1
|
Patel PK, Uppaluri RVS. Adsorption of emerging pollutants utilizing chitosan derivatives: Recent advances and future perspective. Int J Biol Macromol 2025; 299:140203. [PMID: 39848360 DOI: 10.1016/j.ijbiomac.2025.140203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Globalization resulted in technological advancement, and urban population growth. Consequently, pollution emerged as an imminent risk to the survival of all species on Earth. Consequently, on a worldwide basis, sustainability become a major issue for legislators. Inconsistent impacts on both human and animal growth and wellness triggered health issues associated with water contamination through the chronic toxicants. Micropollutants' pollution prompted severe concerns due to their malignant, indestructible, and accumulative properties. The elimination of these toxins from industrial processes has become one of the most significant ecological challenges. A variety of both organic and simulated sorbents are available, and each of these have unique benefits. In the recent years, chitosan and its composite materials have been attempted and have been proven to be applicable for the resolution of many challenging issues related to water pollution. Among various notable benefits of adsorption processes, economic viability, ease of access, and adherence to environmental regulations are notable. Considering the above-mentioned issues, the article targets the assessment of chitosan and its composite materials for relevant environmental applications. Accordingly, the article aims to examine the performance, advantages, and disadvantages of chitosan as an adsorbent.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Chemical Engineering Department, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Cheng Q, Abdiryim T, Jamal R, Liu X, Liu F, Xue C, Tang X, Chen J, Wei J. Detection of tetracycline by molecularly imprinted electrochemical sensor based on the modification of poly(3,4-propylene dioxythiophene)/chitosan/au. Int J Biol Macromol 2024; 281:136468. [PMID: 39393732 DOI: 10.1016/j.ijbiomac.2024.136468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
In this study, a molecularly imprinted polymer (MIP) electrochemical sensor based on poly(3,4-propylenedioxythiophene)/chitosan/Au (PProDOT/CS/Au) composite modification was designed for highly sensitive and selective detection of TC. Green synthesis of CS/Au without the use of reducing agents, followed by in-situ oxidation polymerization of PProDOT. The high electrochemical activity and high stability of PProDOT, the numerous functional groups (-OH, -NH2) of CS, and the excellent electron transport capacity of AuNPs, which provided a suitable incubation chamber for the production of imprinted cavities. Meanwhile, combined with the specific recognition ability of MIP, it showed superior performance over bare glassy carbon electrodes. Under the optimal experimental conditions, this sensor showed good linearity for TC in the concentration ranges of 0.0001-100 μM, with a low limit of detection (LOD) of 0.19 nM. At the same time, the sensor exhibited satisfactory selectivity, repeatability, reproducibility and stability. It was evident from the results of the study that the sensor designed in this paper showed considerable potential for application in the detection of TC in pharmaceuticals, the environment, and food samples.
Collapse
Affiliation(s)
- Qian Cheng
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Tursun Abdiryim
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China.
| | - Ruxangul Jamal
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, School of Chemical Engineering and Technology, Xinjiang University, Urumqi, 830017, Xinjiang, PR China.
| | - Xiong Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Fangfei Liu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Cong Xue
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Xinsheng Tang
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jiaying Chen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| | - Jin Wei
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi 830017, Xinjiang, PR China
| |
Collapse
|
3
|
Huang Y, Lapanje A, Parakhonskiy B, Skirtach AG. Versatile and durable polyvinyl alcohol/alginate/gelatin/quaternary ammonium chitosan/Fe 3O 4 particles hybrid hydrogel beads: adsorption capabilities for cleaning pollutants. Int J Biol Macromol 2024; 280:135729. [PMID: 39293615 DOI: 10.1016/j.ijbiomac.2024.135729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/07/2024] [Accepted: 09/14/2024] [Indexed: 09/20/2024]
Abstract
A novel hybrid hydrogel bead (HHBFe) composed of polyvinyl alcohol/sodium alginate/gelatin/quaternary ammonium chitosan (PVA/GA/SA/QCS) and Fe3O4 magnetic nanoparticles was developed through green cross-linking of Ca2+ and tannic acid (TA) combined freeze-thaw method. HHBFe exhibited a good spherical shape, porosity, magnetic properties, and excellent mechanical properties and durability. The adsorption capacity of HHB and HHBFe towards methyl orange (MO), tetracycline (Tc), and Cr (VI) was systematically studied and compared. Results revealed similar adsorption capacities for MO and Cr (VI) between HHB and HHBFe, while the presence of Fe3O4 significantly enhanced Tc adsorption, indicating the versatile adsorption functions of HHBFe. Adsorption kinetic followed the pseudo-second-order model, with external diffusion and intra-particle diffusion controlling process. The adsorption data were consistent with the Langmuir isothermal adsorption model, indicating predominantly monolayer adsorption of pollutants by beads. Notably, the beads exhibited easily regenerated, maintaining 60 % of initial adsorption capacity after 5 cycles, particularly for Tc and Cr (VI). The good adsorption performance of HHBFe can be attributed to the strong interaction between their multi-functional groups including phenolic hydroxyl groups, carboxyl groups, amino groups, etc., and pollutant molecules. The multifunctional HHBFe beads prepared in this study and the results obtained with three completely different types of pollutants provide reliability support for their use in different wastewater treatment fields and even in the field of drug carriers.
Collapse
Affiliation(s)
- Yanqi Huang
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Ales Lapanje
- Department of Environmental Sciences, Institut "Jožef Stefan", Jamova cesta 39, 1000 Ljubljana, Slovenia
| | - Bogdan Parakhonskiy
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium
| | - Andre G Skirtach
- Nano-Biotechnology Group, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
4
|
Khoo PS, Ilyas RA, Aiman A, Wei JS, Yousef A, Anis N, Zuhri MYM, Abral H, Sari NH, Syafri E, Mahardika M. Revolutionizing wastewater treatment: A review on the role of advanced functional bio-based hydrogels. Int J Biol Macromol 2024; 278:135088. [PMID: 39197608 DOI: 10.1016/j.ijbiomac.2024.135088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/26/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Water contamination poses a significant challenge to environmental and public health, necessitating sustainable wastewater treatment solutions. Adsorption is one of the most widely used techniques for purifying water, as it effectively removes contaminants by transferring them from the liquid phase to a solid surface. Bio-based hydrogel adsorbents are gaining popularity in wastewater treatment due to their versatility in fabrication and modification methods, which include blending, grafting, and crosslinking. Owning to their unique structure and large surface area, modified hydrogels containing reactive groups like amino, hydroxyl, and carboxyl, or functionalized hydrogels with inorganic nanoparticles particularly graphene nanomaterials, have demonstrated promising adsorption capabilities for both inorganic and organic contaminants. Bio-based hydrogels have excellent physicochemical properties and are non-toxic, environmentally friendly, and biodegradable, making them extremely effective at removing contaminants like heavy metal ions, dyes, pharmaceutical pollutants, and organic micropollutants. The versatility of hydrogels allows for various forms to be used, such as films, beads, and nanocomposites, providing flexibility in handling different contaminants like dyes, radionuclides, and heavy metals. Additionally, researchers also have shown the potential for recycling and regenerating post-treatment hydrogels. This approach not only addresses the challenges of wastewater treatment but also offers sustainable and effective solutions for mitigating water pollution.
Collapse
Affiliation(s)
- Pui San Khoo
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - R A Ilyas
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - Alif Aiman
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Jau Sh Wei
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Ahmad Yousef
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - Nurul Anis
- Department of Chemical Engineering, Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia.
| | - M Y M Zuhri
- Institute of Tropical Forest and Forest Products, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Research Centre for Advanced Engineering Materials and Composites (AEMC), Department of Mechanical and Manufacturing Engineering, University Putra Malaysia (UPM), 43400 UPM Serdang, Selangor, Malaysia.
| | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang 25163, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang 25163, Indonesia.
| | - Nasmi Herlina Sari
- Department of Mechanical Engineering, Faculty of Engineering, University of Mataram, West Nusa Tenggara 83125, Indonesia.
| | - Edi Syafri
- Department of Agricultural and Computer Engineering, Politeknik Pertanian Negeri Payakumbuh, Limapuluh Kota, West Sumatra 26271, Indonesia.
| | - Melbi Mahardika
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
5
|
Ahmadi S, Pourebrahimi S, Malloum A, Pirooz M, Osagie C, Ghosh S, Zafar MN, Dehghani MH. Hydrogel-based materials as antibacterial agents and super adsorbents for the remediation of emerging pollutants: A comprehensive review. EMERGING CONTAMINANTS 2024; 10:100336. [DOI: 10.1016/j.emcon.2024.100336] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Duong LTK, Nguyen TTT, Nguyen LM, Hoang TH, Nguyen DTC, Tran TV. A waste-to-wealth conversion of plastic bottles into effective carbon-based adsorbents for removal of tetracycline antibiotic from water. ENVIRONMENTAL RESEARCH 2024; 255:119144. [PMID: 38751006 DOI: 10.1016/j.envres.2024.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/28/2024]
Abstract
Currently, plastic waste and antibiotic wastewater are two of the most critical environmental problems, calling for urgent measures to take. A waste-to-wealth strategy for the conversion of polyethylene terephthalate (PET) plastic bottles into value-added materials such as carbon composite is highly recommended to clean wastewater contaminated by antibiotics. Inspired by this idea, we develop a novel PET-AC-ZFO composite by incorporating PET plastic-derived KOH-activated carbon (AC) with ZnFe2O4 (ZFO) particles for adsorptive removal of tetracycline (TTC). PET-derived carbon (PET-C), KOH-activated PET-derived carbon (PET-AC), and PET-AC-ZFO were characterized using physicochemical analyses. Central composite design (CCD) was used to obtain a quadratic model by TTC concentration (K), adsorbent dosage (L), and pH (M). PET-AC-ZFO possessed micropores (d ≈ 2 nm) and exceptionally high surface area of 1110 m2 g-1. Nearly 90% TTC could be removed by PET-AC-ZFO composite. Bangham kinetic and Langmuir isotherm were two most fitted models. Theoretical maximum TTC adsorption capacity was 45.1 mg g-1. This study suggested the role of hydrogen bonds, pore-filling interactions, and π-π interactions as the main interactions of the adsorption process. Thus, a strategy for conversion of PET bottles into PET-AC-ZFO can contribute to both plastic recycling and antibiotic wastewater mitigation.
Collapse
Affiliation(s)
- Loan Thi Kim Duong
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam; Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Thuy Thi Thanh Nguyen
- Department of Chemical Engineering and Food Technology, Nong Lam University, Ho Chi Minh City 700000, Viet Nam
| | - Luan Minh Nguyen
- Institute of Chemical Technology, Vietnam Academy of Science and Technology, 1A TL29, District 12, Ho Chi Minh City 700000, Viet Nam; Graduate University of Science and Technology, Vietnam Academy of Science and Technology, Hanoi 100000, Viet Nam
| | - Thu Hien Hoang
- Amazon Corporate Headquarters, 440 Terry Ave North, Seattle, WA 98109-5210, United States
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Viet Nam.
| |
Collapse
|
7
|
Mosaffa E, Ramsheh NA, Banerjee A, Ghafuri H. Bacterial cellulose microfilament biochar-architectured chitosan/polyethyleneimine beads for enhanced tetracycline and metronidazole adsorption. Int J Biol Macromol 2024; 273:132953. [PMID: 38944566 DOI: 10.1016/j.ijbiomac.2024.132953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/04/2024] [Indexed: 07/01/2024]
Abstract
This study investigates the potential applications of incorporating 2D bacterial cellulose microfibers (BCM) biochar into chitosan/polyethyleneimine beads as a semi-natural sorbent for the efficient removal of tetracycline (TET) and metronidazole (MET) antibiotics. Batch adsorption experiments and characterization techniques evaluate removal performance and synthesized adsorbent properties. The adsorbent eliminated 99.13 % and 90 % of TET and MET at a 10 mg.L-1 concentration with optimal pH values of 8 and 6, respectively, for 90 min. Under optimum conditions and a 400 mg.L-1 concentration, MET and TET have possessed the maximum adsorption capacities of 691.325 and 960.778 mg.g-1, respectively. According to the isothermal analysis, the adsorption of TET fundamentally follows the Temkin (R2 = 0.997), Redlich-Peterson (R2 = 0.996), and Langmuir (R2 = 0.996) models. In contrast, the MET adsorption can be described by the Langmuir (R2 = 0.997), and Toth (R2 = 0.991) models. The pseudo-second-order (R2 = 0.998, 0.992) and Avrami (R2 = 0.999, 0.999) kinetic models were well-fitted with the kinetic results for MET and TET respectively. Diffusion models recommend that pore, liquid-film, and intraparticle diffusion govern the rate of the adsorption process. The developed semi-natural sorbent demonstrated exceptional adsorption capacity over eleven cycles due to its porous bead structure, making it a potential candidate for wastewater remediation.
Collapse
Affiliation(s)
- Elias Mosaffa
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India; P D Patel Institute of Applied Sciences, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India
| | - Nasim Amiri Ramsheh
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| | - Atanu Banerjee
- Dr. K. C. Patel R & D Centre, Charotar University of Science and Technology (CHARUSAT), 388 421 Anand, Gujarat, India.
| | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, University of Science and Technology, 16846 Tehran, Iran
| |
Collapse
|
8
|
Adibzadeh A, Khodabakhshi MR, Maleki A. Preparation of novel and recyclable chitosan-alumina nanocomposite as superabsorbent to remove diazinon and tetracycline contaminants from aqueous solution. Heliyon 2024; 10:e23139. [PMID: 38173523 PMCID: PMC10761367 DOI: 10.1016/j.heliyon.2023.e23139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 11/06/2023] [Accepted: 11/27/2023] [Indexed: 01/05/2024] Open
Abstract
This work presents a novel, strong and efficient adsorbent (CS@TDI@EDTA@γ-AlO(OH)) prepared through the green process using three components, chitosan, BNPs and EDTA using amide and ester bridges. An eco-friendly and easy approach was used for the preparation of this novel adsorbent, the low cost, easy access to the used materials, and the simplicity of the preparation method are some of the interesting advantages of this work. Also, this prepared adsorbent was used as an adsorbent to remove diazinon organophosphate poison and tetracycline antibiotic from aqueous solutions. In order to confirm the prepared adsorbent structure, the CS@TDI@EDTA@γ-AlO(OH) composite was investigated by various analyses including FT-IR, EDX, XRD, FESEM and TGA. The adsorption behavior of the adsorbent prepared for the removal of tetracycline and diazinon was investigated under different conditions by varying the concentration, temperature, the adsorbent dose, pH and contact time. Based on various tests, the highest diazinon adsorption capacity was obtained for 0.12 g/L adsorbent at pH 7 and 60 °C with 40 mg/L initial concentration. Also, the maximum adsorption capacity of the tetracycline was obtained for 0.12 g/L adsorbent at pH 9 and 60 °C with 30 mg/L initial concentration. The equilibrium results for diazinon and for tetracycline were in good accordance with the Langmuir and Freundlich isotherm models, respectively. Also, the highest adsorption capacities for diazinon at pH 7 and tetracycline at pH 9 were 1428.5 and 555.5 mg/g, respectively. Also the kinetic investigations revealed that the correlation factor (R2) of pseudo-second-order model obtained for the adsorption of diazinon and tetracycline was 0.9986 and 0.9988, while the coefficient k (g/mg.min) was 0.000084 and 0.0033, respectively. These results indicate that the adsorption of diazinon and tetracycline is pseudo-second-order kinetics model. Formation of hydrogen bonds between adsorbate and adsorbent as well as the high specific surface area and porosity of the adsorbent are the main mechanisms that contribute to the adsorption process. In addition, thermodynamic studies indicated that the adsorption of diazinon and tetracycline is a spontaneous endothermic process. The adsorbent prepared in this work was expected to have wide range of applications in wastewater treatment thanks to its good reusability in water and strong removal of diazinon and tetracycline compared to other adsorbents.
Collapse
Affiliation(s)
- Amir Adibzadeh
- Health Research Center, Life Style Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| |
Collapse
|
9
|
Chelu M, Musuc AM, Popa M, Calderon Moreno JM. Chitosan Hydrogels for Water Purification Applications. Gels 2023; 9:664. [PMID: 37623119 PMCID: PMC10453846 DOI: 10.3390/gels9080664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/26/2023] Open
Abstract
Chitosan-based hydrogels have gained significant attention for their potential applications in water treatment and purification due to their remarkable properties such as bioavailability, biocompatibility, biodegradability, environmental friendliness, high pollutants adsorption capacity, and water adsorption capacity. This article comprehensively reviews recent advances in chitosan-based hydrogel materials for water purification applications. The synthesis methods, structural properties, and water purification performance of chitosan-based hydrogels are critically analyzed. The incorporation of various nanomaterials into chitosan-based hydrogels, such as nanoparticles, graphene, and metal-organic frameworks, has been explored to enhance their performance. The mechanisms of water purification, including adsorption, filtration, and antimicrobial activity, are also discussed in detail. The potential of chitosan-based hydrogels for the removal of pollutants, such as heavy metals, organic contaminants, and microorganisms, from water sources is highlighted. Moreover, the challenges and future perspectives of chitosan-based hydrogels in water treatment and water purification applications are also illustrated. Overall, this article provides valuable insights into the current state of the art regarding chitosan-based hydrogels for water purification applications and highlights their potential for addressing global water pollution challenges.
Collapse
Affiliation(s)
| | - Adina Magdalena Musuc
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| | | | - Jose M. Calderon Moreno
- “Ilie Murgulescu” Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania; (M.C.); (M.P.)
| |
Collapse
|
10
|
Wang S, Wu L, Wang L, Zhou J, Ma H, Chen D. Hydrothermal Pretreatment of KOH for the Preparation of PAC and Its Adsorption on TC. MATERIALS (BASEL, SWITZERLAND) 2023; 16:4966. [PMID: 37512241 PMCID: PMC10381690 DOI: 10.3390/ma16144966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
The environment has been heavily contaminated with tetracycline (TC) due to its excessive use; however, activated carbon possessing well-developed pores can effectively adsorb TC. This study synthesized pinecone-derived activated carbon (PAC) with high specific surface area (1744.659 cm2/g, 1688.427 cm2/g) and high adsorption properties (840.62 mg/g, 827.33 mg/g) via hydrothermal pretreatment methods utilizing pinecones as precursors. The results showed that PAC treated with 6% KOH solution had excellent adsorption properties. It is found that the adsorption process accords with the PSO model, and a large amount of C=C in PAC provides the carrier for π-πEDA interaction. The results of characterization and the isothermal model show that TC plays a key role in the adsorption process of PAC. It is concluded that the adsorption process of TC on PAC prepared by hydrothermal pretreatment is mainly pore filling and π-πEDA interaction, which makes it a promising adsorbent for TC adsorption.
Collapse
Affiliation(s)
- Shouqi Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Linkai Wu
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liangcai Wang
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianbin Zhou
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
- Joint International Research Laboratory of Biomass Energy and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huanhuan Ma
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dengyu Chen
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
11
|
Wang Q, Zuo W, Tian Y, Kong L, Cai G, Zhang H, Li L, Zhang J. Functionally-designed floatable amino-modified ZnLa layered double hydroxides/cellulose acetate beads for tetracycline removal: Performance and mechanism. Carbohydr Polym 2023; 311:120752. [PMID: 37028855 DOI: 10.1016/j.carbpol.2023.120752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/01/2023] [Accepted: 02/23/2023] [Indexed: 03/04/2023]
Abstract
The over-reliance on tetracycline antibiotics (TC) in the animal husbandry and medical field has seriously affected the safety of the ecological environment. Therefore, how to effectively treat tetracycline wastewater has always been a long-term global challenge. Here, we developed a novel polyethyleneimine (PEI)/Zn-La layered double hydroxides (LDH)/cellulose acetate (CA) beads with cellular interconnected channels to strengthen the TC removal. The results of the exploration on its adsorption properties illustrated that the adsorption process exhibited a favorable correlation with the Langmuir model and the pseudo-second-order kinetic model, namely monolayer chemisorption. Among the many candidates, the maximum adsorption capacity of TC by 10 %PEI-0.8LDH/CA beads was 316.76 mg/g. Apart from that, the effects of pH, interfering species, actual water matrix and recycling on the adsorption of TC by PEI-LDH/CA beads were also analyzed to verify their superior removal capability. The potential for industrial-scale applications was expanded through fixed-bed column experiments. The proven adsorption mechanisms mainly included electrostatic interaction, complexation, hydrogen bonding, n-π EDA effect and cation-π interaction. The self-floating high-performance PEI-LDH/CA beads exploited in this work provided fundamental support for the practical application of antibiotic-based wastewater treatment.
Collapse
Affiliation(s)
- Qinyu Wang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Wei Zuo
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Yu Tian
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lingchao Kong
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, China
| | - Guiyuan Cai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haoran Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lipin Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jun Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
12
|
Arni LA, Hapiz A, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Jawad AH. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism. Int J Biol Macromol 2023:125086. [PMID: 37247708 DOI: 10.1016/j.ijbiomac.2023.125086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
In this study, a magnetic chitosan grafted-benzaldehyde (CS-BD/Fe3O4) was hydrothermally prepared using benzaldehyde as a grafting agent to produce a promising adsorbent for the removal of acid red 88 (AR88) dye. The CS-BD/Fe3O4 was characterized by infrared spectroscopy, surface area analysis, scanning electron microscopy-energy dispersive X-ray, vibrating sample magnetometry, powder X-ray diffraction, CHN elemental analysis, and point of zero charge (pHPZC). The Box-Behnken design (BBD) was adopted to study the role of variables that influence AR88 dye adsorption (A: CS-BD/Fe3O4 dose (0.02-0.1 g), B: pH (4-10), and time C: (10-90 min)). The ANOVA results of the BBD model indicated that the F-value for the AR88 removal was 22.19 %, with the corresponding p-value of 0.0002. The adsorption profiles at equilibrium and dynamic conditions reveal that the Temkin model and the pseudo-first-order kinetics model provide an adequate description of the isotherm results, where the maximum adsorption capacity (qmax) with the AR88 dye was 154.1 mg/g. Several mechanisms, including electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding, regulate the adsorption of AR88 dyes onto CS-BD/Fe3O4 surface. As a result, this research indicates that the CS-BD/Fe3O4 can be utilized as an effective and promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
13
|
Ayati A, Tanhaei B, Beiki H, Krivoshapkin P, Krivoshapkina E, Tracey C. Insight into the adsorptive removal of ibuprofen using porous carbonaceous materials: A review. CHEMOSPHERE 2023; 323:138241. [PMID: 36841446 DOI: 10.1016/j.chemosphere.2023.138241] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/23/2023] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Over the last decade, the removal of pharmaceuticals from aquatic bodies has garnered substantial attention from the scientific community. Ibuprofen (IBP), a non-steroidal anti-inflammatory drug, is released into the environment in pharmaceutical waste as well as medical, hospital, and household effluents. Adsorption technology is a highly efficient approach to reduce the IBP in the aquatic environment, particularly at low IBP concentrations. Due to the exceptional surface properties of carbonaceous materials, they are considered ideal adsorbents for the IBP removal of, with high binding capacity. Given the importance of the topic, the adsorptive removal of IBP from effluent using various carbonaceous adsorbents, including activated carbon, biochar, graphene-based materials, and carbon nanostructures, has been compiled and critically reviewed. Furthermore, the adsorption behavior, binding mechanisms, the most effective parameters, thermodynamics, and regeneration methods as well as the cost analysis were comprehensively reviewed for modified and unmodified carbonaceous adsorbents. The compiled studies on the IBP adsorption shows that the IBP uptake of some carbon-based adsorbents is significantly than that of commercial activated carbons. In the future, much attention is needed for practical utilization and upscaling of the research findings to aid the management and sustainability of water resource.
Collapse
Affiliation(s)
- Ali Ayati
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia.
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Hossein Beiki
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Pavel Krivoshapkin
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Elena Krivoshapkina
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| | - Chantal Tracey
- EnergyLab, ITMO University, Lomonosova Street 9, Saint Petersburg, 191002, Russia
| |
Collapse
|
14
|
Zhang W, Xu Y, Mu X, Li S, Liu X, Lei Z. Research Progress of Polysaccharide-Based Natural Polymer Hydrogels in Water Purification. Gels 2023; 9:gels9030249. [PMID: 36975698 PMCID: PMC10048097 DOI: 10.3390/gels9030249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/13/2023] [Accepted: 03/17/2023] [Indexed: 03/29/2023] Open
Abstract
The pollution and scarcity of freshwater resources are global problems that have a significant influence on human life. It is very important to remove harmful substances in the water to realize the recycling of water resources. Hydrogels have recently attracted attention due to their special three-dimensional network structure, large surface area, and pores, which show great potential for the removal of pollutants in water. In their preparation, natural polymers are one of the preferred materials because of their wide availability, low cost, and easy thermal degradation. However, when it is directly used for adsorption, its performance is unsatisfactory, so it usually needs to be modified in the preparation process. This paper reviews the modification and adsorption properties of polysaccharide-based natural polymer hydrogels, such as cellulose, chitosan, starch, and sodium alginate, and discusses the effects of their types and structures on performance and recent technological advances.
Collapse
Affiliation(s)
- Wenxu Zhang
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Yan Xu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xuyang Mu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Sijie Li
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoming Liu
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| | - Ziqiang Lei
- Key Laboratory of Eco-Functional Polymer Materials of the Ministry of Education, Northwest Normal University, Lanzhou 730070, China
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
- Key Laboratory of Eco-Environmental Polymer Materials of Gansu Province, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
15
|
Valizadeh K, Bateni A, Sojoodi N, Rafiei R, Behroozi AH, Maleki A. Preparation and characterization of chitosan-curdlan composite magnetized by zinc ferrite for efficient adsorption of tetracycline antibiotics in water. Int J Biol Macromol 2023; 235:123826. [PMID: 36828094 DOI: 10.1016/j.ijbiomac.2023.123826] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/10/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
Tetracycline (TC) antibiotic-related water pollution directly threatens human health and ecosystems. Here, a zinc ferrite/chitosan-curdlan (ZNF/CHT-CRD) magnetic composite was prepared via a co-precipitation method to be used as a novel, green adsorbent for TC removal from water. Benefiting from a multitude of functional groups, CRD was first crosslinked with CHT and then magnetized with ZNF to provide an easy separation from the solution with an external magnetic force. The successful synthesis and magnetization of the composite were verified with different characterization techniques. The effect of solution pH and composite dosage was carefully evaluated. The optimum solution pH and composite dosage were 6 and 0.65 g/L, respectively, with complete TC removal. The adsorption process by the magnetic composite followed the pseudo-first-order kinetics and Langmuir isotherm models. The maximum adsorption capacity determined from the Langmuir model was 371.42 mg/g at 328 K. Thermodynamic parameters indicated endothermic and spontaneous adsorption. Meanwhile, the composite could be readily separated from the aqueous solution thanks to its magnetic property. Then, it was regenerated with acetone and ethanol to be reused for five more successive cycles. Interestingly, the prepared adsorbent was highly stable and performant in removing TC, maintaining approximately 90 % of its first-cycle adsorption capacity. The adsorption mechanism was primarily attributed to electrostatic and hydrogen bonding attractions. Overall, the currently developed adsorbent could be a more favorable, efficient, and cost-effective candidate than other magnetic chitosan-based composites. These features make it applicable for treating water contaminated with various pharmaceutical pollutants with high separation efficiency and easy recovery under successive adsorption-desorption cycles.
Collapse
Affiliation(s)
- Kamran Valizadeh
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Bateni
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Sojoodi
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Rana Rafiei
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, Iran
| | - Amir Hossein Behroozi
- School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
16
|
Benettayeb A, Seihoub FZ, Pal P, Ghosh S, Usman M, Chia CH, Usman M, Sillanpää M. Chitosan Nanoparticles as Potential Nano-Sorbent for Removal of Toxic Environmental Pollutants. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:447. [PMID: 36770407 PMCID: PMC9920024 DOI: 10.3390/nano13030447] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Adsorption is the most widely used technique for advanced wastewater treatment. The preparation and application of natural renewable and environmentally friendly materials makes this process easier and more profitable. Chitosan is often used as an effective biomaterial in the adsorption world because of its numerous functional applications. Chitosan is one of the most suitable and functionally flexible adsorbents because it contains hydroxyl (-OH) and amine (-NH2) groups. The adsorption capacity and selectivity of chitosan can be further improved by introducing additional functions into its basic structure. Owing to its unique surface properties and adsorption ability of chitosan, the development and application of chitosan nanomaterials has gained significant attention. Here, recent research on chitosan nanoparticles is critically reviewed by comparing various methods for their synthesis with particular emphasis on the role of experimental conditions, limitations, and applications in water and wastewater treatment. The recovery of pollutants using magnetic nanoparticles is an important treatment process that has contributed to additional development and sustainable growth. The application of such nanoparticles in the recovery metals, which demonstrates a "close loop technology" in the current scenarios, is also presented in this review.
Collapse
Affiliation(s)
- Asmaa Benettayeb
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Fatima Zohra Seihoub
- Laboratoire de Génie Chimique et Catalyse Hétérogène, Département de Génie Chimique, Université de Sciences et de la Technologie-Mohamed Boudiaf, USTO-MB, BP 1505 EL-M’NAOUAR, Oran 31000, Algeria
| | - Preeti Pal
- Accelerated Cleaning Systems India Private Limited, Sundervan Complex, Andheri West, Mumbai 400053, India
| | - Soumya Ghosh
- Department of Genetics, Faculty of Natural and Agricultural Sciences, University of the Free State, Bloemfontein 9301, South Africa
| | - Muhammad Usman
- School of Civil Engineering, Hamburg University of Technology, Am Schwarzenberg-Campus 3, 20173 Hamburg, Germany
| | - Chin Hua Chia
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Muhammad Usman
- PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research, Sultan Qaboos University, Al-Khoud, Muscat 123, Oman
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, Doornfontein 2028, South Africa
- School of Chemical and Metallurgical Engineering, University of the Witwatersrand, Johannesburg 2050, South Africa
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- School of Resources and Environment, University of Electronic Science and Technology of China (UESTC), No. 2006, Xiyuan Ave., West High-Tech Zone, Chengdu 611731, China
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| |
Collapse
|
17
|
Highly Efficient Adsorption of Tetracycline Using Chitosan-Based Magnetic Adsorbent. Polymers (Basel) 2022; 14:polym14224854. [PMID: 36432981 PMCID: PMC9696233 DOI: 10.3390/polym14224854] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Herein, tetracycline adsorption employing magnetic chitosan (CS·Fe3O4) as the adsorbent is reported. The magnetic adsorbent was synthesized by the co-precipitation method and characterized through FTIR, XRD, SEM, and VSM analyses. The experimental data showed that the highest maximum adsorption capacity was reached at pH 7.0 (211.21 mg g-1). The efficiency of the magnetic adsorbent in tetracycline removal was dependent on the pH, initial concentration of adsorbate, and the adsorbent dosage. Additionally, the ionic strength showed a significant effect on the process. The equilibrium and kinetics studies demonstrate that Sips and Elovich models showed the best adjustment for experimental data, suggesting that the adsorption occurs in a heterogeneous surface and predominantly by chemical mechanisms. The experimental results suggest that tetracycline adsorption is mainly governed by the hydrogen bonds and cation-π interactions due to its pH dependence as well as the enhancement in the removal efficiency with the magnetite incorporation on the chitosan surface, respectively. Thermodynamic parameters indicate a spontaneous and exothermic process. Finally, magnetic chitosan proves to be efficient in TC removal even after several adsorption/desorption cycles.
Collapse
|
18
|
Shahinpour A, Tanhaei B, Ayati A, Beiki H, Sillanpää M. Binary dyes adsorption onto novel designed magnetic clay-biopolymer hydrogel involves characterization and adsorption performance: Kinetic, equilibrium, thermodynamic, and adsorption mechanism. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
19
|
Ao W, Qu J, Yu H, Liu Y, Liu C, Fu J, Dai J, Bi X, Yuan Y, Jin Y. TiO 2/activated carbon synthesized by microwave-assisted heating for tetracycline photodegradation. ENVIRONMENTAL RESEARCH 2022; 214:113837. [PMID: 35810812 DOI: 10.1016/j.envres.2022.113837] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 06/15/2023]
Abstract
A furfural residue-derived activated carbon (AC) supported black-TiO2 photocatalyst was successfully prepared by ultrasonic-assisted sol-gel treatment (USG) and solvothermal treatment (ST) combined with microwave-assisted heating (MH). The prepared composites were characterized and evaluated based on the degradation of tetracycline hydrochloride (TC) under ultraviolet (UV) illumination. The average TiO2 nanoparticle size of the as-synthesized catalysts was between 9 and 11 nm. The bandgap of TiO2-USGM was 1.6 eV, much lower than that of other reference catalysts. Organic carbon and AC in the catalyst play positive roles in reducing the band gap (e.g. 1.6∼2.6 eV) and improving visible-light absorption. The oxygen vacancies are responsible for UV-visible absorption. Adding AC into black TiO2 resulted in a lower degree of recombination of photogenerated electrons. Mott-Schottky plots showed that AC-containing TiO2@AC-STM reduced the value of conduction band value from -0.59 eV to -0.24 eV, which is beneficial to photogenerated electrons. Compared with TiO2, the Ti-O-C and Ti-C- in TiO2@AC remarkably improved the adsorption and catalytic efficiency of TC. In a near-neutral pH environment, TiO2@AC-STM and TiO2@AC-USGM exhibited high removal efficiencies (88.0% and 75.7%, respectively) and degradation rates (0.0418 and 0.0302 μmol/g/s, respectively) at a catalyst load of 0.25 g/L. Notably, the catalyst can be effectively used over a wide range of pH (6-9). The solution pH after treatment was close to neutral, which is advantageous for wastewater treatment. The activation energies were found to be approximately 3.47 kJ/mol. The thermodynamic parameters showed that the photodegradation process was non-spontaneous and endothermic. Based on the trapping experiments, O2⋅- was mainly responsible for TC photodegradation over TiO2@AC-STM, followed by h+. The TC degradation pathways and catalyst stability were also investigated. Biomass-derived carbon-supported catalysts have great potential for waste biomass utilization as green, and low-cost catalysts.
Collapse
Affiliation(s)
- Wenya Ao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Junshen Qu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Hejie Yu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yang Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Chenglong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jie Fu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Jianjun Dai
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China.
| | - Xiaotao Bi
- Clean Energy Research Centre, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
| | - Yanxin Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| | - Yajie Jin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Organic-Inorganic Composites, College of Chemical Engineering, Beijing University of Chemical Technology, 15 Beisanhuan East Road, Chaoyang District, Beijing, 100029, China
| |
Collapse
|
20
|
Zhang Y, Wang L, Lu L, Liu M, Yuan Z, Yang L, Liu C, Huang S, Rao Y. Highly efficient decontamination of tetracycline and pathogen by a natural product-derived Emodin/HAp photocatalyst. CHEMOSPHERE 2022; 305:135401. [PMID: 35738405 DOI: 10.1016/j.chemosphere.2022.135401] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
To address the water pollution induced by pharmaceuticals, especially antibiotics, and pathogens, natural product emodin, a traditional Chinese medicine with the characteristic large π-conjugation anthraquinone structure, was used to rationally develop a novel Emodin/HAp photocatalyst by integrating with a thermally stable and recyclable support material hydroxyapatite (HAp) through a simple preparation method. It was found that its photocatalytic activity to generate reactive oxygen species (ROS) was greatly improved due to the migration of photogenerated electrons and holes between emodin and HAp upon visible light irradiation. Thus, this Emodin/HAp photocatalyst not only quickly photodegraded tetracycline with 99.0% removal efficiency but also exhibited complete photodisinfection of pathogenic bacteria Staphylococcus aureus upon visible light irradiation. Therefore, this study offers a new route for the design and preparation of multifunctional photocatalysts using widely available natural products for environmental remediation.
Collapse
Affiliation(s)
- Yan Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Lijun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Liushen Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Meiling Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Zhenbo Yuan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Lifeng Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, PR China
| | - Changmei Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
| | - Shuping Huang
- College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, PR China
| | - Yijian Rao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China.
| |
Collapse
|
21
|
Floatable cellulose acetate beads embedded with flower-like zwitterionic binary MOF/PDA for efficient removal of tetracycline. J Colloid Interface Sci 2022; 620:333-345. [DOI: 10.1016/j.jcis.2022.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/30/2022] [Accepted: 04/03/2022] [Indexed: 12/12/2022]
|
22
|
Roy S, Ahmaruzzaman M. Ionic liquid based composites: A versatile materials for remediation of aqueous environmental contaminants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115089. [PMID: 35525038 DOI: 10.1016/j.jenvman.2022.115089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/01/2022] [Accepted: 04/14/2022] [Indexed: 06/14/2023]
Abstract
Water pollution is one of the most aggravated problems threatening the sustainability of human race and other life forms due to the rapid pace of civilization and industrialization. A long history exists of release of hazardous pollutants into the water bodies due to selfish human activities since the Industrial Revolution, but no effort has been completely successful in curbing the activities that result in the degradation of our environment. These pollutants are harmful, carcinogenic and have adverse health effects to all forms of life. Thus, remarkable efforts have been geared up to obtain clean water by exploiting science and technology. The application of Ionic liquids (ILs) as sustainable materials have received widespread attention since the last decade. Their interesting properties, simplicity in operation and satisfactory binding capacities in elimination of the contaminants makes them a valuable prospect to be utilized in wastewater treatment. Immobilizing and grafting the solid supports with ILs have fetched efficient results to exploit their potential in the adsorptive removal processes. This review provides an understanding of the recent developments and outlines the possible utility of IL based nano adsorbents in the removal of organic compounds, dyes and heavy metal ions from aqueous medium. Effect of several parameters such as sorbent dosage, pH and temperature on the removal efficiency has also been discussed. Moreover, the adsorption isotherms, thermodynamics and mechanism are comprehensively studied. It is envisioned that the literature gathered in this article will guide the budding scientists to put their interest in this area of research in the days to come.
Collapse
Affiliation(s)
- Saptarshi Roy
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
23
|
Karaman C, Karaman O, Show PL, Orooji Y, Karimi-Maleh H. Utilization of a double-cross-linked amino-functionalized three-dimensional graphene networks as a monolithic adsorbent for methyl orange removal: Equilibrium, kinetics, thermodynamics and artificial neural network modeling. ENVIRONMENTAL RESEARCH 2022; 207:112156. [PMID: 34599897 DOI: 10.1016/j.envres.2021.112156] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 09/24/2021] [Indexed: 05/17/2023]
Abstract
Herein, it is aimed to develop a high-performance monolithic adsorbent to be utilized in methyl orange (MO) adsorption. Therefore, amino-functionalized three-dimensional graphene networks (3D-GNf) fulfilling the requirements of reusability and high capacity have been fabricated via hydrothermal self-assembly approach followed by a double-crosslinking strategy. The potential utilization of 3D-GNf as an adsorbent for removal MO has been assessed using both batch-adsorption studies and an artificial neural network (ANN) approach. Graphene oxide sheets have been amino-functionalized and cross-linked, by ethylenediamine (EDA) during hydrothermal treatment, following the glutaraldehyde has used as a double-crosslinking agent to facilitate the crosslinking of architecture. The successful fabrication of 3D-GNf has been confirmed by field-emission scanning electron microscopy (FESEM), Fourier transform infrared (FT-IR), Raman and X-ray photoelectron spectroscopy (XPS). Moreover, N2 adsorption/desorption isotherms have revealed the high specific surface area (1015 m2 g-1) with high pore volume (1.054 cm3 g-1) and hierarchical porous structure of 3D-GNf. The effect of initial concentration, contact time, and temperature on adsorption capacity have been thoroughly studied, and the kinetics, isotherms, and thermodynamics of MO adsorption have been modelled. The MO adsorption has been well defined by the pseudo-second-order kinetic model and Langmuir isotherm model with a monolayer adsorption capacity of 270.27 mg g-1 at 25 °C. The thermodynamic findings have revealed MO adsorption has occurred spontaneously with an endothermic process. The Levenberg-Marquardt backpropagation algorithm has been implemented to train the ANN model, which has used the activation functions of tansig and purelin functions at the hidden and output layers, respectively. An optimum ANN model with high-performance metrics (coefficient of determination, R2 = 0.9995; mean squared error, MSE = 0.0008) composed of three hidden layers with 5 neurons in each layer was constructed to forecast MO adsorption. The findings have shown that experimental results are consistent with ANN-based data, implying that the suggested ANN model may be used to forecast cationic dye adsorption.
Collapse
Affiliation(s)
- Ceren Karaman
- Akdeniz University, Vocational School of Technical Sciences, Department of Electricity and Energy, Antalya, 07070, Turkey.
| | - Onur Karaman
- Akdeniz University, Vocational School of Health Services, Department of Medical Services and Techniques, Antalya, 07070, Turkey.
| | - Pau-Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, 210037, Jiangsu, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, PR China
| | - Hassan Karimi-Maleh
- Department of Chemical Engineering, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
24
|
Abd El-Monaem EM, Eltaweil AS, Elshishini HM, Hosny M, Abou Alsoaud MM, Attia NF, El-Subruiti GM, Omer AM. Sustainable adsorptive removal of antibiotic residues by chitosan composites: An insight into current developments and future recommendations. ARAB J CHEM 2022; 15:103743. [PMID: 35126797 PMCID: PMC8800501 DOI: 10.1016/j.arabjc.2022.103743] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/24/2022] [Indexed: 01/25/2023] Open
Abstract
During COVID-19 crisis, water pollution caused by pharmaceutical residuals have enormously aggravated since millions of patients worldwide are consuming tons of drugs daily. Antibiotics are the preponderance pharmaceutical pollutants in water bodies that surely cause a real threat to human life and ecosystems. The excellent characteristics of chitosan such as nontoxicity, easy functionality, biodegradability, availability in nature and the abundant hydroxyl and amine groups onto its backbone make it a promising adsorbent. Herein, we aimed to provide a comprehensive overview of recent published research papers regarding the removal of antibiotics by chitosan composite-based adsorbents. The structure, ionic form, optimum removal pH and λmax of the most common antibiotics including Tetracycline, Ciprofloxacin, Amoxicillin, Levofloxacin, Ceftriaxone, Erythromycin, Norfloxacin, Ofloxacin, Doxycycline, Cefotaxime and Sulfamethoxazole were summarized. The development of chitosan composite-based adsorbents in order to enhance their adsorption capacity, reusability and validity were presented. Moreover, the adsorption mechanisms of these antibiotics were explored to provide more information about adsorbate-adsorbent interactions. Besides the dominant factors on the adsorption process including pH, dosage, coexisting ions, etc. were discussed. Moreover, conclusions and future recommendations are provided to inspire for further researches.
Collapse
Affiliation(s)
- Eman M Abd El-Monaem
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | | | - Hala M Elshishini
- Department of Environmental Studies, Institute of Graduate Studies and Research, Alexandria University, 163, Horrya Avenue, Alexandria, Egypt
| | - Mohamed Hosny
- Green Technology Group, Environmental Sciences Department, Faculty of Science, Alexandria University, 21511 Alexandria, Egypt
| | - Mohamed M Abou Alsoaud
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| | - Nour F Attia
- Fire Protection Laboratory, Chemistry Division, National Institute for Standards, 136, Giza 12211, Egypt
| | - Gehan M El-Subruiti
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M Omer
- Polymer Materials Research Department, Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934, Alexandria, Egypt
| |
Collapse
|
25
|
Afshar EA, Taher MA. New fabrication of CuFe2O4/PAMAM nanocomposites by an efficient removal performance for organic dyes: Kinetic study. ENVIRONMENTAL RESEARCH 2022; 204:112048. [PMID: 34536375 DOI: 10.1016/j.envres.2021.112048] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/01/2021] [Accepted: 09/05/2021] [Indexed: 06/13/2023]
Abstract
Today, removing pollutants from water sources is essential because of the population increase and the growing need for safe drinking water. Dyes are one of the most critical pollutants from industrial effluents such as paper and textile industries that profoundly affect the environment. There are several ways to remove environmental contaminants. Magnetic nanoparticles have a high ability to adsorb dyes. Of course, increasing the interaction between magnetic nanomaterials and pollutants is also essential, which can be done using porous materials such as dendrimers. In this work, the synthesis of CuFe2O4 magnetite nanoparticles within the polyamidoamine dendrimers structure was used as an efficient sorbent to remove both alizarin reds (ARS) and brilliant green (BG) dyes. Moreover, various parameters for dyes removal were studied. The optimum removal conditions were obtained for ARS within 30 min at a sorbent dose of 2 mg per 5 mL for the initial dye concentration of 7.0 ppm in pH 6 at 25 °C, and for BG within 45 min at a sorbent dose of 5 mg per 5 mL for the initial dye concentration of 17.0 ppm in pH 8 at 25 °C. At the optimum values of the above parameters, both dyes' removal efficiency was more than 97%. Also, the obtained results showed that the adsorption isotherm follows the Langmuir model and Temkin model for ARS and BG, respectively. This method was successfully used for the removal of both dyes in water samples.
Collapse
Affiliation(s)
- Elham Ashrafzadeh Afshar
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran; Young Research Societies, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Mohammad Ali Taher
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman, Iran.
| |
Collapse
|
26
|
Tabrizi SH, Tanhaei B, Ayati A, Ranjbari S. Substantial improvement in the adsorption behavior of montmorillonite toward Tartrazine through hexadecylamine impregnation. ENVIRONMENTAL RESEARCH 2022; 204:111965. [PMID: 34453900 DOI: 10.1016/j.envres.2021.111965] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In the present work, the surface of montmorillonite K10 was successfully modified by hexadecylamine surfactant (Mt-HDA) and its intercalation and characteristics were assessed by XRD, FTIR, SEM, EDX and BET methods. Also, its adsorption performance was systematically examined in the removal of Tartrazine (TZ), as a sulfonated azo dye model, from aqueous phase. Our results showed that the HDA modification remarkably improved the adsorption ability of montmorillonite toward TZ molecules. The highest adsorption efficiency was achieved >98% at the pH range of 4-6 within a fast process (less than 30 min). The maximum adsorption capacity Mt-HDA toward TZ molecules was found to be ~59 mg/g at 45 °C. The kinetic study indicated that the adsorption kinetic follows pseudo-second-order model, which shows the chemisorption process between Mt-HDA and TZ molecules. Besides, the adsorption isotherm showed the monolayer coverage of Mt-HDA surface adsorption sites, which was fitted with the Langmuir isotherm model in an exothermic process. The adsorption mechanism was studied.
Collapse
Affiliation(s)
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| |
Collapse
|
27
|
Ranjbari S, Ayati A, Tanhaei B, Al-Othman A, Karimi F. The surfactant-ionic liquid bi-functionalization of chitosan beads for their adsorption performance improvement toward Tartrazine. ENVIRONMENTAL RESEARCH 2022; 204:111961. [PMID: 34492277 DOI: 10.1016/j.envres.2021.111961] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
In this study, the ionic liquid (Aliquat-336) and anionic surfactant (cetyltrimethylammonium bromide, CTAB) bi-functionalized chitosan beads were prepared and characterised using different techniques, including FTIR, XRD, SEM, EDS and BET surface area analysis. The characteristic analysis confirmed the successful conjugation of chitosan beads with both surfactant and ionic liquid. The novel fabricated beads (CS-CTAB-AL) were efficiently employed, as a high-performance adsorbent, for the removal of Tartrazine (TZ), an anionic food dye, from polluted water. The optimum adsorption of TZ onto the CS-CTAB-AL was found at 2 g L-1 of adsorbent in the wide pH range of 4-11, whereas just 45 min was required to reach more than 90% adsorption efficiency in the studied conditions. Also, the adsorption and kinetic studies showed that the experimental data well fitted the pseudo-first-order kinetic model and the Langmuir isotherm model. The maximum adsorption capacity of prepared beads was found to be 45.95 mg g-1 at 45 °C. The adsorption properties of enabling CS-CTAB-AL conjugation introduced a new type of adsorbents, exploited the combination of ionic liquid and surfactant capabilities for wastewater treatment.
Collapse
Affiliation(s)
- Sara Ranjbari
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Amani Al-Othman
- Department of Chemical Engineering, American University of Sharjah, Sharjah, PO. Box 26666, United Arab Emirates
| | - Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| |
Collapse
|
28
|
Karimi S, Namazi H. Magnetic alginate/glycodendrimer beads for efficient removal of tetracycline and amoxicillin from aqueous solutions. Int J Biol Macromol 2022; 205:128-140. [PMID: 35181320 DOI: 10.1016/j.ijbiomac.2022.02.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/12/2022] [Indexed: 12/12/2022]
Abstract
The release of antibiotic drugs into aquatic environments is a serious environmental and health problem in recent years. Therefore, the development of potential adsorbents for the effective removal of tetracycline (TC) and amoxicillin (AMX) of aqueous media is of great importance. In this study, new alginate beads were successfully prepared by encapsulation of Fe3O4@maltose-functionalized triazine dendrimer in alginate (Alg/Fe3O4@C@TD) for the first time. The obtained beads were utilized as a well adsorbent for the removal of TC and AMX antibiotics from aqueous solutions by batch adsorption procedure. The characteristics of the synthesized beads were investigated using FT-IR, Zeta potential, SEM, XRD, EDX, VSM, and BET. The effects of various operation factors such as adsorbent dose, pH of the solution, contact time, antibiotic initial concentration, temperature, and ionic strength on the removal of antibiotics were studied. Moreover, Langmuir and Freundlich adsorption isotherm results showed that the Langmuir model fitted well for the adsorption of both antibiotics onto Alg/Fe3O4@C@TD beads. Based on the Langmuir model, the maximum adsorption capacity of TC and AMX onto Alg/Fe3O4@C@TD beads at 25 °C was 454.54 and 400 mg/g, respectively. Kinetic and thermodynamic studies also indicated that the TC and AMX adsorption were found to be well fitted with a pseudo-second-order kinetic model, feasible, endothermic, and spontaneous in nature. In addition, the Alg/Fe3O4@C@TD beads showed excellent reusability for removal from both antibiotics after six adsorption cycles. Overall, the obtained results suggest that Alg/Fe3O4@C@TD beads could be considered as a low-cost and eco-friendly adsorbent for antibiotic contaminants removal from aquatic media.
Collapse
Affiliation(s)
- Soheyla Karimi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran
| | - Hassan Namazi
- Research Laboratory of Dendrimers and Nanopolymers, Faculty of Chemistry, University of Tabriz, P.O. Box 51666, Tabriz, Iran; Research Center for Pharmaceutical Nanotechnology (RCPN), Tabriz University of Medical Science, Tabriz, Iran.
| |
Collapse
|
29
|
Fe3O4@Au-rGO Nanocomposite/Ionic Liquid Modified Sensor for Ultrasensitive and Selective Sensing of Doxorubicin. Top Catal 2022. [DOI: 10.1007/s11244-021-01504-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
30
|
Karimi F, Ayati A, Tanhaei B, Sanati AL, Afshar S, Kardan A, Dabirifar Z, Karaman C. Removal of metal ions using a new magnetic chitosan nano-bio-adsorbent; A powerful approach in water treatment. ENVIRONMENTAL RESEARCH 2022; 203:111753. [PMID: 34331923 DOI: 10.1016/j.envres.2021.111753] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/01/2021] [Accepted: 07/09/2021] [Indexed: 05/02/2023]
Abstract
In this study, a magnetic chitosan/Al2O3/Fe3O4 (M-Cs) nanocomposite was developed by ethylenediaminetetraacetic acid (EDTA) functionalization to enhance its adsorption behavior for the removal of Cd(II), Cu(II) and Zn(II) metal ions from aqueous solution. The results revealed that the EDTA functionalization of M-Cs increased its adsorption capacity ~9.1, ~5.6 and ~14.3 times toward Cu, Cd and Zn ions. The maximum adsorption capacity followed the order of Cd(II) > Cu(II) > Zn(II) and the maximum adsorption efficiency was achieved at pH of 5.3 with the removal percentage of 99.98, 93.69 and 83.81 %, respectively, for the removal of Cu, Cd and Zn ions. The metal ions adsorption kinetic obeyed pseudo-second-order equation and the Langmuir isothermal was found the most fitted model for their adsorption isothermal experimental data. In addition, the thermodynamic study illustrated that the adsorption process was exothermic and spontaneous in nature.
Collapse
Affiliation(s)
- Fatemeh Karimi
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Ali Ayati
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran.
| | - Afsaneh L Sanati
- Institute of Systems and Robotics, Department of Electrical and Computer Engineering, University of Coimbra, Polo II, 3030-290, Coimbra, Portugal
| | - Safoora Afshar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Alireza Kardan
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Zeynab Dabirifar
- Department of Chemical Engineering and Energy, Quchan University of Technology, Quchan, 9477177870, Iran
| | - Ceren Karaman
- Akdeniz University, Department of Electricity and Energy, Antalya, 07070, Turkey
| |
Collapse
|
31
|
Preigschadt IA, Bevilacqua RC, Netto MS, Georgin J, Franco DSP, Mallmann ES, Pinto D, Foletto EL, Dotto GL. Optimization of ketoprofen adsorption from aqueous solutions and simulated effluents using H 2SO 4 activated Campomanesia guazumifolia bark. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2122-2135. [PMID: 34363168 DOI: 10.1007/s11356-021-15668-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
This study used the bark of the forest species Campomanesia guazumifolia modified with H2SO4 to absorb the anti-inflammatory ketoprofen from aqueous solutions. FTIR spectra confirmed that the main bands remained after the chemical treatment, with the appearance of two new bands related to the elongation of the carbonyl group present in hemicellulose. Micrographs confirmed that the surface started to contain a new textural shape after acid activation, having new pores and cavities. The drug adsorption's optimum conditions were obtained by response surface methodology (RSM). The adsorption was favored at acidic pH (2). The dosage of 1 g L-1 was considered ideal, obtaining good indications of removal and capacity. The Elovich model very well represented the kinetic curves. The isotherm studies indicated that the increase in temperature negatively affected the adsorption of ketoprofen. A maximum adsorption capacity of 158.3 mg g-1 was obtained at the lower temperature of 298 K. Langmuir was the best-fit isotherm. Thermodynamic parameters confirmed the exothermic nature of the system (ΔH0 = -8.78 kJ mol-1). In treating a simulated effluent containing different drugs and salts, the removal values were 35, 50, and 80% at 15, 30, and 180 min, respectively. Therefore, the development of adsorbent from the bark of Campomanesia guazumifolia treated with H2SO4 represents a remarkable alternative for use in effluent treatment containing ketoprofen.
Collapse
Affiliation(s)
- Isadora A Preigschadt
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Raíssa C Bevilacqua
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Matias S Netto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Jordana Georgin
- Graduate Program in Civil Engineering, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Dison S P Franco
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Evandro S Mallmann
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Diana Pinto
- Department of Civil and Environmental, Universidad De La Costa, Calle 58 #55-66, 080002, Barranquilla, Atlántico, Colombia.
| | - Edson L Foletto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil
| | - Guilherme L Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, 97105-900, Brazil.
| |
Collapse
|
32
|
Liu M, Xie Z, Ye H, Li W, Shi W, Liu Y. Magnetic cross-linked chitosan for efficient removing anionic and cationic dyes from aqueous solution. Int J Biol Macromol 2021; 193:337-346. [PMID: 34710473 DOI: 10.1016/j.ijbiomac.2021.10.121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/19/2022]
Abstract
Herein, a novel magnetic cross-linked chitosan CS-BA@Fe3O4 was rationally synthesized by cross-linked with epichlorohydrin and coated with Fe3O4 to the acylated chitosan, which was prepared by the reaction of chitosan with benzenetricarboxylic anhydride. The as-obtained absorbent was characterized by FTIR, XRD, VSM, TGA, TEM, BET, SEM and EDS. The results showed that the maximum adsorption capacities of CR and CV were 471.46 ± 16.97 mg/g and 515.91 ± 25.12 mg/g at 318.15 K, respectively. The main adsorption mechanisms were H-bonding and electrostatic interaction. The kinetic data were in good agreement with the pseudo-second-order model and closed to adsorption equilibrium at 30 min. Thermodynamic studies showed that the adsorption on CS-BA@Fe3O4 were spontaneous and endothermic. More importantly, the adsorbent exhibited excellent regeneration properties after 6 cycles and remarkable stability under harsh environments including strong acid, strong alkali, multi-salt and mixed dyes conditions. Therefore, abundant efforts revealed a broad application prospect of CS-BA@Fe3O4 in water remediation.
Collapse
Affiliation(s)
- Minyao Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Zhengfeng Xie
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China.
| | - Hao Ye
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Li
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wei Shi
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Yucheng Liu
- Oil & Gas Field Applied Chemistry Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China; Research Institute of Industrial Hazardous Waste Disposal and Resource Utilization, Southwest Petroleum University, Chengdu 610500, China
| |
Collapse
|
33
|
Rusu L, Grigoraș CG, Suceveanu EM, Simion AI, Dediu Botezatu AV, Istrate B, Doroftei I. Eco-Friendly Biosorbents Based on Microbial Biomass and Natural Polymers: Synthesis, Characterization and Application for the Removal of Drugs and Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4810. [PMID: 34500899 PMCID: PMC8432565 DOI: 10.3390/ma14174810] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 12/23/2022]
Abstract
Pharmaceuticals and dyes are a very important part of the nonbiodegradable or hard biodegradable substances present in wastewater. Microorganisms are already known to be effective biosorbents, but the use of free microbial cells involves difficulties in their separation from effluents and limits their application in wastewater treatment. Thus, this study aimed to develop biosorbents by immobilizing Saccharomyces cerevisiae, Saccharomyces pastorianus and Saccharomyces pastorianus residual biomass on natural polymers (alginate and chitosan) and to evaluate the biosorptive potential for removal of pharmaceuticals and dyes from water. Six types of biosorbents were synthesized and characterized by Scanning Electron Microscopy and Fourier Transform Infrared Spectroscopy techniques and their biosorptive capacities for three drugs (cephalexin, rifampicin, ethacridine lactate) and two dyes (orange II and indigo carmine) were evaluated. The obtained results show that the removal efficiency depends on the polymer type used for the immobilization. In case of alginate the removal efficiency is between 40.05% and 96.41% for drugs and between 27.83% and 58.29% for dyes, while in the case of chitosan it is between 40.83% and 77.92% for drugs and between 17.17% and 44.77% for dyes. In general, the synthesized biosorbents proved to be promising for the removal of drugs and dyes from aqueous solutions.
Collapse
Affiliation(s)
- Lăcrămioara Rusu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti, 600115 Bacău, Romania; (E.M.S.); (A.-I.S.)
| | - Cristina-Gabriela Grigoraș
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti, 600115 Bacău, Romania; (E.M.S.); (A.-I.S.)
| | - Elena Mirela Suceveanu
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti, 600115 Bacău, Romania; (E.M.S.); (A.-I.S.)
| | - Andrei-Ionuț Simion
- Department of Chemical and Food Engineering, Faculty of Engineering, “Vasile Alecsandri” University of Bacău, 157 Calea Mărăşeşti, 600115 Bacău, Romania; (E.M.S.); (A.-I.S.)
| | - Andreea Veronica Dediu Botezatu
- Department of Chemistry, Physics and Environment, Faculty of Sciences and Environment, “Dunărea de Jos” University of Galați, 111 Domnească Street, 800201 Galați, Romania;
| | - Bogdan Istrate
- Mechanical Engineering, Mechatronics and Robotics Department, Mechanical Engineering Faculty, “Gheorghe Asachi” Technical University of Iași, 43 Mangeron Blvd., 700050 Iași, Romania;
| | - Ioan Doroftei
- Mechanical Engineering, Mechatronics and Robotics Department, Mechanical Engineering Faculty, “Gheorghe Asachi” Technical University of Iași, 43 Mangeron Blvd., 700050 Iași, Romania;
| |
Collapse
|
34
|
Mota HP, Fajardo AR. Development of superabsorbent hydrogel based on Gum Arabic for enhanced removal of anxiolytic drug from water. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112455. [PMID: 33780815 DOI: 10.1016/j.jenvman.2021.112455] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The growing consumption of anxiolytic drugs like diazepam (DZP) has aggravated the problem of persistent organic pollutants in water. Due to its characteristics, the removal of DZP from water and wastewater is a challenging task. As an effort to deals with this issue, in this study, we report the development of a hydrogel based on Gum Arabic (GA) grafted with poly(acrylic acid) (GA-g-PAAc) to be used in the adsorptive removal of DZP from water. The hydrogel formation was confirmed by Fourier-transform infrared (FTIR) spectroscopy and thermal analysis (TGA/DTG) analyses. Images obtained by scanning electron microscopy (SEM) revealed that GA-g-PAAc hydrogel exhibits a porous morphology while swelling experiments suggest a superabsorbent characteristic (degree of swelling> 600%). From batch experiments, it was found that the removal of DZP reached remarkable percentages (>80%) before 300 min in moderate experimental conditions (pH 7, 25 °C, 150 mg of adsorbent). The adsorption of DZP on GA-g-PAAc followed the pseudo-first order kinetics, and the mechanism was described by the linear Langmuir isotherm. The maximum adsorption capacity (qmax) was calculated to be 15.16 mg g-1 (at 25 °C), which is comparable or superior to other adsorbent materials used in DZP removal. Reuse experiments showed that GA-g-PAAc keeps appreciable adsorption ability even after five reuse cycles. The results reported here suggest this superabsorbent hydrogel could be a promising adsorbent material to treat water contaminated by anxiolytic drugs, like DZP.
Collapse
Affiliation(s)
- Henrique P Mota
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão S/n, 96010-900, Pelotas, RS, Brazil
| | - André R Fajardo
- Laboratório de Tecnologia e Desenvolvimento de Compósitos e Materiais Poliméricos (LaCoPol), Universidade Federal de Pelotas (UFPel), Campus Capão do Leão S/n, 96010-900, Pelotas, RS, Brazil.
| |
Collapse
|
35
|
Parameter optimization of tetracycline removal by vanadium oxide nano cuboids. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126460] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
36
|
Minale M, Gu Z, Guadie A, Li Y, Wang Y, Meng Y, Wang X. Hydrous manganese dioxide modified poly(sodium acrylate) hydrogel composite as a novel adsorbent for enhanced removal of tetracycline and lead from water. CHEMOSPHERE 2021; 272:129902. [PMID: 33592510 DOI: 10.1016/j.chemosphere.2021.129902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 01/14/2021] [Accepted: 02/03/2021] [Indexed: 06/12/2023]
Abstract
In this study, hydrous manganese dioxide (HMO) modified poly(sodium acrylate) (PSA) hydrogel was produced for the first time to remove tetracycline(TC) and lead(Pb(II)) from water. The as-prepared composite was characterized using various techniques, such as SEM-EDS, FTIR, XRD, BET, and XPS, to elucidate the successful loading of HMO and analyze subsequent sorption mechanisms. Different influencing parameters such as adsorbent dose, initial concentration of adsorbates, reaction time, solution pH, and temperature were also investigated. The adsorption kinetic studies of both TC and Pb(II) removal indicated that equilibrium was achieved within 12 h, with respective removal rates of 91.9 and 99.5%, and the corresponding adsorption data were fitted to the second-order kinetics model. According to the adsorption isotherm studies, the sorption data of TC best fitted to the Langmuir isotherm model while the adsorption data of Pb(II) were explained by the Freundlich isotherm model. The maximum adsorption capacities of both TC and Pb(II) were found to be 475.8 and 288.7 mg/g, respectively, demonstrating excellent performances of the adsorbent. The uptake capacity of PSA-HMO was significantly influenced by the level of solution pH, in which optimum adsorption amount was realized at pH 4.0 in the TC and Pb(II) systems, respectively. Thermodynamic studies showed the process of TC and Pb(II) adsorptions were endothermic and spontaneous. Overall this study elucidated that PSA-HMO composite can be a promising candidate for antibiotics and heavy metal removal in water treatment applications.
Collapse
Affiliation(s)
- Mengist Minale
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Zaoli Gu
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Awoke Guadie
- Key Laboratory of Environmental Biotechnology Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, PR China; Department of Biology, College of Natural Sciences, Arba Minch University, Arba Minch 21, Ethiopia
| | - Yuan Li
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yuan Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Yuan Meng
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| | - Xuejiang Wang
- Institute of Environment for Sustainable Development, College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
37
|
Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115062] [Citation(s) in RCA: 175] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
38
|
Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F. Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal: Kinetic study. ENVIRONMENTAL RESEARCH 2021; 195:110809. [PMID: 33515581 DOI: 10.1016/j.envres.2021.110809] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 01/12/2021] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
In the present study, a novel 1-butyl-3-methylimidazolium bromide (BmImBr) impregnated chitosan beads were prepared and characterized using different methods, including XRD, FT-IR, EDX, SEM and BET. The FTIR analysis revealed that the BmImBr was successfully conjugated with the chitosan in the beads structure. The prepared beads were used as an efficient sorbent for the fast removal of methylene blue, as cationic dye model, from aqueous solution, whereas just 25 min was required to reach 86% removal efficiency. The increasing of BmImBr amount improved the adsorption performance of prepared beads. Also, it was found that the dye can be higher adsorbed on the beads surface by increasing the sorbent dosage and pH of solution, while the optimum dosage and pH were obtained 3 mg/L and 11, respectively. The kinetic study showed that the MB adsorption onto the CS-BmImBr beads follows the pseudo-fist order model and the intrinsic penetration controls the adsorption process. The properties of prepared chitosan- BmImBr IL conjugation confirmed that it can be exploited as an efficient adsorbent in the wastewater treatment.
Collapse
Affiliation(s)
- Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China; Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran; Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, 2028, Johannesburg, South Africa.
| | - Sara Ranjbari
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Bahareh Tanhaei
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Ali Ayati
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran
| | - Yasin Orooji
- College of Materials Science and Engineering, Nanjing Forestry University 159 Longpan Road, Nanjing, 210037, China.
| | - Marzieh Alizadeh
- Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Karimi
- Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.
| | - Sadegh Salmanpour
- Department of Chemistry, Sari Branch, Islamic Azad University, Sari, Iran
| | - Jalal Rouhi
- Department of Physics, Shahid Beheshti University, G.C., Evin, Tehran, 19839, Iran
| | - Mika Sillanpää
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Viet Nam; Faculty of Environment and Chemical Engineering, Duy Tan University, Da Nang, 550000, Viet Nam; School of Civil Engineering and Surveying, Faculty of Health, Engineering and Sciences, University of Southern Queensland, West Street, Toowoomba, 4350, QLD, Australia
| | - Fatih Sen
- Sen Research Group, Biochemistry Department, Faculty of Arts and Science, Dumlupınar University, Evliya Çelebi Campus, 43100, Kütahya, Turkey
| |
Collapse
|
39
|
Liu XQ, Zhao XX, Liu Y, Zhang TA. Review on preparation and adsorption properties of chitosan and chitosan composites. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-021-03626-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
40
|
Khoshkho SM, Tanhaei B, Ayati A, Kazemi M. Preparation and characterization of ionic and non-ionic surfactants impregnated κ-carrageenan hydrogel beads for investigation of the adsorptive mechanism of cationic dye to develop for biomedical applications. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.115118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Zhang H, Zhou L, Li J, Rong S, Jiang J, Liu S. Photocatalytic Degradation of Tetracycline by a Novel (CMC)/MIL-101(Fe)/β-CDP Composite Hydrogel. Front Chem 2021; 8:593730. [PMID: 33520930 PMCID: PMC7845018 DOI: 10.3389/fchem.2020.593730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/25/2020] [Indexed: 11/13/2022] Open
Abstract
Herein, we report a novel carboxymethyl cellulose (CMC)/MIL-101 (Fe)/poly(β-cyclodextrin) (β-CDP) hydrogel with high photocatalytic activity. β-CDP can significantly enhance the photoactivity of MIL-101(Fe) in the hydrogel prepared by a simple solvothermal method. The structure and property of this composite hydrogel were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and transmission electron microscopy. Tetracycline was selected as a model pharmaceutical antibiotic to evaluate the photocatalytic activity of the composite hydrogel under visible light irradiation and darkness, respectively. This composite hydrogel shows excellent activity for degrading pharmaceutical antibiotics under visible light irradiation. The increased photocatalytic activity can be attributed to β-CDP, which acts as a promoter and affords an efficient separation of photogenerated electron-hole pairs of MIL-101(Fe). Moreover, the composite hydrogel is shown to have good water retainability. The hydrogel is inexpensive and shows high photocatalytic activity. Hence, it can be used as an efficient photocatalytic material.
Collapse
Affiliation(s)
- Hui Zhang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Liang Zhou
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Sijia Rong
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Jianping Jiang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| | - Shengquan Liu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei, China
| |
Collapse
|
42
|
Tanhaei B, Ayati A, Iakovleva E, Sillanpää M. Efficient carbon interlayed magnetic chitosan adsorbent for anionic dye removal: Synthesis, characterization and adsorption study. Int J Biol Macromol 2020; 164:3621-3631. [DOI: 10.1016/j.ijbiomac.2020.08.207] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/22/2020] [Accepted: 08/27/2020] [Indexed: 11/29/2022]
|
43
|
Ge YM, Zhao XF, Xu JH, Liu JZ, Yang JS, Li SJ. Recyclable magnetic chitosan microspheres with good ability of removing cationic dyes from aqueous solutions. Int J Biol Macromol 2020; 167:1020-1029. [PMID: 33186645 DOI: 10.1016/j.ijbiomac.2020.11.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 11/09/2020] [Accepted: 11/09/2020] [Indexed: 11/15/2022]
Abstract
Sr3.8Fe25.7O70.4-chitosan magnetic microparticles (Sr3.8Fe25.7O70.4-CMNs) with a core-shell structure were synthesized, characterized and applied for the removal of two model cationic dyes. The results showed that these magnetic microparticles possess fast adsorption rate and high adsorption efficiency for both crystal violet (CV) and basic red 9 (BR9) at a temperature ranging 30 °C to 40 °C and suitable pH range (pH ≥ 7). The maximum removal efficiency for CV and BR9 attained to 94.5% and 97.5% in 30 min, which was significantly faster and higher than that of chitosan (<50% in 60 min) (P<0.01). And its maximum adsorption capacity for CV and BR9 reached 29.46 mg/g and 32.16 mg/g, respectively. The adsorption process of Sr3.8Fe25.7O70.4-CMNs follows the Langmuir isotherm with a high correlation coefficient (R2 > 0.97) and the pseudo-second-order model. Additionally, the synthesized Sr3.8Fe25.7O70.4-CMNs were easy to regeneration and reuse, and the removal rate remained above 90% after 5 recycle times. This study would provide a new more environmental friendly material and method for the treatment of wastewater containing toxic dyes.
Collapse
Affiliation(s)
- Ya-Ming Ge
- National Engineering Research Center For Marine Aquaculture, Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xue-Fang Zhao
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jia-Hui Xu
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Jun-Zhi Liu
- National Engineering Research Center For Marine Aquaculture, Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China; College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China.
| | - Jia-Shun Yang
- College of Marine Science and Technology, Zhejiang Ocean University, Zhoushan 316022, China
| | - Shi-Jie Li
- National Engineering Research Center For Marine Aquaculture, Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhejiang Ocean University, Zhoushan 316022, China.
| |
Collapse
|
44
|
Azamateslamtalab E, Madani M, Ramavandi B, Mohammadi R. Sonication alkaline-assisted preparation of Rhizopus oryzae biomass for facile bio-elimination of tetracycline antibiotic from an aqueous matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35792-35801. [PMID: 32601873 DOI: 10.1007/s11356-020-09713-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 06/11/2020] [Indexed: 06/11/2023]
Abstract
The present study aimed to remove tetracycline (TET) antibiotic molecule from an aqueous medium using adsorbents prepared from Rhizopus oryzae biomass. The TET adsorption process was discontinuous and the adsorbent biomass was crude and NaOH-sonication-modified Rhizopus oryzae fungi. Specific active surface area for crude and modified Rhizopus oryzae was 10.38 m2/g and 20.32 m2/g, respectively. The results showed that the maximum TET adsorption efficiency was determined at pH 4, temperature 25 °C, initial TET concentration 10 mg/L, contact time 80 min, and biomass quantity 2 g/L. The equilibrium behavior showed that the Langmuir model suitably described the process. The maximum TET adsorption capacity was determined to be 38.02 mg/g and 67.93 mg/g, respectively, indicating that the method of biomass modification promoted the bio-adsorption capacity. A higher correlation coefficient (R2) and lower RMSE for the pseudo-first-order kinetic than other models showed its ability to describe the behavior of TET bio-adsorption. The enthalpy thermodynamic parameter (ΔH°) for the TET adsorption process was determined - 63.847 kJ/mol and - 85.226 kJ/mol for the raw and modified Rhizopus oryzae, respectively. Therefore, it can be suggested that the biomass of Rhizopus oryzae especially the modified version can be effectively used for the TET removal from aqueous environments.
Collapse
Affiliation(s)
| | - Mahboobeh Madani
- Department of Microbiology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|