1
|
Sun B, Sun H, Zhang L, Hu W, Wang X, Brennan CS, Han D, Wu G, Yi Y, Lü X. Characterization and rational engineering of a novel laccase from Geobacillus thermocatenulatus M17 for improved lignin degradation activity. Int J Biol Macromol 2025; 292:138856. [PMID: 39725103 DOI: 10.1016/j.ijbiomac.2024.138856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/11/2024] [Accepted: 12/15/2024] [Indexed: 12/28/2024]
Abstract
Lignin, with its complex, high-molecular-weight aromatic polymer structure and stable ether or ester bonds, greatly impedes the efficient degradation of lignocellulosic waste. Bacterial laccases have gained attention for their potential in lignocellulosic waste degradation due to their resilience in extreme conditions and ability to be produced in large quantities. In this study, a novel laccase from Geobacillus thermocatenulatus M17 was identified and expressed in E. coli BL21 (DE3). The enzymatic properties of this M17 laccase, including its tolerance to pH, temperature, metal ions, inhibitors, and organic solvents, were thoroughly investigated. The M17 laccase demonstrated optimal activity at pH 3-6 and at temperatures of 50-60 °C, with Co2+ enhancing its activity over Cu2+, and exhibited strong resistance to organic solvents. Further optimization through mutagenesis led to the engineered D217K variant. The efficiency of the engineered laccase was validated with alkali lignin and various sources of plant biomass. The degradation rate of D217K variant for alkali lignin increased significantly, rising from 66.33 % to 83.27 %. Additionally, for high-lignin-content biomass, the degradation rates improved as follows: wheat stover increased from 7.63 % to 10.29 %, switchgrass from 6.02 % to 7.00 %, and corn stalk from 4.51 % to 6.59 %. In conclusion, this study identified a new bacterial laccase and further enhanced its activity through rational engineering, suggesting its promising application in plant biomass degradation.
Collapse
Affiliation(s)
- Bohan Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Huimin Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Leshan Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Wei Hu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China
| | - Charles S Brennan
- STEM College, Royal Melbourne Institute of Technology University, Melbourne, Australia
| | - Dandan Han
- Shaanxi Yiruikang Biotechnology Co., LTD, Xianyang 712023, Shaanxi Province, China
| | - Gang Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Yanglei Yi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi Province, China.
| |
Collapse
|
2
|
Anjar R, Mahadev M, Charyulu RN, Badalamoole V. Development of a novel polyelectrolyte complex nanocomposite of modified chitosan and karaya gum for co-delivery of 5-fluorouracil and curcumin for cancer therapy. J Mater Chem B 2025. [PMID: 39967374 DOI: 10.1039/d4tb02354d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025]
Abstract
Combination chemotherapy is a relatively recent and preferred method for cancer treatment. Sustained delivery of dual drugs can be achieved with a suitable matrix. In the present work, a pH-responsive polyelectrolyte complex (PEC) of trimethylchitosan and carboxymethylkaraya gum containing silver nanoparticles (SNps) has been developed as a matrix material for co-delivery of the drugs, 5-fluorouracil (5-Fu) and curcumin (Cur). The experimental conditions have been optimized for high yield and high swelling of the PEC nanocomposite. 1H-NMR, FT-IR, FE-SEM, P-XRD, HR-TEM, EDS, TGA techniques and zeta potential measurements have been employed in the physico-chemical characterization of the nanocomposite material. The presence of SNps with an average diameter of 16.57 ± 1.25 nm influenced the surface structure and hydrophilicity of the PEC. The swelling study indicated higher swelling at pH 7.4 than at pH 1.2. The two drugs, 5-Fu and Cur, were successfully entrapped and released from the nanocomposite in a sustained manner. Cytotoxicity studies performed with the MCF-10A cell line confirmed the biocompatibility of the nanocomposite and those with the MCF-7 cell line indicated the synergistic effect of the dual drugs in controlling cancer cell growth. The overall study indicates the usefulness of the PEC nanocomposite made from modified polysaccharides, chitosan and karaya gum as a promising material for the development of a dual drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Rakshitha Anjar
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India.
| | - Manohar Mahadev
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri-574199, Karnataka, India.
| |
Collapse
|
3
|
Hu X, Yan L, Zhang M. UV-radiation manufacturing of natural macromolecular products salecan and tannic acid-based functional gel material as superadsorbent for toluidine blue remediation. Int J Biol Macromol 2024; 280:135881. [PMID: 39321518 DOI: 10.1016/j.ijbiomac.2024.135881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/07/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Adsorbent materials constructed from natural macromolecular products are favored because of their wide range of sources, biodegradability, and environmental friendliness. Salecan is a novel extracellular polysaccharide with ideal physicochemical and biological activities. Here, we have designed a polymer gel through UV-initiated polymerization of [2-(Methacryloyloxy) ethyl] dimethyl-(3-sulfopropyl) ammonium hydroxide (SBMA) in the mixture of salecan and tannic acid. Photopatterned polymerization process allowed in situ formation of gel adsorbent in a mild reaction condition with energy-efficient manner. Batch experiments for toluidine blue (TB) adsorption were carried out as a function of initial dye concentration, solution pH, contact time, and gel dosage to examine the adsorption capacity, potential mechanism, and removal efficiency. Adsorption behavior exhibited a pH-dependence pattern, which was closely related to their swelling and morphological properties. Adsorption process was in conformity to pseudo-second-order kinetic and Langmuir isotherm models, unlocking a chemical adsorption behavior and monolayer-type removal. The maximum adsorption was 490.2 mg/g, which could be considered a superiorly competing value. Additionally, the UV-gel still showed desirable recyclability and maintained the adsorption effectiveness over 95 % after five regeneration cycles. This study opened up new prospects in preparing high performance adsorbent for TB decontamination and laid the foundation for polysaccharide-based adsorption material research.
Collapse
Affiliation(s)
- Xinyu Hu
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China.
| | - Linlin Yan
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China
| | - Meng Zhang
- Institute of Chemical Industry of Forest Products, CAF, Key Lab. of Biomass Energy and Material, Jiangsu Province, National Engineering Research Center of Low-Carbon Processing and Utilization of Forest Biomass, Key Lab. of Chemical Engineering of Forest Products, National Forestry and Grassland Administration, Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing 210042, China; Jiangsu Key Laboratory for Bioresources of Saline Soils, School of Wetlands, Yancheng Teachers University, Yancheng 224002, China
| |
Collapse
|
4
|
Luanda A, Mahadev M, Charyulu RN, Badalamoole V. Locust bean gum-based silver nanocomposite hydrogel as a drug delivery system and an antibacterial agent. Int J Biol Macromol 2024; 282:137097. [PMID: 39486698 DOI: 10.1016/j.ijbiomac.2024.137097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/04/2024]
Abstract
Effective drug release is of utmost importance in the medical field for treating various diseases, particularly cancer. Nanocomposite hydrogels remain the best materials for enhancing the bioavailability and therapeutic levels of drugs as they enable sustained, targeted, or controlled drug release. In this work, a nanocomposite hydrogel containing locust bean gum (LBG), poly(4-acryloylmorpholine) (PAcM), and silver nanoparticles (SN) has been made using an eco-friendly microwave (MW)-assisted method and characterized by various advanced techniques. The material is evaluated for its potential as a polymer matrix towards delivering 5-fluorouracil (5-FU), an anticancer drug in the gastrointestinal tract, and inhibiting bacterial growth. The pH-dependency of the nanocomposite material towards swelling and drug release and its antibacterial characteristics have been compared with the neat gel in order to understand the role of SN in enhancing the performance of the materials. The results indicated both polymer materials exhibit a pH-dependent release of 5-FU with a higher release at pH 1.2, simulated gastric fluid, than at pH 7.4, simulated intestinal fluid. About 72 % of the loaded drug was released from the nanocomposite, as compared to 44 % from the neat gel at pH 1.2 during the observation period of 3 h. The drug release process could be best explained by the first-order kinetic model and Fickian diffusion transport mechanism. The nanocomposite exhibited remarkable antibacterial activity against Staphylococcus aureus and Escherichia coli. The biocompatibility of the drug-loaded nanocomposite was demonstrated by a cytotoxicity study, which showed higher than 80 % viability of healthy IEC-6 cells. The results indicate the suitability of the developed nanocomposite material as a polymer matrix for sustained release of 5-FU for cancer therapy and also as an antibacterial agent to fight against bacterial infections.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - Manohar Mahadev
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri, 574199, (DK), Karnataka, India.
| |
Collapse
|
5
|
Abid Mustafa M, Rashid Hussain H, Akbar Khan J, Ahmad N, Bashir S, Asad M, Saeed Shah H, Ali Khan A, Malik A, Fatima S, Mehmood Yousaf A, Nazir I. Development and In Vitro Characterization of Azadirachta Indica Gum Grafted Polyacrylamide Based pH-Sensitive Hydrogels to Improve the Bioavailability of Lansoprazole. Chem Biodivers 2024:e202401434. [PMID: 39404191 DOI: 10.1002/cbdv.202401434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 10/14/2024] [Indexed: 11/14/2024]
Abstract
The present study intended to develop a pH-responsive hydrogel based on Neem gum (Ng) to improve Lansoprazole (LSP) oral bioavailability. Azadirachta Indica seed extract was used to obtain Ng. pH-responsive hydrogel formulations (F1-F9) were prepared using different Ng ratios, Acrylamide (AAm), and methylene-bis-acrylamide (MBA). The formulated hydrogels were characterized through FTIR, thermal analysis, swelling ratio, SEM, sol-gel ratios, In-Vitro drug release, and cytotoxicity analysis. Azadirachta Indica was extracted to produce a powder containing 21.5 % Ng. Prepared hydrogels showed maximum swelling at pH 7.4, whereas the swelling at an acidic pH was insignificant. LSP-loaded hydrogel demonstrated a regulated release of LSP for up to 24 h and indicated a Super Case II transport release mechanism. During the cytotoxic evaluation, the delivery system showed minimal cytotoxicity towards normal cells, while percent cytotoxicity was carried out for a longer duration (up to 96 h). The present study revealed Azadirachta indica gum-based pH-responsive hydrogel as a promising technique for precisely delivering LSP.
Collapse
Affiliation(s)
- Muhammad Abid Mustafa
- Department of Pharmaceutics, Faculty of Pharmaceutical Sciences, Lahore University of Biological & Applied Sciences, Lahore, 54000, Pakistan
| | | | - Jawad Akbar Khan
- Center of Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Wahringerstrasse 13a, A-1090, Vienna, Austria
| | - Nadeem Ahmad
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Sajid Bashir
- Lords College of Pharmacy, Lahore, 54000, Pakistan
| | | | - Hamid Saeed Shah
- Institute of Pharmaceutical Sciences, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Abdul Malik
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sabiha Fatima
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, King Saud University, Riyadh, 12371, Saudi Arabia
| | - Abid Mehmood Yousaf
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| | - Imran Nazir
- Department of Pharmacy, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan
| |
Collapse
|
6
|
Shruthi S, Vishalakshi B. Development of Banana Pseudostem Supported Polymeric Adsorbent for Effective Removal of Cationic Dyes from Wastewater. FIBERS AND POLYMERS 2024; 25:2935-2951. [DOI: 10.1007/s12221-024-00608-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 06/12/2024] [Accepted: 06/18/2024] [Indexed: 01/06/2025]
|
7
|
Chauhan H, Ansari K, Alam MS, Tanweer MS, Ahmedi S, Manzoor N, Alam M. Enhancing environmental sustainability: Butea monosperma leaves as a key component in WO 3-based composites for water purification and therapeutic applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47378-47393. [PMID: 39002083 DOI: 10.1007/s11356-024-34336-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
In this research, a novel nano-biocomposite material, namely, tungsten trioxide-Butea monosperma leaf powder (WO3@BLP), is an effective and eco-friendly adsorbent used for the mitigation of congo red (CR) and crystal violet (CV) dyes from its aqueous phase. The as-prepared WO3@BLP was characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), DLS analysis, and TGA. Many factors such as solution pH, WO3@BLP dose, temperature, contact time, and initial CR/CV dye concentrations were exploited to monitor the adsorption efficiency of WO3@BLP composites. The biosorption of both CR and CV dyes followed the Langmuir isotherm, with maximum adsorption capacities (qmax) reaching 84.91 mg g-1 for CR at pH 2.3 and 162.75 mg g-1 for CV at pH 8, fitting of kinetics data to the PSO model with closed values of qeexp (mg g-1) and qecal (mg g-1), i.e., 25.69 to 25.38 mg g-1 for CR dye and 29.06 to 29.08 mg g-1 for CV dye. The interaction mechanism behind the adsorption of CR and CV dyes onto the WO3@BLP bionanocomposite includes electrostatic interaction and surface complexation. The synthesized materials were tested for antifungal activity against three different Candida cells, i.e., C. albicans ATCC 90028, C. glabrata ATCC 90030, and C. tropicalis ATCC 750, by using broth dilution method on the minimum inhibiting concentration (MIC). Furthermore, the cytotoxicity of nano-formulated WO3@BLP was studied by in vitro hemolytic assay on a human host. Overall, this research presents a pioneering nano-biocomposite, WO3@BLP, as a sustainable adsorbent for CR and CV dye removal, adhering to Langmuir isotherm and pseudo-second-order kinetics. Its multifaceted approach includes elucidating interaction mechanisms, demonstrating antifungal activity, and assessing cytotoxicity, marking a significant advancement in environmental remediation.
Collapse
Affiliation(s)
- Harshvardhan Chauhan
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India
| | - Khalid Ansari
- Department of Applied Chemistry, Faculty of Engineering & Technology, Aligarh Muslim University, Aligarh, UP, 202002, India
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, 826004, India
| | - Md Shahid Alam
- Department of Biosciences and Bioengineering, IIT Roorkee, Roorkee, Pin, 247667, India
| | - Mohd Saquib Tanweer
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India.
| | - Saiema Ahmedi
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Nikhat Manzoor
- Medical Mycology Lab, Department of Biosciences, Jamia Millia Islamia, New Delhi, 110025, India
| | - Masood Alam
- Environmental Science Research Lab, Department of Applied Sciences & Humanities, Faculty of Engineering & Technology, Jamia Millia Islamia, New Delhi, 110025, India
| |
Collapse
|
8
|
Luanda A, Manohar M, Charyulu RN, Badalamoole V. Evaluation of drug release efficiency and antibacterial property of a pH-responsive dextran-based silver nanocomposite hydrogel. Int J Biol Macromol 2024; 268:131783. [PMID: 38657933 DOI: 10.1016/j.ijbiomac.2024.131783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/21/2024] [Indexed: 04/26/2024]
Abstract
The bioavailability of curcumin (CUR), a highly lipophilic and commonly used anticancer drug, is mainly affected by its poor solubility in aqueous environment and quick metabolism. These challenges can be met by employing delivery systems. Nanocomposite materials have been used as delivery systems to enhance the solubility and dissolution rate of the drug. This study aims to develop dextran-graft-poly(4-acryloylmorpholine) silver nanocomposite using a microwave-assisted method to evaluate its drug-release efficiency and antimicrobial activity. The materials were characterized by FT-IR, FE-SEM, EDS, XRD, HR-TEM, TGA, and BET techniques. Drug loading and release efficiency were evaluated using CUR as the model drug. The swelling and drug release studies were conducted in buffer solutions of pH 1.2 and 7.4. Staphylococcus aureus and Escherichia coli were employed to evaluate the antibacterial activity. The cytotoxicity was assessed by MTT assay against the breast MCF-10. Higher swelling and drug release were observed at pH 1.2 than 7.4. Nanocomposite hydrogel exhibited antibacterial activity against the tested bacterial strains. Cytotoxicity study proved the safety of the developed matrix. The results suggest the developed nanocomposite hydrogel to be a promising polymer matrix for the sustained release of CUR for cancer treatment that requires infectious control.
Collapse
Affiliation(s)
- Amos Luanda
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India; Department of Chemistry, College of Natural and Mathematical Sciences, University of Dodoma, P.O. Box 338, Dodoma, Tanzania
| | - M Manohar
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Rompicherla Narayana Charyulu
- Department of Pharmaceutics, NGSM Institute of Pharmaceutical Sciences, Nitte (Deemed to be University), Deralakatte, Mangalore 575018, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies & Research in Chemistry, Mangalore University, Mangalagangothri 574199 (DK), Karnataka, India.
| |
Collapse
|
9
|
Kumari A, Singh B. Functionalization of sterculia gum for making platform hydrogels via network formation for use in drug delivery. Int J Biol Macromol 2024; 264:130814. [PMID: 38479664 DOI: 10.1016/j.ijbiomac.2024.130814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/09/2024] [Accepted: 03/10/2024] [Indexed: 03/17/2024]
Abstract
Recently, various advancements have been made in the development of functional polymeric materials for innovative applications. Herein this work, functionalization of sterculia gum (SG) was carried out via grafting of poly(2-(methacryloyloxy) ethyltrimethylammonium chloride) (METAC)-polyvinyl pyrrolidone (PVP) to develop hydrogel dressings as a platform for use in drug delivery (DD). The innovation of the present work is the exploration of inherent antioxidant and antimicrobial properties of the SG along with antimicrobial characteristic of poly(METAC) and PVP, to design the doxycycline encapsulated hydrogel dressings for better wound healing. FESEM, EDS and AFM analyzed the surface morphology of hydrogels. FTIR, 13C NMR and XRD inferred inclusion of poly(METAC)-PVP into polymers. 13C NMR confirmed the incorporation of poly(METAC) and PVP onto gum by the presence of a peak at 54.74 ppm because of methyl carbon attached to quaternary nitrogen of poly(METAC) and at 45.48 ppm due to the ring carbon of PVP along with FTIR peak at 949 cm-1 because of CN bending of quaternary nitrogen of poy (METAC). Thermal characterization of copolymers has been performed using TGA analysis. One gram of copolymeric hydrogel dressing absorbed 6.51 ± 0.03 g simulated salivary fluid (SSF) and 7.65 ± 0.03 g simulated wound fluid (SWF). Release of doxycycline drug occurred in a sustained manner and followed the Non-Fickian diffusion mechanism from hydrogels. The release profile was most effectively described by Hixon-Crowell kinetic model. Hydrogel demonstrated biocompatibility and expressed thrombogenicity 79.7 ± 4.9 % during its polymer-blood interactions. Copolymer revealed mucoadhesive property, requiring a force of 77.00 ± 0.01 mN to detach from bio-membrane. Additionally, it exhibited antioxidant features, showing 43.81 ± 0.286 % free radical scavenging. Hydrogel dressings were mechanically stable and revealed 0.76 ± 0.09 N mm-2 tensile strength and 9.18 ± 0.01 N burst strength. Polymer films were permeable to oxygen and water vapor and were impermeable to microorganisms. Hydrogel dressings exhibited antimicrobial properties against Pseudomonas aeruginosa and Staphylococcus aureus bacteria. Overall, these properties displayed the suitability of hydrogels for wound dressing (WD) applications which may actively enhance wound healing.
Collapse
Affiliation(s)
- Ankita Kumari
- Department of Chemistry, Himachal Pradesh University, Shimla-171005, India
| | - Baljit Singh
- Department of Chemistry, Himachal Pradesh University, Shimla-171005, India.
| |
Collapse
|
10
|
Thamer BM, Al-aizari FA, Abdo HS. Activated Carbon-Incorporated Tragacanth Gum Hydrogel Biocomposite: A Promising Adsorbent for Crystal Violet Dye Removal from Aqueous Solutions. Gels 2023; 9:959. [PMID: 38131945 PMCID: PMC10743021 DOI: 10.3390/gels9120959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Biomaterials-based adsorbents have emerged as a sustainable and promising solution for water purification, owing to their eco-friendly nature and remarkable adsorption capacities. In this study, a biocomposite hydrogel was prepared by the incorporation of activated carbon derived from pomegranate peels (PPAC) in tragacanth gum (TG). The hydrogel biocomposite (PPAC/TG) showed a porous structure, a negative surface charge at a pH of more than 4.9, and good stability in aqueous media. The adsorption properties of the PPAC/TG hydrogel biocomposite were assessed for the removal of crystal violet dye (CV) from aqueous solutions using a batch adsorption. The equilibrium adsorption data followed the Sips isotherm model, as supported by the calculated R2 (>0.99), r-χ2 (<64), and standard error values (<16). According to the Sips model, the maximum values of the adsorption capacity of PPAC/TG were 455.61, 470.86, and 477.37 mg/g at temperatures of 25, 30, and 35 °C, respectively. The adsorption kinetic of CV onto the PPAC/TG hydrogel biocomposite was well described by the pseudo-second-order model with R2 values more than 0.999 and r-χ2 values less than 12. Thermodynamic studies confirmed that the CV dye adsorption was spontaneous and endothermic. Furthermore, the prepared hydrogel exhibited excellent reusability, retaining its adsorption capacity even after being used more than five times. Overall, this study concludes that the prepared PPAC/TG exhibited a significant adsorption capacity for cationic dyes, indicating its potential as an effective and eco-friendly adsorbent for water treatment.
Collapse
Affiliation(s)
- Badr M. Thamer
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Faiz A. Al-aizari
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Hany S. Abdo
- Department of Mechanical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia;
| |
Collapse
|
11
|
Wu Y, Parandoust A, Sheibani R, Kargaran F, Khorsandi Z, Liang Y, Xia C, Van Le Q. Advances in gum-based hydrogels and their environmental applications. Carbohydr Polym 2023; 318:121102. [PMID: 37479451 DOI: 10.1016/j.carbpol.2023.121102] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 07/23/2023]
Abstract
Gum-based hydrogels (GBHs) have been widely employed in diverse water purification processes due to their environmental properties, and high absorption capacity. More desired properties of GBHs such as biodegradability, biocompatibility, material cost, simplicity of manufacture, and wide range of uses have converted them into promising materials in water treatment processes. In this review, we explored the application of GBHs to remove pollutants from contaminated waters. Water resources are constantly being contaminated by a variety of harmful effluents such as heavy metals, dyes, and other dangerous substances. A practical way to remove chemical waste from water as a vital component is surface adsorption. Currently, hydrogels, three-dimensional polymeric networks, are quite popular for adsorption. They have more extensive uses in several industries, including biomedicine, water purification, agriculture, sanitary products, and biosensors. This review will help the researcher to understand the research gaps and drawbacks in this field, which will lead to further developments in the future.
Collapse
Affiliation(s)
- Yingji Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Ahmad Parandoust
- Farabi Educational Institute, Moghadas Ardebili St., Mahmoodiye St., No 13, 1986743413 Tehran, Iran
| | - Reza Sheibani
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran.
| | - Farshad Kargaran
- Department of Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Zahra Khorsandi
- Amirkabir University of Technology-Mahshahr Campus, University St., Nahiyeh san'ati, Mahshahr, Khouzestan, Iran
| | - Yunyi Liang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| | - Quyet Van Le
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
12
|
Ahmaruzzaman M, Roy P, Bonilla-Petriciolet A, Badawi M, Ganachari SV, Shetti NP, Aminabhavi TM. Polymeric hydrogels-based materials for wastewater treatment. CHEMOSPHERE 2023; 331:138743. [PMID: 37105310 DOI: 10.1016/j.chemosphere.2023.138743] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/19/2023]
Abstract
Low-cost and reliable wastewater treatment is a relevant issue worldwide to reduce the concentration of environmental pollutants. Industrial effluents containing dyes, heavy metals, and other inorganic and organic compounds can pollute water resources; therefore, novel technologies are required to mitigate and control their release into the environment. Adsorption is one of the simplest methods for treating contaminated water in which a wide spectrum of adsorbents can be used to remove emerging compounds. Hydrogels are interesting materials with high adsorption capacities that can be synthesized via green routes. These adsorbents are promising for large-scale industrial wastewater treatment applications; however, gaps still exist in achieving sustainable commercial implementation. This review focuses on the discussion and analysis of preparation, characterization, and adsorption properties of hydrogels for water purification. The advantages of these polymeric materials for water treatment were analyzed, including their performance in the removal of different organic and inorganic contaminants. Recent advances in the functionalization of hydrogels and the synthesis of novel composites have also been described. The adsorption capacities of hydrogel-based adsorbents are higher than 500 mg/g for different organic and inorganic pollutants, and can reach values of up to >2000 mg/g for organic compounds, significantly outperforming other materials reported for water cleaning. The main interactions involved in the adsorption of water pollutants using hydrogel-based adsorbents were described and explained to allow the interpretation of their removal mechanisms. The current challenges in the implementation of hydrogels for water purification in real-life operations are also highlighted. This review provides an updated picture of hydrogels as interesting materials to address water depollution worldwide.
Collapse
Affiliation(s)
- Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India.
| | - Prerona Roy
- Department of Chemistry, National Institute of Technology Silchar, 788010, Assam, India
| | | | - Michael Badawi
- Laboratoire de Physique et Chimie Théoriques UMR CNRS 7019, Université de Lorraine, Nancy, France
| | - Sharanabasava V Ganachari
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi, 580 031, India.
| |
Collapse
|
13
|
Li L, Liu X, Duan T, Xu F, Abdulkhani A, Zhang X. Construction of Cu-N coordination into natural biopolymer lignin backbone for highly efficient and selective removal of cationic dyes. BIORESOURCE TECHNOLOGY 2023; 376:128841. [PMID: 36898563 DOI: 10.1016/j.biortech.2023.128841] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 06/18/2023]
Abstract
Here, a Cu2+-doped lignin-based adsorbent (Cu-AL) was fabricated via the amination and Cu2+-doping of industrial alkali lignin for massive and selective adsorption of cationic dyes azure B (AB) and saffron T (ST). The Cu-N coordination structures endowed Cu-AL with stronger electronegativity and higher dispersity. Through the electrostatic attraction, π-π interaction, H-bonding, and Cu2+ coordination, the adsorption capacities of AB and ST reached up to 1168 and 1420 mg g-1, respectively. The pseudo-second-order model and Langmuir isotherm model were more relevant to the AB and ST adsorption on Cu-AL. Based on the thermodynamic study, the adsorption progresses were endothermic, spontaneous, and feasible. The Cu-AL maintained high removal efficiency to dyes after 4 reuses (>80%). Importantly, the Cu-AL could efficiently remove and separate AB and ST from dye mixtures even in real time. All the above characteristics demonstrated that Cu-AL was an excellent adsorbent for fast wastewater treatment.
Collapse
Affiliation(s)
- Lijun Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xin Liu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Tong Duan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ali Abdulkhani
- Department of Wood and Paper Science and Technology, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Haq F, Kiran M, Chinnam S, Farid A, Khan RU, Ullah G, Aljuwayid AM, Habila MA, Mubashir M. Synthesis of bioinspired sorbent and their exploitation for methylene blue remediation. CHEMOSPHERE 2023; 321:138000. [PMID: 36724851 DOI: 10.1016/j.chemosphere.2023.138000] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/08/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
In this research article, novel starch phosphate grafted polyvinyl imidazole (StP-g-PIMDZs) was synthesized. Firstly, a phosphate group was attached to starch polymer via a phosphorylation reaction. Next, 1-vinyl imidazole (VIMDZ) was grafted on the backbone of starch phosphate (StP) through a free radical polymerization reaction. The synthesis of these modified starches was confirmed by 1H NMR, 31P NMR and FT-IR techniques. The grafting of vinyl imidazole onto StP diminished the crystallinity. Due to the insertion of the aromatic imidazole ring, the StP-g-PIMDZs demonstrated greater thermal stability. The StP and StP-g-PIMDZs were used as sorbents for the adsorption of methylene blue dye (MBD) from the model solution. The maximum removal percentage for starch, StP, StP-g-PIMDZ 1, StP-g-PIMDZ 2 and StP-g-PIMDZ 3 was found to be 60.6%, 66.7%, 74.2%, 85.3 and 95.4%, respectively. The Pseudo second order kinetic model and Langmuir adsorption isotherm were best suited to the experimental data with R2 = 0.999 and 0.99, respectively. Additionally, the thermodynamic parameters showed that the adsorption process was feasible, spontaneous, endothermic and favored chemi-sorption mechanism.
Collapse
Affiliation(s)
- Fazal Haq
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Mehwish Kiran
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan
| | - Sampath Chinnam
- Department of Chemistry, M.S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru, Karnataka, 560054, India
| | - Arshad Farid
- Gomal Center of Biochemistry and Biotechnology, Gomal University, D.I.Khan, 29050, Pakistan.
| | - Rizwan Ullah Khan
- Institute of Chemical Sciences, Gomal University, D.I.Khan, 29050, Pakistan
| | - Ghazanfar Ullah
- Faculty of Agriculture, Gomal University, D.I.Khan, 29050, Pakistan; Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44, Leuven, 3001, Belgium
| | - Ahmed Muteb Aljuwayid
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A Habila
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Muhammad Mubashir
- Department of Petroleum Engineering, School of Engineering, Asia Pacific University of Technology and Innovation, 57000, Kuala Lumpur, Malaysia.
| |
Collapse
|
15
|
İlktaç R. Rapid removal of crystal violet and methylene blue from aqueous solutions using chamotte clay. MONATSHEFTE FUR CHEMIE 2023. [DOI: 10.1007/s00706-023-03044-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
16
|
Zhu B, Wang L, Li G, Jin Q. Composites of Layered Double Hydroxides and ANA-Type Zeolite Synthesized from Hazardous Secondary Aluminum Dross for Cationic Dye Wastewater Treatment. Processes (Basel) 2023. [DOI: 10.3390/pr11041002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
Abstract
This work first transformed hazardous aluminum waste into low-cost MgAl−layered double hydroxide@ANA zeolite (LDHs@ANA) composite for dye wastewater adsorption, which was meaningful for waste recovery and pollution control. Based on this strategy, the Al(OH)3 extracted from secondary aluminum dross (a hazardous waste in the aluminum industry) was used as an aluminum source to synthesize LDHs@ANA composite, which had more excellent adsorption capacity to methylene blue than MgAl−LDHs and ANA alone. The composite consisted of spherical ANA particles uniformly covered with LDH nanosheets, which effectively avoided a large amount of aggregation between nanosheets and increased specific surface areas and pore volumes. The kinetic results indicated that the adsorption process conformed to the pseudo-second-order kinetic model, and the adsorption site was the main factor affecting the adsorption process. The equilibrium studies showed the adsorption process was exothermic, and the Langmuir model best fitted for the adsorption process, with a maximum adsorption capacity reaching 65.27 mg/g. Meanwhile, the effects of pH, adsorbent concentration, initial methylene blue concentration, and adsorption time on the LDHs@ANA were analyzed. Overall, this work provides a fresh concept for the preparation of low-cost adsorbents from aluminum waste.
Collapse
|
17
|
A review on remediation of dye adulterated system by ecologically innocuous "biopolymers/natural gums-based composites". Int J Biol Macromol 2023; 231:123240. [PMID: 36639083 DOI: 10.1016/j.ijbiomac.2023.123240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023]
Abstract
The mitigation of wastewater exploiting biopolymers/natural gums-based composites is an appealing research theme in today's scenario. The following review presents a comprehensive description of the polysaccharides derived from biopolymers (chitosan, collagen, cellulose, starch, pectin, lignin, and alginate) and natural gums (guar, gellan, carrageenan, karaya, moringa oliefera, tragacanth, and xanthan gum). These biopolymers/natural gums-based composites depicted excellent surface functionality, non-toxicity, economic and environmental viability, which corroborated them as potential candidates in the decontamination process. The presence of -OH, -COOH, and -NH functional groups in their backbone rendered them tailorable for modification/functionalization, and anchor an array of pollutants via electrostatic interaction, hydrogen bonding, and Van der Waals forces. Further, due to these functional moieties, these bio-based composites revealed an excellent adsorption capacity than conventional adsorbents. This review provides an overview of the classification of biopolymers/natural gums based on their origin, different ways of their modification, and the remediation of dye-contaminated aqueous environments employing diverse bio-based adsorbents. The isotherm, kinetic modelling along with thermodynamics of the adsorption process is discussed. Additionally, the reusable efficacy of these bio-adsorbents is reviewed.
Collapse
|
18
|
Pandey S, Makhado E, Kim S, Kang M. Recent developments of polysaccharide based superabsorbent nanocomposite for organic dye contamination removal from wastewater - A review. ENVIRONMENTAL RESEARCH 2023; 217:114909. [PMID: 36455632 DOI: 10.1016/j.envres.2022.114909] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
One of the main problems with water pollution is dye contamination of rivers, industrial effluents, and water sources. It has endangered the world's sources of drinking water. Several remediation strategies have been carefully developed and tested to minimize this ominous picture. Due to their appealing practical and financial benefits, adsorption methods in particular are often listed as one of the most popular solutions to remediate dye-contaminated water. Biopolymer-based hydrogel nanocomposites are a cutting-edge class of materials with a wide range of applications that are effective in removing organic dyes from the environment. Since the incorporation of various materials into hydrogel matrices generated composite materials with distinct characteristics, these unique materials were often alluded to as ideal adsorbents. The fundamental emphasis of the conceptual and critical review of the literature in this research is the significant potential of hydrogel nanocomposites (HNCs) to remediate dye-contaminated water (especially for articles from the previous five years). The review also provides knowledge for the development of biopolymer-based HNCs, prospects, and opportunities for future research. It is also focused on optimum conditions for dye adsorption processes along with their adsorption kinetics and isotherm models. In summary, the information gained in this review research may contribute to a strengthened scientific rationale for the practical and efficient application of these novel adsorbent materials.
Collapse
Affiliation(s)
- Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Edwin Makhado
- Department of Chemistry, School of Physical and Mineral Sciences, University of Limpopo, Sovenga, 0727, Polokwane, South Africa
| | - Sujeong Kim
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
19
|
Ge H, Ding K, Guo F, Wu X, Zhai N, Wang W. Green and Superior Adsorbents Derived from Natural Plant Gums for Removal of Contaminants: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:179. [PMID: 36614516 PMCID: PMC9821582 DOI: 10.3390/ma16010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, "green development" has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ke Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xianli Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Naihua Zhai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
20
|
Faizal ANM, Putra NR, Zaini MAA. Insight into the adsorptive mechanisms of methyl violet and reactive orange from water—a short review. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2022.2140462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Azrul Nurfaiz Mohd Faizal
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Nicky Rahmana Putra
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| | - Muhammad Abbas Ahmad Zaini
- Centre of Lipids Engineering and Applied Research (CLEAR), Ibnu–Sina Institute for Scientific and Industrial Research, Universiti Teknologi Malaysia, Bahru, Malaysia
- Faculty of Engineering, School of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Bahru, Malaysia
| |
Collapse
|
21
|
Advances in the role of natural gums-based hydrogels in water purification, desalination and atmospheric-water harvesting. Int J Biol Macromol 2022; 222:2888-2921. [DOI: 10.1016/j.ijbiomac.2022.10.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 09/01/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022]
|
22
|
Negarestani M, Mollahosseini A, Farimaniraad H, Ghiasinejad H, Shayesteh H, Kheradmand A. Efficient removal of non-steroidal anti-inflammatory ibuprofen by polypyrrole-functionalized magnetic zeolite from aqueous solution: kinetic, equilibrium, and thermodynamic studies. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2123743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Mehrdad Negarestani
- Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Afsaneh Mollahosseini
- Research Laboratory of Spectroscopy & Micro and Nano Extraction, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Hamidreza Farimaniraad
- Department of Environmental Engineering, Graduate Faculty of Environment, University of Tehran, Tehran, Iran
| | - Hossein Ghiasinejad
- Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Hadi Shayesteh
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| | - Asiyeh Kheradmand
- Department of Civil and Environmental Engineering, Iran University of Science and Technology (IUST), Tehran, Iran
| |
Collapse
|
23
|
Recent Progress on Modified Gum Katira Polysaccharides and Their Various Potential Applications. Polymers (Basel) 2022; 14:polym14173648. [PMID: 36080723 PMCID: PMC9460252 DOI: 10.3390/polym14173648] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Gum katira polysaccharide is biocompatible and non-toxic, and has antioxidant, anti-microbial, and immunomodulatory properties. It is a natural polysaccharide and exudate derived from the stem bark of Cochlospermum reliogosum Linn. Additionally, it has many traditional medicinal uses as a sedative and for the treatment of jaundice, gonorrhea, syphilis, and stomach ailments. This article provides an overview of gum katira, including its extraction, separation, purification, and physiochemical properties and details of its characterization and pharmacognostic features. This paper takes an in-depth look at the synthetic methods used to modify gum katira, such as carboxymethylation and grafting triggered by free radicals. Furthermore, this review provides an overview of its industrial and phytopharmacological applications for drug delivery and heavy metal and dye removal, its biological activities, its use in food, and the potential use of gum katira derivatives and their industrial applications. We believe researchers will find this paper useful for developing techniques to modify gum katira polysaccharides to meet future demands.
Collapse
|
24
|
Hossain MA, Mondol MMH, Jhung SH. Functionalized metal-organic framework-derived carbon: Effective adsorbent to eliminate methylene blue, a small cationic dye from water. CHEMOSPHERE 2022; 303:134890. [PMID: 35568216 DOI: 10.1016/j.chemosphere.2022.134890] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Elimination of organic dyes from wastewater is very important for our safe environment and sound health. In this work, adsorptive removal of cationic dyes, especially small ones, was investigated with carbonaceous materials to develop a competitive adsorption technology. To improve the performance of metal-organic framework (MOF)-derived carbons (MDCs) in dye adsorption, an MDC, derived from a MOF (MAF-6), was oxidatively functionalized with ammonium persulfate solutions (APSs). Although the porosity of pristine MDC decreased with functionalization via oxidation, functionalized MDCs (FMDCs), especially FMDC(1.0) that was obtained via treating MDC with APS (1.0 M), showed remarkable performances in the adsorption of small cationic dyes like methylene blue (MB) and azure B. For example, FMDC(1.0) had the maximum adsorption capacity (Qo) of 625.0 mg/g (for MB) which is larger than any reported value with carbonaceous materials. Moreover, the obtained Qo was around 4 and 2 times that of activated carbon with Qo of 160 mg/g and MDC with Qo of 298 mg/g, respectively. On the contrary, oxidative treatment of MDC was negative in adsorption of an anionic dye such as methyl orange. Moreover, the functionalized MDC was not very effective in the adsorption of cationic dyes with large sizes (like brilliant green, crystal violet, Janus green B, and rhodamine B) because of the limited pore size of the studied adsorbent FMDC(1.0). The remarkable adsorption of MB over FMDC(1.0) could be explained by electrostatic and π-π interactions. Finally, the facile recyclability of the FMDC(1.0) in MB adsorption was confirmed via successive adsorptions, FT-IR, and nitrogen adsorption; therefore, FMDC(1.0) can be suggested as a potential adsorbent to remove cationic dyes, especially with small molecular sizes.
Collapse
Affiliation(s)
- Md Abul Hossain
- Dept. Chem, Kyungpook National University, Daegu, 41566, South Korea
| | | | - Sung Hwa Jhung
- Dept. Chem, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
25
|
Hussain D, Khan SA, Khan TA, Alharthi SS. Efficient liquid phase confiscation of nile blue using a novel hybrid nanocomposite synthesized from guar gum-polyacrylamide and erbium oxide. Sci Rep 2022; 12:14656. [PMID: 36038589 PMCID: PMC9424225 DOI: 10.1038/s41598-022-18591-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/16/2022] [Indexed: 12/26/2022] Open
Abstract
In recent times, biopolymer-metal oxide nanocomposites have gained prominent importance in the attenuation of environmental toxicants from aqueous phase. But lanthanide oxide-based biopolymer nanocomposites have scantly been evaluated for their adsorption potential. A novel guar gum-polyacrylamide/erbium oxide nanocomposite (GG-PAAm/Er2O3 NC) adsorbent was synthesized by copolymerization of guar gum (GG) and acrylamide (AAm) utilizing N-N′-methylenebisacrylamide as a crosslinker and Er2O3 as a reinforcing agent. The adsorptive efficacy of GG-PAAm/Er2O3 nanocomposite was evaluated using nile blue (NB) as a model pollutant dye from aquatic system. The prepared adsorbent was characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) analysis, Brunauer–Emmett–Teller (BET) analysis, thermogravimetric analysis, scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM–EDX), and high-resolution transmission electron microscopy (HRTEM). The optimal process parameters, which include dosage (0.8 g/L), agitation time (40 min), initial solution pH (6), and initial NB concentration (80 mg/L) were determined by batch methodology. The equilibrium data for NB confiscation was better expressed by Langmuir isotherm model, with maximal adsorption effectiveness (Qm) of 225.88 mg NB/g demonstrating the actively monolayer adsorption onto homogeneous surface of GG-PAAm/Er2O3 NC. The kinetics of NB sorption process onto GG-PAAm/Er2O3 NC was reliable with pseudo-second order model. Thermodynamic parameters such as ΔH° (15–17 kJ/mol) and ΔS° (0.079–0.087 kJ/mol/K), and − ΔG° (8.81–10.55 kJ/mol) for NB validated the endothermic, an increased randomness at the GG-PAAm/Er2O3–NB interface, and spontaneity and feasibility of the process, respectively. The spent nanocomposite was effectively regenerated with NaOH, and could be reused proficiently for five runs demonstrating the high reusability potential of the nanocomposite. The commendable removal efficiency and high reusability of GG-PAAm/Er2O3 NC recommended it to be a highly competent adsorbent for cationic dyes particularly NB diminution from aqueous waste.
Collapse
Affiliation(s)
- Daud Hussain
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Suhail Ayoub Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India
| | - Tabrez Alam Khan
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110 025, India.
| | - Salman S Alharthi
- Department of Chemistry, College of Science, Taif University, P.O. Box 110999, Taif, 21944, Saudi Arabia
| |
Collapse
|
26
|
Zhu S, Xu J, Wang B, Xie J, Ying G, Li J, Cheng Z, Li J, Chen K. Highly efficient and rapid purification of organic dye wastewater using lignin-derived hierarchical porous carbon. J Colloid Interface Sci 2022; 625:158-168. [PMID: 35716611 DOI: 10.1016/j.jcis.2022.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/31/2022] [Accepted: 06/04/2022] [Indexed: 11/25/2022]
Abstract
Coating manufacturing, textile processing, and plastic industry have led to dramatical release levels of hazardous organic dye pollutants threatening public health and the environment. To solve this problem, porous carbon materials are being developed following with the United Nations initiative on water purification. However, conventional porous carbon materials face many challenges, such as limited removal rates, low adsorption capacity, and high chemicals consumption, hampering their large-scale utilization in dye wastewater treatment. Herein, we demonstrate a high-performance lignin-derived hierarchical porous carbon (LHPC) material directly prepared from renewable lignin through a low-cost activation procedure. The large specific surface area (1824 m2/g) enables the rapid and effective adsorption of organic dyes. Therefore, the LHPC exhibits an ultrahigh adsorption ability (1980.63 mg/g) and removal rate (99.03% in 10 min) for Azure B, superior to that of other adsorbents. Additionally, the LHPC adsorbent, organic dyes, eluting agent, and water all can be recycled and reused in a designed close-looped system. Its high removal ability and rate, strong retrievability, low-cost and scalable production combined with high dyes adsorption universality, positions our LHPC as a promising commercial adsorbent candidate for the purification of harmful organic dye wastewater, especially for heavily polluted area with an insistent demand for clear water.
Collapse
Affiliation(s)
- Shiyun Zhu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Jun Xu
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China; Qingyuan Huayuan Institute of Science and Technology Collaborative Innovation Co., Ltd, Qingyuan 511500, China.
| | - Bin Wang
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Junxian Xie
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China
| | - Guangdong Ying
- Shandong Sun Paper Industry Joint Stock Co., Ltd, Jining 272100, China
| | - Jinpeng Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510006, China.
| | - Zheng Cheng
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Jun Li
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| | - Kefu Chen
- State Key Laboratory of Pulp and Paper Engineering, Plant Fiber Material Science Research Center, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
27
|
Peng X, Liu W, Liu W, Zhao P, Yu X, Wang Y. Fabrication of eco-friendly adsorbent derived from serpentine tailings for the removal of organic dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Removal of toluidine blue from water using 1:1 layered clay minerals. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Tran TV, Vo DVN, Nguyen DTC, Ching YC, Nguyen NT, Nguyen QT. Effective mitigation of single-component and mixed textile dyes from aqueous media using recyclable graphene-based nanocomposite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:32120-32141. [PMID: 35013974 DOI: 10.1007/s11356-022-18570-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
The present study reported the synthesis and utilization of a graphene-based hybrid nanocomposite (MnFe2O4/G) to mitigate several synthetic dyes, including methylene blue, malachite green, crystal violet, and Rhodamine B. This adsorbent was structurally analyzed by several physicochemical techniques such as X-ray diffraction, Fourier-transform infrared spectroscopy, scanning electron microscopy, Raman spectroscopy, N2 adsorption-desorption isotherm measurement, point of zero charge, and Boehm titrations. BET surface area of MnFe2O4/G was measured at 382.98 m2/g, which was substantially higher than that of MnFe2O4. MnFe2O4/G possessed diverse surface chemistry properties with the presence of many functional groups such as carboxylic acid, phenolic, lactone, and basic groups. MnFe2O4/G was used to remove synthetic dyes in the aqueous media. The effect of many factors, e.g., concentration (5-50 mg/L), pH (4-10), dose (5-20 mg), and temperature (25-45 °C) on adsorption performance of MnFe2O4/G was conducted. Kinetic, isotherm, intraparticle, and thermodynamic models were adopted for investigating adsorption phenomenon of dyes on MnFe2O4/G. The maximum adsorption capacity of dyes over MnFe2O4/G was found as Rhodamine B (67.8 mg/g) < crystal violet (81.3 mg/g) < methylene blue (137.7 mg/g) < malachite green (394.5 mg/g). Some tests were performed to remove mixed dyes, and mixed dyes in the presence of antibiotics with total efficiencies of 65.8-87.9% after 120 min. Moreover, the major role of π-π stacking interaction was clarified to gain insight into the adsorption mechanism. MnFe2O4/G could recycle up to 4 cycles, which may be beneficial for further practical water treatment.
Collapse
Affiliation(s)
- Thuan Van Tran
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Dai-Viet N Vo
- College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Duyen Thi Cam Nguyen
- Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
- NTT Hi-Tech Institute, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Yern Chee Ching
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ngoc Tung Nguyen
- Vietnam Academy of Science and Technology (VAST), Center for Research and Technology Transfer (CRETECH), 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam
| | - Quang Trung Nguyen
- Vietnam Academy of Science and Technology (VAST), Center for Research and Technology Transfer (CRETECH), 18 Hoang Quoc Viet, Hanoi, 11300, Vietnam.
| |
Collapse
|
30
|
Recent development in the medical and industrial applications of gum karaya: a review. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04227-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Gong XL, Lu HQ, Li K, Li W. Effective adsorption of crystal violet dye on sugarcane bagasse–bentonite/sodium alginate composite aerogel: Characterisation, experiments, and advanced modelling. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120478] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
32
|
Synthesis and Optimization of Deesterified Acacia-Alginate Nanohydrogel for Amethopterin Delivery. Bioinorg Chem Appl 2022; 2022:7192919. [PMID: 35186053 PMCID: PMC8856825 DOI: 10.1155/2022/7192919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/04/2022] [Accepted: 01/18/2022] [Indexed: 12/26/2022] Open
Abstract
Naturally obtained materials are preferable for the production of biomedicine in biomedical applications. Acacia gum is has recently become a hopeful one in the biomedicine production due to its excellent properties, namely, emulsifier, stabilizing mediator, suspending agent, etc. In this novel work, we synthesised and characterized the deesterified Acacia gum-alginate nanohydrogel (DEA-AG NPs) as a carrier for amethopterin (ATN) delivery. This combination is used in the drug effectiveness and tissue engineering. In this work, the Taguchi route is implemented for estimating of particle size and zeta potential (mV) through optimization. Following three parameters are considered for this work: DEA solution concentration (0.008, 0.016, 0.024, and 0.032 w/v %), alginate molecular weight (3, 6, 9, and 12 MW), and ATN/DEA ratio (1 : 4, 1 : 8, 1 : 12, and 1 : 16 w/w %). In particle size analysis and zeta potential analysis, the DEA solution concentration is highly influenced. Minimum particle size is found as 148.50 nm. Similarly, maximum zeta potential is identified as 29.5 mV.
Collapse
|
33
|
Gihar S, Kumar D, Kumar P. Facile synthesis of novel pH-sensitive grafted guar gum for effective removal of mercury (II) ions from aqueous solution. CARBOHYDRATE POLYMER TECHNOLOGIES AND APPLICATIONS 2021. [DOI: 10.1016/j.carpta.2021.100110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
34
|
Kulal P, Badalamoole V. Evaluation of gum ghatti-g-poly(itaconic acid) magnetite nanocomposite as an adsorbent material for water purification. Int J Biol Macromol 2021; 193:2232-2242. [PMID: 34780891 DOI: 10.1016/j.ijbiomac.2021.11.055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 01/13/2023]
Abstract
A porous hydrogel nanocomposite has been made by grafting poly(itaconic acid) on the polysaccharide, gum ghatti and by embedding magnetite nanoparticles in the copolymer gel matrix. This novel functional material Ggh-g-PIA/Fe3O4 was characterized by FTIR, TGA, SEM, EDS, XRD, BET, Zeta potential measurements and VSM techniques. The nanocomposite possesses mesoporous structure with high surface area and exhibits super-paramagnetic behavior due to the presence of magnetite nanoparticles. The hydrogel nanocomposite was evaluated as an adsorbent material for removal of dyes and divalent metal ions. Significant adsorption capacities of 410.2, 387.6, 416.5 and 401.4 mg g-1 towards methylene blue, rhodamine 6G, Cu (II) and Hg (II) ions respectively were observed. The adsorption isotherms were well described by the Freundlich isotherm model and kinetic studies demonstrated the adsorption to be a pseudo second order kinetic process. Intraparticle diffusion model suggested adsorption to occur by a multi-step diffusion process. Thermodynamic studies indicated a spontaneous and endothermic adsorption. Further, the desorption study indicated the possibility of successful regeneration of the adsorbent. A high removal efficiency, recyclability, convenient recovery after use due to the magnetic nature makes this polysaccharide based nanocomposite an environment friendly adsorbent material for water purification.
Collapse
Affiliation(s)
- Prajwal Kulal
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574199 (D.K.), Karnataka, India
| | - Vishalakshi Badalamoole
- Department of Post-Graduate Studies and Research in Chemistry, Mangalore University, Mangalagangothri-574199 (D.K.), Karnataka, India.
| |
Collapse
|
35
|
Natural Clay as a Low-Cost Adsorbent for Crystal Violet Dye Removal and Antimicrobial Activity. NANOMATERIALS 2021; 11:nano11112789. [PMID: 34835556 PMCID: PMC8620351 DOI: 10.3390/nano11112789] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
This investigation aimed at evaluating the efficiency of micro and nanoclays as a low-cost material for the removal of crystal violet (CV) dye from an aqueous solution. The impacts of various factors (contact time, pH, adsorbent dosage, temperature, initial dye concentration) on the adsorption process have been taken into consideration. Six micro and nanoclay samples were obtained by treating clay materials collected from different locations in the Albaha region, Saudi Arabia. Out of the six tested micro and nanoclays materials, two (NCQ1 and NCQ3) were selected based on the highest adsorption efficiency for complete experimentation. The morphology and structure of the selected micro and nanoclay adsorbents were characterized by various techniques: SEM-EDX, FTIR, XRF, XRD, and ICP-MS. The XRF showed that the main oxides of both nanoclays were SiO2, Al2O3, Fe2O3, K2O, CaO, and MgO, and the rest were impurities. All the parameters affecting the adsorption of CV dye were optimized in a batch system, and the optimized working conditions were an equilibrium time of 120 min, a dose of 30 mg, a temperature of 25 °C, and an initial CV concentration of 400 mg/L. The equilibrium data were tested using nonlinear isotherm and kinetic models, which showed that the Freundlich isotherm and pseudo-second-order kinetics gave the best fit with the experimental data, indicating a physico-chemical interaction occurred between the CV dye and both selected micro and nanoclay surfaces. The maximum adsorption capacities of NCQ1 and NCQ3 adsorbents were 206.73 and 203.66 mg/g, respectively, at 25 °C. The thermodynamic factors revealed that the CV dye adsorption of both micro and nanoclays was spontaneous and showed an exothermic process. Therefore, the examined natural micro and nanoclays adsorbents are promising effective adsorbents for the elimination of CV dye from an aqueous environment.
Collapse
|
36
|
Belkassa K, Khelifa M, Batonneau-Gener I, Marouf-Khelifa K, Khelifa A. Understanding of the mechanism of crystal violet adsorption on modified halloysite: Hydrophobicity, performance, and interaction. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125656. [PMID: 33756196 DOI: 10.1016/j.jhazmat.2021.125656] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Halloysite was processed at 600 °C and then by acid leaching with HCl solutions of different concentrations, i.e. 0.5, 3 and 5 N (H600-xN; x = 0.5, 3 or 5). The resulting materials underwent chemical, textural, and laser diffraction analyses and were used in crystal violet (CV) adsorption. Bath experiments were conducted to evaluate the parameters influencing adsorption. A hydrophobicity study by adsorption of water/toluene and a spectroscopic investigation by FTIR and Raman were conducted, to understand the interaction mechanism. The affinity for CV is as follows: H600-0.5N (115 m2g-1) > H600-3N (434 m2g-1) > H600-5N (503 m2g-1) > H600-0N (61 m2g-1). The maximum adsorption of H600-0.5N would be explained by optimal hydrophilic and hydrophobic properties. Dealumination leads to the creation of more silanols responsible for hydrophilicity. Dehydroxylation at 600 °C combined with dealumination would induce a partial transformation of silanols into siloxanes which are responsible for organophilicity. The CV-H600-0.5N interaction implies two mechanisms: hydrophobic interactions and hydrogen bond. This study focused on hydrophobic interaction as a non-negligible component governing the interaction of organic contaminants with 1:1 clay minerals, while it was not sufficiently considered in the scientific literature.
Collapse
Affiliation(s)
- Kheira Belkassa
- Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria; Laboratoire de Synthèse & Catalyse (L.S.C.T.), Département de chimie, Université Ibn Khaldoun Tiaret, BP P 78 zaâroura, 14000 Tiaret, Algeria
| | - Mounir Khelifa
- Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria
| | - Isabelle Batonneau-Gener
- Institut de Chimie des Milieux et Matériaux de Poitiers IC2MP (UMR 7285 CNRS), Université de Poitiers, 4 rue Michel Brunet, 86022 Poitiers, France
| | - Kheira Marouf-Khelifa
- Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria.
| | - Amine Khelifa
- Laboratoire de Structure, Elaboration et Applications des Matériaux Moléculaires (SEA2M), Département de Génie des Procédés, Université de Mostaganem, Algeria
| |
Collapse
|
37
|
Baziar M, Zakeri HR, Ghaleh askari S, Nejad ZD, Shams M, Anastopoulos I, Giannakoudakis DA, Lima EC. Metal-organic and Zeolitic imidazole frameworks as cationic dye adsorbents: physicochemical optimizations by parametric modeling and kinetic studies. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.115832] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
38
|
Hydrolyzed Karaya Gum: Gelatin Complex Coacervates for Microencapsulation of Soybean Oil and Curcumin. J FOOD QUALITY 2021. [DOI: 10.1155/2021/5593065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This is the first report on utilizing hydrolyzed karaya gum (HKG) as a novel polyanion material for complex coacervation with gelatin A. With negative zeta potentials at pH > 2.5, HKG formed the complex coacervate with a maximum yield at pH 3.75 and 1 : 1 HKG:gelatin ratio. The optimal complex coacervates were used to encapsulate soybean oil containing curcumin using different shell:core ratios, homogenization speeds, concentrations of emulsifier, and drying techniques. Optical microscopy showed that increasing homogenization speed and Tween 80 concentration produced smaller and more uniform coacervate particles. Increasing the shell:core mass ratio from 1 to 4 resulted in a linear increase in encapsulation efficiencies for both soybean oil and curcumin. Accelerated peroxidation tests on the microcapsules showed enhanced protective effects against oil peroxidation when increasing shell:core ratios and using freeze-drying instead of oven-drying at 50 oC. In vitro release of curcumin in simulated gastric and intestinal fluids was faster when using freeze-drying and decreasing shell:core ratio. This study shows perspective novel applications of HKG in microencapsulating active ingredients for food and pharmaceutical industries.
Collapse
|
39
|
Raj V, Lee JH, Shim JJ, Lee J. Recent findings and future directions of grafted gum karaya polysaccharides and their various applications: A review. Carbohydr Polym 2021; 258:117687. [DOI: 10.1016/j.carbpol.2021.117687] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
|
40
|
Mahto A, Mishra S. The removal of textile industrial Dye-RB-19 using Guar gum-based adsorbent with thermodynamic and kinetic evaluation parameters. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03663-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
41
|
Qureshi D, Behera KP, Mohanty D, Mahapatra SK, Verma S, Sukyai P, Banerjee I, Pal SK, Mohanty B, Kim D, Pal K. Synthesis of novel poly (vinyl alcohol)/tamarind gum/bentonite-based composite films for drug delivery applications. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126043] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
42
|
Li Y, Wang S, Shen Z, Li X, Zhou Q, Sun Y, Wang T, Liu Y, Gao Q. Gradient Adsorption of Methylene Blue and Crystal Violet onto Compound Microporous Silica from Aqueous Medium. ACS OMEGA 2020; 5:28382-28392. [PMID: 33163822 PMCID: PMC7643329 DOI: 10.1021/acsomega.0c04437] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 10/09/2020] [Indexed: 05/10/2023]
Abstract
Microporous silica (MS) materials are a kind of an emerging and promising adsorbent precursor. MS prepared from vermiculite has the advantages of easy preparation, low cost, and low layer charge. In this study, organo-MS (OMS) modified by a typical gemini surfactant 1,2-bis(hexadecyldimethylammonio)ethane dibromide (G16) is first synthesized and proved to have effective retention capacity toward cationic dyes. Fourier transform infrared spectroscopy, TG-DTG, X-ray diffraction, scanning electron microscopy, transmission electron microscopy, and Brunauer-Emmett-Teller are used to explore the structural characters of adsorbents. Gradient adsorption of compound MS (MS and OMS) in a binary dye system [methylene blue (MB) and crystal violet (CV)] was investigated. In a single system, the relationship between the adsorption capacity and influencing factors (dye concentration, contact time, temperature, and pH), adsorption kinetics, isotherms, as well as thermodynamics was comprehensively compared to reveal the adsorption mechanism. The adsorption values of MB and CV on MS and OMS are 308 mg g-1 (R = 77.0%, 15 min) and 250 mg g-1 (R = 83.3%), respectively, which may be caused by various intermolecular interactions (electrostatic or hydrophobic interactions) between the dye and adsorbent surface. In a binary system, the improved first spectroscopy method is used to calculate the individual concentration of the dye in the binary system. The total removal efficiency of gradient adsorption reaches as high as 89.5% (MB) and 86.4% (CV). In addition, compound MS can be effectively regenerated by HCl solution for several cycles.
Collapse
Affiliation(s)
- Yong Li
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
| | - Shifeng Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
- Institute
of Oxygen Supply, Center of Tibetan Studies (Everest Research Institute), Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| | - Zichen Shen
- School
of Management Engineering, Shandong Jianzhu
University, 1000 Fengming Road, Licheng District, Jinan
City, Shandong Province 250101, China
| | - Xin Li
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
| | - Qianyu Zhou
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
| | - Yaxun Sun
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
| | - Tingting Wang
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
| | - Yanfang Liu
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
| | - Qi Gao
- Department
of Physics, Innovation Center of Materials for Energy and Environment
Technologies (i-MEET), College of Science, Tibet University, Lhasa 850000, China
- Key
Laboratory of Cosmic Rays, Ministry of Education, Tibet University, Lhasa 850000, China
| |
Collapse
|
43
|
Preparation of a nano bio-composite based on cellulosic biomass and conducting polymeric nanoparticles for ibuprofen removal: Kinetics, isotherms, and energy site distribution. Int J Biol Macromol 2020; 162:663-677. [DOI: 10.1016/j.ijbiomac.2020.06.095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/07/2022]
|