability and crystallinity compared to chitosan. Additionally, CS-2, CS-6, and their nanocomposites exhibited improvements in antitumor activity against HeLa cancer cells and enzymatic inhibitory against trypsin and α-chymotrypsin enzymes compared to chitosan. However, CS-2 revealed the highest cell growth inhibition% toward HeLa cells (89.02 ± 1.46 %) and the enzymatic inhibitory toward α-chymotrypsin enzyme (17.13 ± 1.59 %). Furthermore, CS-Au-2 showed the highest enzymatic inhibitory against trypsin enzyme (28.14 ± 1.76 %). These results suggested that the new chitosan derivatives CS-2, CS-6, and their nanocomposites could be a platform for medical applications against HeLa cells, trypsin, and α-chymotrypsin enzymes.
Collapse
Affiliation(s)
- Nadia G Kandile
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Marwa ElS Ahmed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Mansoura I Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Hemat M Mohamed
- Chemistry Department, Faculty of Women for Art, Science and Education, Ain Shams University, Heliopolis 11757, Cairo, Egypt.
| |
Collapse
|
9
|
Devendrapandi G, Padmanaban D, Thanikasalam R, Panneerselvam A, Palraj R, Rajabathar JR, Rajendiran N, Balu R, Oh TH, Ramasundaram S. Direct sunlight induced room temperature synthesis of anticancer and catalytic silver nanoparticles by shrimp shell waste derived chitosan. Int J Biol Macromol 2023; 252:126205. [PMID: 37562471 DOI: 10.1016/j.ijbiomac.2023.126205] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/13/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
The use of marine waste derived chitosan (CS) for the synthesis of nanomaterials is considered as one of the effective routes for bio-waste management and recovering functional products. Herein, CS capped silver nanoparticles (Ag NPs-CS) with potential anticancer and dye pollutants adoption properties have been synthesized photochemically under direct sunlight. To obtain, CS, shrimp shell waste was subjected to a serious of standard demineralization, deproteinization and deacetylation processes. The electronic absorption peak (400 nm) denoting surface plasmonic resonance of Ag NPs and infrared peaks relevant to CS (3364 cm-1 of OH/NH2, 2932 cm-1 of CH, and 1647 cm-1 of -CO) exhibited peaks confirmed the formation of CS-Ag NPs. Ag NPs-CS exhibited anticancer activity against Human lung adenocarcinoma cell lines (A549), the maximum cell death noticed at the concentration of 20 μg/mL and 70 μg/mL was 20 and 52 %, respectively. An aqueous Ag NPs-CS (100 μg/mL) was degraded ≥95 % of mixed dye target solution (25 mg/mL) containing equal volume of cationic dye (Methylene blue and Rhodamine B) and anionic dye (methyl orange). Therefore, these findings suggest that the shrimp shell waste derived CS can be used for the synthesis of CS-Ag NPs with potential biomedical and environmental applications.
Collapse
Affiliation(s)
| | | | - Rabi Thanikasalam
- National Center for Ultrafast Process, University of Madras, Chennai, Tamilnadu, India
| | | | - Ragasudha Palraj
- Department of Respiratory Medicine, Government Thoothukudi Medical College Hospital, Thoothukudi, Tamilnadu, India
| | | | - Nagappan Rajendiran
- Department of Polymer Science, University of Madras, Chennai, Tamilnadu, India.
| | - Ranjith Balu
- Department of Materials Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, Tamilnadu, India.
| | - Tae Hwan Oh
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | | |
Collapse
|
10
|
Solís-Sandí I, Cordero-Fuentes S, Pereira-Reyes R, Vega-Baudrit JR, Batista-Menezes D, Montes de Oca-Vásquez G. Optimization of the biosynthesis of silver nanoparticles using bacterial extracts and their antimicrobial potential. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2023; 40:e00816. [PMID: 38020726 PMCID: PMC10643114 DOI: 10.1016/j.btre.2023.e00816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/14/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023]
Abstract
In the present study, silver nanoparticles (AgNPs) were biosynthesized using the supernatant and the intracellular extract of Cupriavidus necator, Bacillus megaterium, and Bacillus subtilis. The characterization of the AgNPs was carried out using UV-Vis spectroscopy, FTIR, DLS and TEM. Resazurin microtiter-plate assay was used to determine the antimicrobial action of AgNPs against Escherichia coli. UV-Visible spectra showed peaks between 414 and 460 nm. TEM analysis revealed that the synthesized AgNPs showed mostly spherical shapes. DLS results determined sizes from 20.8 to 118.4 nm. The highest antimicrobial activity was obtained with the AgNPs synthesized with supernatant rather than those using the intracellular extract. Therefore, it was determined that the bacterial species, temperature, pH, and type of extract (supernatant or intracellular) influence the biosynthesis. This synthesis thus offers a simple, environmentally friendly, and low-cost method for the production of AgNPs, which can be used as antibacterial agents.
Collapse
Affiliation(s)
- Iván Solís-Sandí
- School of Biology, Tecnológico de Costa Rica, Campus Central, 159-7050 Cartago, Costa Rica
| | - Sara Cordero-Fuentes
- School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - Reinaldo Pereira-Reyes
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica
| | - José Roberto Vega-Baudrit
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica
- Laboratory of Polymer Science and Technology, School of Chemistry, Universidad Nacional, Campus Omar Dengo, 86-3000 Heredia, Costa Rica
| | - Diego Batista-Menezes
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica
| | - Gabriela Montes de Oca-Vásquez
- National Nanotechnology Laboratory, National Center for High Technology, 10109 Pavas, San José, Costa Rica
- Center for Sustainable Development Studies, Universidad Técnica Nacional, 1902-4050, Alajuela, Costa Rica
| |
Collapse
|
11
|
Al-Sheddi ES, Alsohaibani N, bin Rshoud N, Al-Oqail MM, Al-Massarani SM, Farshori NN, Malik T, Al-Khedhairy AA, Siddiqui MA. Anticancer efficacy of green synthesized silver nanoparticles from Artemisia monosperma against human breast cancer cells. SOUTH AFRICAN JOURNAL OF BOTANY 2023; 160:123-131. [DOI: 10.1016/j.sajb.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
|
12
|
Bharathi D, Thiruvengadam Nandagopal JG, Lee J, Ranjithkumar R. Facile Synthesis and Characterization of Chitosan Functionalized Silver Nanoparticles for Antibacterial and Anti-Lung Cancer Applications. Polymers (Basel) 2023; 15:2700. [PMID: 37376346 DOI: 10.3390/polym15122700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
In the treatment of bacterial contamination, the problem of multi-drug resistance is becoming an increasingly pressing concern. Nanotechnology advancements enable the preparation of metal nanoparticles that can be assembled into complex systems to control bacterial and tumor cell growth. The current work investigates the green production of chitosan functionalized silver nanoparticles (CS/Ag NPs) using Sida acuta and their inhibition efficacy against bacterial pathogens and lung cancer cells (A549). Initially, a brown color formation confirmed the synthesis, and the chemical nature of the synthesized NPs were examined by UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS), and transmission electron microscopy (TEM). FTIR demonstrated the occurrence of CS and S. acuta functional groups in the synthesized CS/Ag NPs. The electron microscopy study exhibited CS/Ag NPs with a spherical morphology and size ranges of 6-45 nm, while XRD analysis demonstrated the crystallinity of Ag NPs. Further, the bacterial inhibition property of CS/Ag NPs was examined against K. pneumoniae and S. aureus, which showed clear inhibition zones at different concentrations. In addition, the antibacterial properties were further confirmed by a fluorescent AO/EtBr staining technique. Furthermore, prepared CS/Ag NPs exhibited a potential anti-cancer character against a human lung cancer cell line (A549). In conclusion, our findings revealed that the produced CS/Ag NPs could be used as an excellent inhibitory material in industrial and clinical sectors.
Collapse
Affiliation(s)
- Devaraj Bharathi
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | | | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Rajamani Ranjithkumar
- Viyen Biotech LLP, Coimbatore 641031, Tamil Nadu, India
- Department of Biotechnology, Sri Ramakrishna College of Arts & Science, Nava India, Coimbatore 641006, Tamil Nadu, India
| |
Collapse
|
13
|
Jayakodi S, Senthilnathan R, Swaminathan A, Shanmugam VK, Shanmugam RK, Krishnan A, Ponnusamy VK, Tsai PC, Lin YC, Chen YH. Bio-inspired nanoparticles mediated from plant extract biomolecules and their therapeutic application in cardiovascular diseases: A review. Int J Biol Macromol 2023:125025. [PMID: 37245774 DOI: 10.1016/j.ijbiomac.2023.125025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/05/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Nanoparticles (NPs) have gained recognition for diagnosis, drug delivery, and therapy in fatal diseases. This review focuses on the benefits of green synthesis of bioinspired NPs using various plant extract (containing various biomolecules such as sugars, proteins, and other phytochemical compounds) and their therapeutic application in cardiovascular diseases (CVDs). Multiple factors including inflammation, mitochondrial and cardiomyocyte mutations, endothelial cell apoptosis, and administration of non-cardiac drugs, can trigger the cause of cardiac disorders. Furthermore, the interruption of reactive oxygen species (ROS) synchronization from mitochondria causes oxidative stress in the cardiac system, leading to chronic diseases such as atherosclerosis and myocardial infarction. NPs can decrease the interaction with biomolecules and prevent the incitement of ROS. Understanding this mechanism can pave the way for using green synthesized elemental NPs to reduce the risk of CVD. This review delivers information on the different methods, classifications, mechanisms and benefits of using NPs, as well as the formation and progression of CVDs and their effects on the body.
Collapse
Affiliation(s)
- Santhoshkumar Jayakodi
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India
| | - Raghul Senthilnathan
- Global Business School for Health, University College London, Gower St, London WC1E 6BT, United Kingdom
| | - Akila Swaminathan
- Clinical Virology, Manipal Institute of Virology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Venkat Kumar Shanmugam
- Department of Biotechnology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu 632014, India
| | - Rajesh Kumar Shanmugam
- Department of Pharmacology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science, Chennai, Tamil Nadu 600077, India
| | - Anbarasu Krishnan
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu 602105, India.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Yuan-Chung Lin
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan
| | - Yi-Hsun Chen
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung City, Taiwan.
| |
Collapse
|
14
|
Karimi K, Mojtabavi S, Tehrany PM, Nejad MM, Rezaee A, Mohtashamian S, Hamedi E, Yousefi F, Salmani F, Zandieh MA, Nabavi N, Rabiee N, Ertas YN, Salimimoghadam S, Rashidi M, Rahmanian P, Hushmandi K, Yu W. Chitosan-based nanoscale delivery systems in hepatocellular carcinoma: Versatile bio-platform with theranostic application. Int J Biol Macromol 2023; 242:124935. [PMID: 37230442 DOI: 10.1016/j.ijbiomac.2023.124935] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/13/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The field of nanomedicine has provided a fresh approach to cancer treatment by addressing the limitations of current therapies and offering new perspectives on enhancing patients' prognoses and chances of survival. Chitosan (CS) is isolated from chitin that has been extensively utilized for surface modification and coating of nanocarriers to improve their biocompatibility, cytotoxicity against tumor cells, and stability. HCC is a prevalent kind of liver tumor that cannot be adequately treated with surgical resection in its advanced stages. Furthermore, the development of resistance to chemotherapy and radiotherapy has caused treatment failure. The targeted delivery of drugs and genes can be mediated by nanostructures in treatment of HCC. The current review focuses on the function of CS-based nanostructures in HCC therapy and discusses the newest advances of nanoparticle-mediated treatment of HCC. Nanostructures based on CS have the capacity to escalate the pharmacokinetic profile of both natural and synthetic drugs, thus improving the effectiveness of HCC therapy. Some experiments have displayed that CS nanoparticles can be deployed to co-deliver drugs to disrupt tumorigenesis in a synergistic way. Moreover, the cationic nature of CS makes it a favorable nanocarrier for delivery of genes and plasmids. The use of CS-based nanostructures can be harnessed for phototherapy. Additionally, the incur poration of ligands including arginylglycylaspartic acid (RGD) into CS can elevate the targeted delivery of drugs to HCC cells. Interestingly, smart CS-based nanostructures, including ROS- and pH-sensitive nanoparticles, have been designed to provide cargo release at the tumor site and enhance the potential for HCC suppression.
Collapse
Affiliation(s)
- Kimia Karimi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Sarah Mojtabavi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Melina Maghsodlou Nejad
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Aryan Rezaee
- Iran University of Medical Sciences, Tehran, Iran
| | - Shahab Mohtashamian
- Department of Biomedical Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Erfan Hamedi
- Department of Aquatic Animal Health & Diseases, Department of Clinical Sciences, Faculty of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Farnaz Yousefi
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Farshid Salmani
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC V6H3Z6, Canada
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Türkiye
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Wei Yu
- School of Pharmacy, Xianning Medical College, Hubei University of Science and Technology, Xianning, 437100, China.
| |
Collapse
|
15
|
Yin L, Yuan L, Peng C, Wang Q. Assessment and evaluation of Chitosan-Metamizole nanoparticles for the fracture healing and analgesic effect: Preclinical study in rat model. IET Nanobiotechnol 2023. [PMID: 37095723 DOI: 10.1049/nbt2.12131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 04/26/2023] Open
Abstract
To assess and evaluate Chitosan-Metamizole nanoparticles for fracture healing and analgesic potential, nanoparticles were formulated using the ionotropic gelation method. The nanoparticles were evaluated for particle size, zeta potential, polydispersity index, loading efficiency, surface characteristics and drug release properties. The analgesic activity was determined in carrageenan-induced arthritic male Wister rats. Further fracture healing potency, mechanical testing, radiographic examination and bone histology of the femur were studied. The drug loading efficiency of 11.38%-17.45%, particle size of 140-220 nm, and zeta potential of 19.12-23.14 mV were observed with a spherical, smooth appearance. Nanoparticles showed sustained release behaviour over a longer period. Nearly 4-fold inhibition of oedema was observed in animals treated with nanoparticles with excellent fracture healing potential. The femurs treated with nanoparticles required greater force to fracture. Nanoparticles significantly improved the strength and healing process. Histopathological studies showed the potential of nanoparticles in the healing process. The study confirmed the potential of nanoparticles in fracture healing and enhancement of analgesic activity.
Collapse
Affiliation(s)
- Li Yin
- Department of Anesthesiology, Chongqing Jiangjin District Central Hospital, Chongqing, China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo NO.6 Hospital, Ningbo, Zhejiang, China
| | - Chunling Peng
- Department of Anesthesiology, Chongqing Jiangjin District Central Hospital, Chongqing, China
| | - Qionghua Wang
- Department of Anesthesiology, Chongqing Jiangjin District Central Hospital, Chongqing, China
| |
Collapse
|
16
|
One-pot microwave synthesis of chitosan-stabilized silver nanoparticles entrapped polyethylene oxide nanofibers, with their intrinsic antibacterial and antioxidant potency for wound healing. Int J Biol Macromol 2023; 235:123704. [PMID: 36801282 DOI: 10.1016/j.ijbiomac.2023.123704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/04/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Different physical and chemical techniques could be used to prepare chitosan/Silver nanoparticle (CHS/AgNPs) nanocomposite. The microwave heating reactor was rationally adopted as a benign tool for preparing CHS/AgNPs owing to less energy consumption and shorter time required for completing the nucleation and growth particles. UV-Vis, FTIR, and XRD, provided conclusive evidence of the AgNPs creation, while TEM micrographs elucidated that the size was spherical (20 nm). CHS/AgNPs were embedded in polyethylene oxide (PEO) nanofiber via electrospinning, and their biological properties, cytotoxicity evaluation, antioxidant, and antibacterial activity assays were investigated. The generated nanofibers have mean diameters of 130.9 ± 9.5, 168.7 ± 18.8, and 186.8 ± 8.19 nm for PEO, PEO/ CHS, and PEO/ CHS (AgNPs), respectively. Because of the tiny AgNPs particle size loaded in PEO/CHS (AgNPs) fabricated nanofiber, good antibacterial activity with ZOI against E. coli was 51.2 ± 3.2, and S. aureus was 47.2 ± 2.1 for PEO/ CHS (AgNPs) nanofibers. Non-toxicity was observed against Human Skin Fibroblast and Keratinocytes cell lines (>93.5 %), which justifies its great antibacterial potential to remove or prevent infection in wounds with fewer adverse effects.
Collapse
|
17
|
Husain S, Nandi A, Simnani FZ, Saha U, Ghosh A, Sinha A, Sahay A, Samal SK, Panda PK, Verma SK. Emerging Trends in Advanced Translational Applications of Silver Nanoparticles: A Progressing Dawn of Nanotechnology. J Funct Biomater 2023; 14:47. [PMID: 36662094 PMCID: PMC9863943 DOI: 10.3390/jfb14010047] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Nanoscience has emerged as a fascinating field of science, with its implementation in multiple applications in the form of nanotechnology. Nanotechnology has recently been more impactful in diverse sectors such as the pharmaceutical industry, agriculture sector, and food market. The peculiar properties which make nanoparticles as an asset are their large surface area and their size, which ranges between 1 and 100 nanometers (nm). Various technologies, such as chemical and biological processes, are being used to synthesize nanoparticles. The green chemistry route has become extremely popular due to its use in the synthesis of nanoparticles. Nanomaterials are versatile and impactful in different day to day applications, resulting in their increased utilization and distribution in human cells, tissues, and organs. Owing to the deployment of nanoparticles at a high demand, the need to produce nanoparticles has raised concerns regarding environmentally friendly processes. These processes are meant to produce nanomaterials with improved physiochemical properties that can have significant uses in the fields of medicine, physics, and biochemistry. Among a plethora of nanomaterials, silver nanoparticles have emerged as the most investigated and used nanoparticle. Silver nanoparticles (AgNPs) have become vital entities of study due to their distinctive properties which the scientific society aims to investigate the uses of. The current review addresses the modern expansion of AgNP synthesis, characterization, and mechanism, as well as global applications of AgNPs and their limitations.
Collapse
Affiliation(s)
- Shaheen Husain
- Amity Institute of Nanotechnology, Amity University Uttar Pradesh (AUUP), Sector 125, Noida 201313, India
| | - Aditya Nandi
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | | | - Utsa Saha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Aishee Ghosh
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Aarya Sahay
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
| | - Shailesh Kumar Samal
- Unit of Immunology and Chronic Disease, Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Pritam Kumar Panda
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| | - Suresh K. Verma
- School of Biotechnology, KIIT University, Bhubaneswar 751024, India
- Condensed Matter Theory Group, Materials Theory Division, Department of Physics and Astronomy, Uppsala University, 75120 Uppsala, Sweden
| |
Collapse
|
18
|
Chitosan-Coated Polymeric Silver and Gold Nanoparticles: Biosynthesis, Characterization and Potential Antibacterial Applications: A Review. Polymers (Basel) 2022; 14:polym14235302. [PMID: 36501695 PMCID: PMC9738229 DOI: 10.3390/polym14235302] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Biosynthesized metal nanoparticles, especially silver and gold nanoparticles, and their conjugates with biopolymers have immense potential in various fields of science due to their enormous applications, including biomedical applications. Polymeric nanoparticles are particles of small sizes from 1 nm to 1000 nm. Among different polymeric nanoparticles, chitosan-coated silver and gold nanoparticles have gained significant interest from researchers due to their various biomedical applications, such as anti-cancer, antibacterial, antiviral, antifungal, anti-inflammatory technologies, as well as targeted drug delivery, etc. Multidrug-resistant pathogenic bacteria have become a serious threat to public health day by day. Novel, effective, and safe antibacterial agents are required to control these multidrug-resistant pathogenic microorganisms. Chitosan-coated silver and gold nanoparticles could be effective and safe agents for controlling these pathogens. It is proven that both chitosan and silver or gold nanoparticles have strong antibacterial activity. By the conjugation of biopolymer chitosan with silver or gold nanoparticles, the stability and antibacterial efficacy against multidrug-resistant pathogenic bacteria will be increased significantly, as well as their toxicity in humans being decreased. In recent years, chitosan-coated silver and gold nanoparticles have been increasingly investigated due to their potential applications in nanomedicine. This review discusses the biologically facile, rapid, and ecofriendly synthesis of chitosan-coated silver and gold nanoparticles; their characterization; and potential antibacterial applications against multidrug-resistant pathogenic bacteria.
Collapse
|
19
|
Ramachandran R, Parthasarathy R, Dhayalan S. Silver nanoparticles synthesized by Euphorbia hirta exhibited antibacterial activity and induced apoptosis through downregulation of PI3Kγ mediated PI3K/Akt/mTOR/p70S6K in human lung adenocarcinoma A549 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:2865-2876. [PMID: 36073799 DOI: 10.1002/tox.23643] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
Plant extracts were successfully applied to synthesize nanoparticles, and expected such biological processes of effective for chemotherapeutic applications and safe for human use. Our study planned to evaluate the anticancer efficacy of silver nanoparticles (AgNPs) synthesized by Euphorbia hirta on human lung adenocarcinoma A549 cells. The E. hirta synthesized Eh-AgNPs was investigated by UV-spectroscopy, X-ray diffraction, transmission electron microscopy, and Fourier-transform infrared spectroscopy examination. The bactericidal efficacy of Eh-AgNPs was studied by the agar well method, and the cytotoxicity on A549 cells was assessed by MTT assay. Results showed that Eh-AgNPs exhibited effective antibacterial activity against bacterial pathogens, established dose-dependent cytotoxicity on A549 cells, and persuaded apoptosis, as evidenced by increased lipid peroxidation and decreased levels of antioxidants. Eh-AgNPs significantly increased the early apoptosis in A549 cells in a concentration-dependent way. The Eh-AgNPs administration reduced the Bcl-2 expression; however, it increased the expression of p53, Bax, cleaved caspase-3 and -9 apoptotic members. Eh-AgNPs treatment reduced PI3Kγ, phospho-PI3K, phospho-Akt, phospho-mTOR, and p70S6K levels. The obtained results demonstrated that the Eh-AgNPs induce reactive oxygen species-mediated apoptosis by expressing p53, Bax, and inhibiting PI3K/Akt/mTOR/p70S6K signaling pathway.
Collapse
Affiliation(s)
- Rajalakshmi Ramachandran
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Ramya Parthasarathy
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| | - Sangeetha Dhayalan
- Department of Microbiology, Faculty of Science, Annamalai University, Annamalai Nagar, Chidambaram, India
| |
Collapse
|
20
|
Biosynthesis, characterization and biomedical potential of Arthrospira indica SOSA-4 mediated SeNPs. Bioorg Chem 2022; 129:106218. [DOI: 10.1016/j.bioorg.2022.106218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/09/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022]
|
21
|
Yousaf A, Waseem M, Javed A, Baig S, Ismail B, Baig A, Shahzadi I, Nawazish S, Zaman I. Augmented anticancer effect and antibacterial activity of silver nanoparticles synthesized by using Taxus wallichiana leaf extract. PeerJ 2022; 10:e14391. [PMID: 36444381 PMCID: PMC9700453 DOI: 10.7717/peerj.14391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 10/23/2022] [Indexed: 11/24/2022] Open
Abstract
Background Taxus wallichiana is an evergreen tree species found in the Himalayan region of Pakistan. The tree possesses important secondary metabolites such as Taxol that has been implicated in treating breast, ovarian and colon cancer. Therefore keeping in view the importance of this plant species, silver nanoparticles were synthesized using Taxus wallichiana aqueous leaf extract and evaluated for their anti-bacterial and anti-cancer properties. Methods Silver (Ag) nanoparticles (NPs) were characterized for their optical, morphological and structural features using techniques such as UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) and were evaluated for their antibacterial activity and anti-cancer activity using U251 cell line. Results The study showed that the UV-absorbance peak of Ag2O NPs at 450 nm shifted to 410 nm, affirming the formation of leaf extract Ag NPs. Similarly structural studies revealed the crystalline nature of the cubic structure of the Ag crystal with an average crystallite size of 29 nm. FTIR analysis exhibited the existence of different functional elements including O-H and N-H and phenolic groups. Non-spherical glomerular shaped Taxus wallichiana Ag NPs were observed from SEM studies and EDX profile showed Ag as the main element along with constituent of biological origin. The synthesized Ag NPs showed significant antibacterial activity against Salmonella typhi, and Staphylococcus aureus. The cytotoxic activity of Ag NPs on U251 brain cancer cells showed a synergistic effect with 10 ug/mL concentration after 48 and 72 h incubation based on cell viability assay indicating promising glioblastoma drug potential.
Collapse
Affiliation(s)
- Aliya Yousaf
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Waseem
- Department of Chemistry, COMSATS University Islamabad, Islamabad Campus, Islamabad, Pakistan
| | - Aneela Javed
- Department of Healthcare Biotechnology, Atta ur Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Sofia Baig
- Department of Environmental Sciences, Institute of Environmental Sciences and Engineering (IESE), National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Bushra Ismail
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Ayesha Baig
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Irum Shahzadi
- Department of Biotechnology, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Shamyla Nawazish
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Iftikhar Zaman
- Zoo/Wildlife Conservation, Peshawar, Khyber Pakhtunkhawa, Pakistan
| |
Collapse
|
22
|
Akram Ghumman S, Mahmood A, Noreen S, Aslam A, Ijaz B, Amanat A, Kausar R, Rana M, Hameed H. Chitosan-Linseed Mucilage Polyelectrolyte Complex Nanoparticles of Methotrexate: In vitro Cytotoxic Efficacy and Toxicological Studies. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
23
|
Muiz LJ, Juwono AL, Krisnandi YK. A review: Silver–zinc oxide nanoparticles – organoclay-reinforced chitosan bionanocomposites for food packaging. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Research on bionanocomposites has been developed, while its application as food packaging is still being explored. They are usually made from natural polymers such as cellulose acetate, chitosan (CS), and polyvinyl alcohol. Bionanocomposite materials can replace traditional non-biodegradable plastic packaging materials, enabling them to use new, high-performance, lightweight, and environmentally friendly composite materials. However, this natural polymer has a weakness in mechanical properties. Therefore, a composite system is needed that will improve the properties of the biodegradable food packaging. The aim of this mini-review is to demonstrate recent progress in the synthesis, modification, characterization, and application of bionanocomposites reported by previous researchers. The focus is on the preparation and characterization of CS-based bionanocomposites. The mechanical properties of CS-based food packaging can be improved by adding reinforcement from inorganic materials such as organoclay. Meanwhile, the anti-bacterial properties of CS-based food packaging can be improved by adding nanoparticles such as Ag and ZnO.
Collapse
Affiliation(s)
- Lisna Junaeni Muiz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Ariadne Lakshmidevi Juwono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Yuni Krisyuningsih Krisnandi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
- Department of Chemistry, Solid Inorganic Framework Laboratory, Faculty of Mathematics and Natural Science, Universitas Indonesia , Depok , 16424 , Indonesia
| |
Collapse
|
24
|
Hamdy MS, Elbehairi SEI, Shati AA, Abd-Rabboh HSM, Alfaifi MY, Fawy KF, Ibrahium HA, Alamri S, Awwad NS. Cytotoxic Potential of Bio-Silica Conjugate with Different Sizes of Silver Nanoparticles for Cancer Cell Death. MATERIALS 2022; 15:ma15124074. [PMID: 35744132 PMCID: PMC9229810 DOI: 10.3390/ma15124074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/01/2023]
Abstract
Well-defined silver nanoparticles were doped into bio-based amorphous silica (Ag-b-SiO2) with different silver contents (from 2 to 20 wt%) by a solvent-free procedure. The four as-synthetized samples were hydrogenated at 300 °C to ensure the formation of zero-valent Ag nanoparticles. The prepared samples were characterized by X-ray powder diffraction (XRD), elemental analysis, N2 sorption measurements, scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and high-resolution transmission electron microscopy (HR-TEM). The characterization data confirmed the formation of well-defined zero-valent silver nanoparticles in the range of 3-10 nm in the low-loading samples, while in high-loading samples, bulky particles of silver in the range of 200-500 nm were formed. The in vitro cytotoxic activities of the Ag-b-SiO2 samples were tested against the tumor cell lines of breast (MCF-7), liver (HepG2), and colon (HCT 116) over a concentration range of 0.01 to 1000 g. The prepared samples exhibited a wide range of cytotoxic activities against cancer cells. An inverse relationship was observed between the silver nanoparticles' size and the cytotoxic activity, while a direct relationship between the silver nanoparticles' size and the apoptotic cell death was noticed.
Collapse
Affiliation(s)
- Mohamed S. Hamdy
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.S.H.); (H.S.M.A.-R.); (K.F.F.)
| | - Serag Eldin I. Elbehairi
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.E.I.E.); (A.A.S.); (M.Y.A.); (H.A.I.); (S.A.)
| | - Ali A. Shati
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.E.I.E.); (A.A.S.); (M.Y.A.); (H.A.I.); (S.A.)
| | - Hisham S. M. Abd-Rabboh
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.S.H.); (H.S.M.A.-R.); (K.F.F.)
| | - Mohammad Y. Alfaifi
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.E.I.E.); (A.A.S.); (M.Y.A.); (H.A.I.); (S.A.)
| | - Khaled F. Fawy
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.S.H.); (H.S.M.A.-R.); (K.F.F.)
| | - Hala A. Ibrahium
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.E.I.E.); (A.A.S.); (M.Y.A.); (H.A.I.); (S.A.)
| | - Saad Alamri
- Department of Biology, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (S.E.I.E.); (A.A.S.); (M.Y.A.); (H.A.I.); (S.A.)
| | - Nasser S. Awwad
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia; (M.S.H.); (H.S.M.A.-R.); (K.F.F.)
- Correspondence:
| |
Collapse
|
25
|
Antibacterial properties of silver nanoparticles greenly synthesized using guava fruit extract as a reducing agent and stabilizer. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02506-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
26
|
Bhatia N, Kumari A, Thakur N, Sharma G, Singh RR, Sharma R. Phytochemically stabilized chitosan encapsulated Cu and Ag nanocomposites to remove cefuroxime axetil and pathogens from the environment. Int J Biol Macromol 2022; 212:451-464. [PMID: 35618089 DOI: 10.1016/j.ijbiomac.2022.05.143] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 11/29/2022]
Abstract
Antibiotics have been a source of concern since they are causing resistance in bacteria that live in water and air. As a result, green technology was used to manufacture silver and copper nanoparticles, which were encapsulated with the biopolymer chitosan derived from the root extract of the Potentilla astrosanguinea plant. XRD, FTIR, TEM, EDX, and UV-Visible spectroscopy were methods used for structural and spectroscopic analysis. These nanomaterials have a roughly spherical 2-30 nm average size and a face-centered cubic (FCC) shape, according to the findings. The photocatalytic drug degradation and antibacterial properties of the produced nanocomposites were outstanding, with some resistance lasting longer than 180 days. The current study discovered that under UV light exposure, silver nanocomposites degrade drugs rapidly within 40 min, with an average rate of over 95%, while copper nanocomposites degrade drugs rapidly within 70 min, with an average rate of 84%. These nanocomposites have demonstrated exceptionally compelling antibacterial action against Gram-positive, Gram-negative, and fungal pathogens in addition to photocatalytic activity. The lowest recorded MIC values were 10.30 μg/mL and 10.84 μg/mL, respectively, whereas the lowest MBC values were 91.24 μg/mL and 99.50 μg/mL.
Collapse
Affiliation(s)
- Nishat Bhatia
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India
| | - Nitika Thakur
- Department of Biotechnology, Shoolini University, Solan-Oachghat-Kumarhatti Highway, Bajhol, Himachal Pradesh 173229, India
| | - Gaurav Sharma
- Department of Biotechnology, Shoolini University, Solan-Oachghat-Kumarhatti Highway, Bajhol, Himachal Pradesh 173229, India
| | - Ragini Raj Singh
- Department of Physics and Material Sciences, Jaypee University of Information Technology (JUIT), Waknaghat, Solan, Himachal Pradesh 173234, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker - Kharwarian), Hamirpur, MDR 35, Himachal Pradesh 176041, India.
| |
Collapse
|
27
|
Synthesis, characterization, anticancer, and antioxidant activities of chitosan Schiff bases bearing quinolinone or pyranoquinolinone and their silver nanoparticles derivatives. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04238-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AbstractIn this work, new chitosan-based Schiff bases were synthesized by the reaction of chitosan with quinolinone and pyranoquinolinone giving CSQ, and CSP, respectively. The novel Chitosan Schiff bases were grafted on silver nanoparticles providing CSQ/Ag, CSP/Ag structures. Characterization of isolated compounds was carried out by FT-IR, TGA, XRD, SEM, and TEM. The target compounds CSQ, CSP, CSQ/Ag, and CSP/Ag were evaluated as antitumor agents against three cancer cell lines, liver (HepG-2), colon (HCT-116), and breast (MCF-7). Compound CSQ/Ag disclosed potent cytotoxic effect with IC50 values in the range of 41.9–55.1 μg/ml in comparison with 5-fluorouracil against different cancer cell lines. Besides, the antioxidant activity of chitosan and its quinolinone and pyranoquinolinone analogues was assessed as radical scavengers versus 1,1-diphenyl-2-picrylhydrazyl radicals (DPPH%). The compound CSQ/Ag emerged as the most active member in scavenging the DPPH radicals. The obtained findings proved that the new Schiff bases/silver nanoparticles of chitosan showed higher antiproliferative and antioxidant activities than the blank CS and would be highly applicable in biomedical fields.
Graphical abstract
Collapse
|
28
|
Shyamalagowri S, Charles P, Manjunathan J, Kamaraj M, Anitha R, Pugazhendhi A. In vitro anticancer activity of silver nanoparticles phyto-fabricated by Hylocereus undatus peel extracts on human liver carcinoma (HepG2) cell lines. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
29
|
Biogenic Preparation, Characterization, and Biomedical Applications of Chitosan Functionalized Iron Oxide Nanocomposite. JOURNAL OF COMPOSITES SCIENCE 2022. [DOI: 10.3390/jcs6050120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Chitosan (CS) functionalization over nanomaterials has gained more attention in the biomedical field due to their biocompatibility, biodegradability, and enhanced properties. In the present study, CS functionalized iron (II) oxide nanocomposite (CS/FeO NC) was prepared using Sida acuta leaf extract by a facile and eco-friendly green chemistry route. Phyto-compounds of S. acuta leaf were used as a reductant to prepare CS/FeO NC. The existence of CS and FeO crystalline peaks in CS/FeO NC was confirmed by XRD. FE-SEM analysis revealed that the prepared CS/FeO NC were spherical with a 10–100 nm average size. FTIR analyzed the existence of CS and metal-oxygen bands in the prepared NC. The CS/FeO NC showed the potential bactericidal activity against E. coli, B. subtilis, and S. aureus pathogens. Further, CS/FeO NC also exhibited the dose-dependent anti-proliferative property against human lung cancer cells (A549). Thus, the obtained outcomes revealed that the prepared CS/FeO NC could be a promising candidate in the biomedical sector to inhibit the growth of bacterial pathogens and lung cancer cells.
Collapse
|
30
|
Noreen S, Hasan S, Ghumman SA, Bukhari SNA, Ijaz B, Hameed H, Iqbal H, Aslam A, Elsherif MAM, Noureen S, Ejaz H. pH Responsive Abelmoschus esculentus Mucilage and Administration of Methotrexate: In-Vitro Antitumor and In-Vivo Toxicity Evaluation. Int J Mol Sci 2022; 23:ijms23052725. [PMID: 35269867 PMCID: PMC8910941 DOI: 10.3390/ijms23052725] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/21/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
The rapid progression in biomaterial nanotechnology apprehends the potential of non-toxic and potent polysaccharide delivery modules to overcome oral chemotherapeutic challenges. The present study is aimed to design, fabricate and characterize polysaccharide nanoparticles for methotrexate (MTX) delivery. The nanoparticles (NPs) were prepared by Abelmoschus esculentus mucilage (AEM) and chitosan (CS) by the modified coacervation method, followed by ultra-sonification. The NPs showed much better pharmaceutical properties with a spherical shape and smooth surface of 213.4–254.2 nm with PDI ranging between 0.279–0.485 size with entrapment efficiency varying from 42.08 ± 1.2 to 72.23 ± 2.0. The results revealed NPs to possess positive zeta potential and a low polydispersity index (PDI). The in-vitro drug release showed a sustained release of the drug up to 32 h with pH-dependence. Blank AEM -CS NPs showed no in-vivo toxicity for a time duration of 14 days, accompanied by high cytotoxic effects of optimized MTX loaded NPs against MCF-7 and MD-MBA231 cells by MTT assay. In conclusion, the findings advocated the therapeutic potential of AEM/CS NPs as an efficacious tool, offering a new perspective for pH-responsive routing of anticancer drugs with tumor cells as a target.
Collapse
Affiliation(s)
- Sobia Noreen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Sara Hasan
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
- Department of Chemistry, Sargodha Campus, The University of Lahore, Sargodha 40100, Pakistan
| | - Shazia Akram Ghumman
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | - Syed Nasir Abbas Bukhari
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.N.); (S.N.A.B.); Tel.: +966-5657-38896 (S.N.A.B.)
| | - Bushra Ijaz
- Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54000, Pakistan;
| | - Huma Hameed
- IRSET, EHSEP, INSERM, University of Rennes 1, 35000 Rennes, France;
| | - Huma Iqbal
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Afeefa Aslam
- College of Pharmacy, University of Sargodha, Sargodha 40100, Pakistan; (S.A.G.); (A.A.)
| | | | - Shazia Noureen
- Institute of Chemistry, University of Sargodha, Sargodha 40100, Pakistan; (S.H.); (H.I.); (S.N.)
| | - Hasan Ejaz
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia;
| |
Collapse
|
31
|
Soluble soybean polysaccharide films containing in-situ generated silver nanoparticles for antibacterial food packaging applications. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100800] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Păduraru DN, Ion D, Niculescu AG, Mușat F, Andronic O, Grumezescu AM, Bolocan A. Recent Developments in Metallic Nanomaterials for Cancer Therapy, Diagnosing and Imaging Applications. Pharmaceutics 2022; 14:435. [PMID: 35214167 PMCID: PMC8874382 DOI: 10.3390/pharmaceutics14020435] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer continues to represent a global health concern, imposing an ongoing need to research for better treatment alternatives. In this context, nanomedicine seems to be the solution to existing problems, bringing unprecedented results in various biomedical applications, including cancer therapy, diagnosing, and imaging. As numerous studies have uncovered the advantageous properties of various nanoscale metals, this review aims to present metal-based nanoparticles that are most frequently employed for cancer applications. This paper follows the description of relevant nanoparticles made of metals, metal derivatives, hybrids, and alloys, further discussing in more detail their potential applications in cancer management, ranging from the delivery of chemotherapeutics, vaccines, and genes to ablative hyperthermia therapies and theranostic platforms.
Collapse
Affiliation(s)
- Dan Nicolae Păduraru
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Daniel Ion
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
| | - Florentina Mușat
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Octavian Andronic
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, Politehnica University of Bucharest, 011061 Bucharest, Romania;
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania
- Academy of Romanian Scientists, Ilfov No. 3, 50044 Bucharest, Romania
| | - Alexandra Bolocan
- Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (D.N.P.); (D.I.); (F.M.); (O.A.); (A.B.)
- Emergency University Hospital of Bucharest, 050098 Bucharest, Romania
| |
Collapse
|
33
|
Silver Nanoparticles: An Instantaneous Solution for Anticancer Activity against Human Liver (HepG2) and Breast (MCF-7) Cancer Cells. METALS 2022. [DOI: 10.3390/met12010148] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cancer is a cataclysmic disease that affects not only the target organ, but also the whole body. Metal-based nanoparticles (NPs) have recently emerged as a better option for the treatment of this deadly disease. Accordingly, the present work describes a means to control the growth of cancer cells by using colloidal silver nanoparticles (AgNPs) processed via homemade solutions and the characterization of these materials. The AgNPs may become an instantaneous solution for the treatment of these deadly diseases and to minimize or remove these problems. The AgNPs exhibit excellent control of the growth rate of human liver (HepG2) and breast (MCF-7) cancer cells, even at a very low concentrations. The cytotoxic effects of AgNPs on HepG2 and MCF-7 cancer cells were dose dependent (2–200 μg/mL), as evaluated using MTT and NRU assays. The production of reactive oxygen species (ROS) was increased by 136% and 142% in HepG2 and MCF-7 cells treated with AgNPs, respectively. The quantitative polymerase chain reaction (qPCR) data for both cell types (HepG2 and MCF-7) after exposure to AgNPs showed up- and downregulation of the expression of apoptotic (p53, Bax, caspase-3) and anti-apoptotic (BCl2) genes; moreover, their roles were described. This work shows that NPs were successfully prepared and controlled the growth of both types of cancer cells.
Collapse
|
34
|
Bhattacharya K, Kalita U, Singha NK. Tailor-made Glycopolymers via Reversible Deactivation Radical Polymerization: Design, Properties and Applications. Polym Chem 2022. [DOI: 10.1039/d1py01640g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Investigating the underlying mechanism of biological interactions using glycopolymer is becoming increasingly important owing to their unique recognition properties. The multivalent interactions between lectin and glycopolymer are significantly influenced by...
Collapse
|
35
|
ALOBAID HM, ALZHRANI AH, MAJRASHI NA, ALKHURIJI AF, ALAJMI RA, YEHIA HM, AWAD MA, ALMURSHEDI AS, ALMNAIZEL AT, ELKHADRAGY MF. Effect of biosynthesized silver nanoparticles by Garcinia mangostana extract against human breast cancer cell line MCF-7. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.41622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
36
|
Insights into the Biosynthesis of Nanoparticles by the Genus Shewanella. Appl Environ Microbiol 2021; 87:e0139021. [PMID: 34495739 DOI: 10.1128/aem.01390-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The exploitation of microorganisms for the fabrication of nanoparticles (NPs) has garnered considerable research interest globally. The microbiological transformation of metals and metal salts into respective NPs can be achieved under environmentally benign conditions, offering a more sustainable alternative to chemical synthesis methods. Species of the metal-reducing bacterial genus Shewanella are able to couple the oxidation of various electron donors, including lactate, pyruvate, and hydrogen, to the reduction of a wide range of metal species, resulting in biomineralization of a multitude of metal NPs. Single-metal-based NPs as well as composite materials with properties equivalent or even superior to physically and chemically produced NPs have been synthesized by a number of Shewanella species. A mechanistic understanding of electron transfer-mediated bioreduction of metals into respective NPs by Shewanella is crucial in maximizing NP yields and directing the synthesis to produce fine-tuned NPs with tailored properties. In addition, thorough investigations into the influence of process parameters controlling the biosynthesis is another focal point for optimizing the process of NP generation. Synthesis of metal-based NPs using Shewanella species offers a low-cost, eco-friendly alternative to current physiochemical methods. This article aims to shed light on the contribution of Shewanella as a model organism in the biosynthesis of a variety of NPs and critically reviews the current state of knowledge on factors controlling their synthesis, characterization, potential applications in different sectors, and future prospects.
Collapse
|
37
|
Younas M, Rizwan M, Zubair M, Inam A, Ali S. Biological synthesis, characterization of three metal-based nanoparticles and their anticancer activities against hepatocellular carcinoma HepG2 cells. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 223:112575. [PMID: 34352575 DOI: 10.1016/j.ecoenv.2021.112575] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Treatment of liver cancer has always been a challenge for clinicians and development of appropriate drug against hepatocellular carcinoma is the major focus for researchers working in the field. The synthesis of metal-based nanoparticles (NPs) by green method for pharmacological uses has attained considerable attention recently. In current study three different NPs (AgO2, CeO2, CuO2) were synthesized by using Trianthima portulacastrum and Chinopodium quinoa leaf extracts. These biogenic NPs were analyzed by High-tech. approaches including Scanning Electron Microscopy (SEM) with Energy Dispersive X-ray (EDX) spectroscope, SEM-EDS spot analysis, elemental mapping and X-ray diffraction (XRD). The anticancer potential of these nanoparticles was estimated using MTT assay, against hepatic cancer cell line (HepG2). SEM secondary electron images presented the nano size of prepared particles in agglomerated form with few porous forms. Average size of Ag-, Ce-, and CuNPs was observed 19-24 nm, 8-12 nm, 13-15 nm respectively. Elemental mapping and EDS-spot analysis ratifies the formation of AgNPs, CeNPs, and CuNPs. These NPs have shown good anticancer activity at different concentrations against HepG2 cell line. Further studies are however needed to identify the molecular mechanisms of these anticancer activities.
Collapse
Affiliation(s)
- Madiha Younas
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Rizwan
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan
| | - Muhammad Zubair
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, 38000 Faisalabad, Pakistan.
| | - Aqil Inam
- Department of Metallurgy and Materials Engineering, University of Punjab, Lahore, Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, 38000 Faisalabad, Pakistan; Department of Biological Sciences and Technology, China Medical University, Taichung 40402, Taiwan.
| |
Collapse
|
38
|
A Robust and Highly Precise Alternative against the Proliferation of Intestinal Carcinoma and Human Hepatocellular Carcinoma Cells Based on Lanthanum Strontium Manganite Nanoparticles. MATERIALS 2021; 14:ma14174979. [PMID: 34501078 PMCID: PMC8433762 DOI: 10.3390/ma14174979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/16/2021] [Accepted: 08/25/2021] [Indexed: 01/09/2023]
Abstract
In this report, lanthanum strontium manganite at different Sr2+ ion concentrations, as well as Gd3+ or Sm3+ ion substituted La0.5-YMYSr0.5MnO3 (M = Gd and Sm, y = 0.2), have been purposefully tailored using a sol gel auto-combustion approach. XRD profiles confirmed the formation of a monoclinic perovskite phase. FE-SEM analysis displayed a spherical-like structure of the La0.8Sr0.2MnO3 and La0.3Gd0.2Sr0.2MnO3 samples. The particle size of the LSM samples was found to decrease with increased Sr2+ ion concentration. For the first time, different LSM concentrations were inspected for their cytotoxic activity against CACO-2 (intestinal carcinoma cells) and HepG-2 (human hepatocellular carcinoma cells). The cell viability for CACO-2 and HepG-2 was assayed and seen to decrease depending on the Sr2+ ion concentration. Half maximal inhibitory concentration IC50 of CACO-2 cell and HepG-2 cell inhibition was connected with Sr2+ ion ratio. Low IC50 was noticable at low Sr2+ ion content. Such results were correlated to the particle size and the morphology. Indeed, the IC50 of CACO-2 cell inhibition by LSM at a strontium content of 0.2 was 5.63 ± 0.42 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be = 25 ± 2.7 µg/mL. Meanwhile, the IC50 of HepG-2 cell inhibition by LSM at a strontium content of 0.2 was 6.73 ± 0.4 µg/mL, and the value increased with increased Sr2+ ion concentration by up to 0.8 to be 31± 3.1 µg/mL. All LSM samples at different conditions were tested as antimicrobial agents towards fungi, Gram positive bacteria, and Gram negative bacteria. For instance, all LSM samples were found to be active towards Gram negative bacteria Escherichia coli, whereas some samples have presumed antimicrobial effect towards Gram negative bacteria Proteus vulgaris. Such results confirmed that LSM samples possessed cytotoxicity against CACO-2 and HepG-2 cells, and they could be considered to play a substantial role in pharmaceutical and therapeutic applications.
Collapse
|
39
|
Jamila N, Khan N, Bibi N, Waqas M, Khan SN, Atlas A, Amin F, Khan F, Saba M. Hg(II) sensing, catalytic, antioxidant, antimicrobial, and anticancer potential of Garcinia mangostana and α-mangostin mediated silver nanoparticles. CHEMOSPHERE 2021; 272:129794. [PMID: 35534954 DOI: 10.1016/j.chemosphere.2021.129794] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/17/2021] [Accepted: 01/23/2021] [Indexed: 06/14/2023]
Abstract
This study reports synthesis of Garcinia mangostana fruit pericarp (unwanted waste material) and α-mangostin mediated silver nanoparticles (AgNPs). These AgNPs were efficiently produced using 1:10 (extract and salt) ratio under stirring and heating, which was confirmed by surface plasmon resonance (SPR) band in UV-Visible spectroscopic analysis, and size of 73-91 nm determined by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The synthesized AgNPs were used for Hg(II) detection in tap water, where the limits of detection and quantification were 2.6 μM and 8.9 μM, respectively. Furthermore, the subject AgNPs showed promising catalytic activity in the reduction of dyes and food colours including Congo red (CR), methylene blue (MB), malachite green (MG), methyl orange (MO), para-nitrophenol (PNP), rhodamine B (RdB), zarda yellow (ZY), deep green (DG), and bright red (BR). The synthesized AgNPs were also evaluated for their antioxidant, antimicrobial, and anticancer properties, where α-mangostin and its nanoparticles (Mang-AgNPs) exhibited promising IC50 values of 14.1 and 13.5 μg/mL, respectively against DU-145 cell line validated by in silico molecular docking study. This study is the first report highlighting the application of AgNPs of G. mangostana fruit pericarp extracts, and α-mangostin in Hg(II) detection, dyes degradation, and anticancer potential against DU-145. Finding of this study suggested the suitability of AgNPs as promising solid biosensor in Hg(II) metal detection, dyes reduction, and target in anticancer drug development.
Collapse
Affiliation(s)
- Nargis Jamila
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan.
| | - Naeem Khan
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan.
| | - Nousheen Bibi
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Waqas
- Department of Botanical and Environmental Science, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Sadiq Noor Khan
- Department of Medical Lab Technology, University of Haripur, Haripur, 22060, Khyber Pakhtunkhwa, Pakistan
| | - Amir Atlas
- Department of Chemistry, Kohat University of Science and Technology, Kohat, 26000, Khyber Pakhtunkhwa, Pakistan
| | - Farhat Amin
- Department of Bioinformatics, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Faryal Khan
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| | - Malka Saba
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar, 25000, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
40
|
Abdellatif AAH, Alsharidah M, Al Rugaie O, Tawfeek HM, Tolba NS. Silver Nanoparticle-Coated Ethyl Cellulose Inhibits Tumor Necrosis Factor-α of Breast Cancer Cells. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:2035-2046. [PMID: 34012256 PMCID: PMC8128348 DOI: 10.2147/dddt.s310760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 04/22/2021] [Indexed: 12/15/2022]
Abstract
Introduction Cancer is one of the leading causes of death worldwide. In many cases, cancer is related to the elevated expression of a significant cytokine known as tumor necrosis factor-α (TNF-α). Breast cancer in particular is linked to increased proliferation of tumor cells, high incidence of malignancies, more metastases, and generally poor prognosis for the patient. The research sought to assess the effect of silver nanoparticles reduced with ethyl cellulose polymer (AgNPs-EC) on TNF-α expression in MCF-7 human breast cancer cells. Methods The AgNPs-EC were produced using the green synthesis reduction method, and their formation was proofed via UV–VIS spectroscopy. Furthermore, AgNPs-EC were characterized for their size, charge, morphology, Ag ion release, and stability. The MCF-7 cells were treated with AgNPs-EC. Then, the expression of TNF-α genes was determined through PCR in real time, and protein expression was studied using ELISA. Results The AgNPs-EC were spherical with an average size of 150±5.1 nm and a zeta-potential of −41.4±0.98 mV. AgNPs-EC had an inhibitory effect on cytokine mRNA and protein expression levels, which suggests that they could be used safely in the fight against cancer. AgNPs-EC cytotoxicity was also found to be non-toxic to MCF-7. Conclusion Our data determined AgNPs-EC as a novel inhibitor of TNF-α production. These results are promising for developing novel therapeutic approaches for the future treatment of cancer with safe materials.
Collapse
Affiliation(s)
- Ahmed A H Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Buraydah, 51452, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut, 71524, Egypt
| | - Mansour Alsharidah
- Department of Physiology, College of Medicine, Qassim University, Buraydah, 51452, Saudi Arabia
| | - Osamah Al Rugaie
- Department of Basic Medical Sciences, College of Medicine and Medical Sciences, Qassim University, Unaizah, AlQassim, 51911, Saudi Arabia
| | - Hesham M Tawfeek
- Department of Industrial Pharmacy, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt
| | - Nahla Sameh Tolba
- Department of Pharmaceutics, Faculty of Pharmacy, Sadat City University, Sadat City, Egypt
| |
Collapse
|
41
|
Vinay SP, Alharthi FA, Udayabhanu, Alsalme A, Nagaraju G. Hydrothermal synthesis of Ag/rGO@CTFE nanocomposite as a promising photocatalyst for degradation action. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129722] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Guilger-Casagrande M, Germano-Costa T, Bilesky-José N, Pasquoto-Stigliani T, Carvalho L, Fraceto LF, de Lima R. Influence of the capping of biogenic silver nanoparticles on their toxicity and mechanism of action towards Sclerotinia sclerotiorum. J Nanobiotechnology 2021; 19:53. [PMID: 33627148 PMCID: PMC7903788 DOI: 10.1186/s12951-021-00797-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/08/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxicity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic fungus Sclerotinia sclerotiorum. Capping removal, investigation of the composition of the capping and physico-chemical characterization of the capped and uncapped nanoparticles were performed. The effects of the nanoparticles on S. sclerotiorum were evaluated in vitro. Cytotoxicity and genotoxicity of the nanoparticles on different cell lines and its effects on nontarget microorganisms were also investigated. RESULTS The capped and uncapped nanoparticles showed spherical morphology, with greater diameter of the uncapped ones. Functional groups of biomolecules, protein bands and the hydrolytic enzymes NAGase, β-1,3-glucanase, chitinase and acid protease from T. harzianum were detected in the capping. The capped nanoparticles showed great inhibitory potential against S. sclerotiorum, while the uncapped nanoparticles were ineffective. There was no difference in cytotoxicity comparing capped and uncapped nanoparticles, however higher genotoxicity of the uncapped nanoparticles was observed towards the cell lines. Regarding the effects on nontarget microorganisms, in the minimal inhibitory concentration assay only the capped nanoparticles inhibited microorganisms of agricultural importance, while in the molecular analysis of the soil microbiota there were major changes in the soils exposed to the uncapped nanoparticles. CONCLUSIONS The results suggest that the capping played an important role in controlling nanoparticle size and contributed to the biological activity of the nanoparticles against S. sclerotiorum. This study opens perspectives for investigations concerning the application of these nanoparticles for the control of phytopathogens.
Collapse
Affiliation(s)
- Mariana Guilger-Casagrande
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Taís Germano-Costa
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Natália Bilesky-José
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Tatiane Pasquoto-Stigliani
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil
| | - Lucas Carvalho
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Leonardo F Fraceto
- Laboratory of Environmental Nanotechnology, São Paulo State University, Sorocaba, São Paulo, Brazil
| | - Renata de Lima
- Laboratory for Evaluation of the Bioactivity and Toxicology of Nanomaterials, University of Sorocaba, Sorocaba, São Paulo, Brazil.
| |
Collapse
|
43
|
Zaheer Z. Chitosan capped noble metal doped CeO 2 nanomaterial: Synthesis, and their enhanced catalytic activities. Int J Biol Macromol 2020; 166:1258-1271. [PMID: 33157136 DOI: 10.1016/j.ijbiomac.2020.11.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/02/2020] [Indexed: 11/30/2022]
Abstract
Chitosan (Ch) capped Ch-CeO2, Ch-CeO2/Ag, Ch-CeO2/Pd and Ch-CeO2/Ag/Pd nanomaterials were fabricated using seedless and metal displacement plating method. The Ce4+ ions first formed complex with Ch through amino and hydroxyl groups and then reduced in presence of NaOH and molecular oxygen at higher temperature. Ch-Ag+ and Ch-Pd2+ complexes adsorbed on the surface of Ch-CeO2 and reduced under potential deposition. Ninhydrin reaction test was conducted to confirm the presence of chitosan on the surface of NMs. The catalytic efficiency was increases markedly with incorporating noble metal into Ch-CeO2 NMs. Ch-CeO2/Ag/Pd exhibits higher catalytic performance towards hydrogen generation due to the narrow band gap (2.65 eV) and smaller work function of CeO2 (ϕ = 2.8 eV) than that of Ag0(ϕ =4.6 eV) and Pd0 (ϕ = 5.2 eV). Hydrogen generation rates increases with temperature and activation energies were found to be 63.2, 60.3, 56.2 and 53.0 kJ/mol for Ch-CeO2, Ch-CeO2/Ag, Ch-CeO2/Pd, and Ch-CeO2/Ag/Pd, respectively. CeO2/Ag/Pd shows better catalytic efficiency due to the strong interaction between Ag/Pd metal and active support CeO2. The photocatalytic rates drastically inhibited with scavengers, demonstrate that the reactive radical oxygen species (HO and O2-), holes (h+) and electrons (e-) played major role in the NaBH4 hydrolysis.
Collapse
Affiliation(s)
- Zoya Zaheer
- Department of Chemistry, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
44
|
Tharani S, Bharathi D, Ranjithkumar R. Extracellular green synthesis of chitosan-silver nanoparticles using Lactobacillus reuteri for antibacterial applications. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101838] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
45
|
Vijayakumar M, Priya K, Ilavenil S, Janani B, Vedarethinam V, Ramesh T, Arasu MV, Al-Dhabi NA, Kim YO, Kim HJ. Shrimp shells extracted chitin in silver nanoparticle synthesis: Expanding its prophecy towards anticancer activity in human hepatocellular carcinoma HepG2 cells. Int J Biol Macromol 2020; 165:1402-1409. [PMID: 33045301 DOI: 10.1016/j.ijbiomac.2020.10.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/28/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022]
Abstract
In this study, a well-organized, simplistic, and biological route of AgNPs (AgNPs) was synthesized using shrimp shell extracted chitin as reducing, capping and stabilizing factor under the optimized conditions. Also, the anticancer potential of synthesized biogenic AgNPs was evaluated against human hepatocarcinoma (HepG2) cells. Ultraviolet visible spectroscopy (UV-Vis spec) study indicated that the development of AgNPs present in the colloidal solution was single peak at 446 nm. FTIR results showed a strong chemical interaction between the chitin and biogenic AgNPs; whereas, XRD studies confirmed AgNPs presence in the composites. The SEM TEM analytical studies confirmed the synthesized AgNPs had a spherical shape crystalline structure with size ranges from 17 to 49 nm; EDX study also confirmed the percentage of weight and atomic elements available in the colloidal mixture. Furthermore, the synthesized AgNPs showed significant cytotoxic effect on the HepG2 cells with an IC50 value shown at 57 ± 1.5 μg/ml. The apoptotic and necrotic cell death effects of AgNPs were also confirmed by flow cytometry. The upregulated apoptotic related proteins Bax, cytochrome-c, caspase-3, caspase-9, PARP and downregulated anti-apoptotic related proteins Bcl-2 and Bcl-xl in cancer cells, confirmed the anticancer potential of AgNPs. These findings suggest that the AgNPs possess significant anticancer activity against HepG2 cells which could play major role in the therapeutic drug development to treat cancer in future.
Collapse
Affiliation(s)
- Mayakrishnan Vijayakumar
- Department of Nutrition, Dairy Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do 31000, Republic of Korea.
| | - Kannappan Priya
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Affiliated to Bharathiar University, Coimbatore 641014, Tamil Nadu, India
| | - Soundharrajan Ilavenil
- Department of Cell and Molecular Biology, Grassland and Forage Science Division, National Institute of Animal Science, Rural Development Administration, Cheonan-si, Chungcheongnam-do 31000, Republic of Korea
| | - Balakarthikeyan Janani
- Department of Biochemistry, PSG College of Arts and Science (Autonomous), Affiliated to Bharathiar University, Coimbatore 641014, Tamil Nadu, India
| | - Vadanasundari Vedarethinam
- School of Biomedical Engineering, Children's Hospital Shanghai, and Med-X Research Institute, Shanghai Jiao Tong University, Shanghai 200030, People's Republic of China
| | - Thiyagarajan Ramesh
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Young-Ock Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea
| | - Hak-Jae Kim
- Department of Clinical Pharmacology, College of Medicine, Soonchunhyang University, Cheonan, Republic of Korea.
| |
Collapse
|
46
|
Gopu M, Kumar P, Selvankumar T, Senthilkumar B, Sudhakar C, Govarthanan M, Selva Kumar R, Selvam K. Green biomimetic silver nanoparticles utilizing the red algae Amphiroa rigida and its potent antibacterial, cytotoxicity and larvicidal efficiency. Bioprocess Biosyst Eng 2020; 44:217-223. [PMID: 32803487 DOI: 10.1007/s00449-020-02426-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 08/07/2020] [Indexed: 11/29/2022]
Abstract
The present investigation reports a simple, rapid, inexpensive, and eco-friendly approach for synthesizing Amphiroa rigida-mediated silver nanoparticles (AR-AgNPs) for the first time. The biomimetic synthesized AR-AgNPs were characterized by both spectral and microscopic analysis. The UV-visible spectrum showed the surface plasmon peak at 420 nm, which indicated the formation of AR-AgNPs. X-ray diffraction characterization of AR-AgNPs showed a face-centered cubic crystal (25 nm) and the transmission electron microscope micrograph showed spherical shape. The functional group of polysaccharide that plays a major role as a stabilizing and reducing agent is confirmed by Fourier-transform infrared spectroscopy. The biomimetic synthesized AR-AgNPs showed antibacterial activity against Staphylococcus aureus (21 ± 0.2 mm) and Pseudomonas aeruginosa (15 ± 0.2 mm). Further, the cytotoxic effects of AR-AgNPs against MCF-7 human breast cancer cells were observed through acridine orange-ethidium bromide and Hoechst staining. Besides, AR-AgNPs are found to be inhibit the growth of 3rd and 4th instar larvae of Aedes aegypti in a dose-dependent manner.
Collapse
Affiliation(s)
- Mani Gopu
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Ponnuchamy Kumar
- Food Chemistry and Molecular Cancer Biology Laboratory, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Thangasamy Selvankumar
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Balakrishnan Senthilkumar
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, P.O. Box 235, Harar, Ethiopia
| | - Chinnappan Sudhakar
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Rathakrishnan Selva Kumar
- PG and Research Department of Chemistry, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India
| | - Kandasamy Selvam
- PG and Research Department of Biotechnology, Mahendra Arts and Science College (Autonomous), Kalippatti, Namakkal, Tamil Nadu, 637 501, India.
| |
Collapse
|
47
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
48
|
Azeez NA, Saravanan M, Chandar NRK, Vishaal MK, Deepa VS. Enhancing the Aspirin Loading and Release Efficiency of Silver Oxide Nanoparticles Using Oleic Acid‐based Bio‐Surfactant from
Enteromorpha intestinalis
. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5934] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Nazeer Abdul Azeez
- Nano‐Bio Translational Research Laboratory, Department of Biotechnology Bannari Amman Institute of Technology Sathyamangalam Erode Tamil Nadu 638 401 India
| | - Muthupandian Saravanan
- Department of Microbiology and Immunology, Division of Biomedical Sciences, School of Medicine, College of Health Sciences Mekelle University Mekelle 1871 Ethiopia
| | - Nagamuthu Raja Krishna Chandar
- Department of Physics, School of Advanced Sciences Vellore Institute of Technology Vellore 632 014 India
- Institute of Physics, Academia Sinica Taipei Taiwan
| | - Mohan Karthik Vishaal
- Food Technology, Engineering and Nutrition Lund University PO Box 124 Lund SE‐221 00 Sweden
| | | |
Collapse
|
49
|
Bhatti HN, Mahmood Z, Kausar A, Yakout SM, Shair OH, Iqbal M. Biocomposites of polypyrrole, polyaniline and sodium alginate with cellulosic biomass: Adsorption-desorption, kinetics and thermodynamic studies for the removal of 2,4-dichlorophenol. Int J Biol Macromol 2020; 153:146-157. [DOI: 10.1016/j.ijbiomac.2020.02.306] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
|