1
|
Abbasi M, Heath B, McGinness L. Advances in metformin-delivery systems for diabetes and obesity management. Diabetes Obes Metab 2024; 26:3513-3529. [PMID: 38984380 DOI: 10.1111/dom.15759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/11/2024]
Abstract
Metformin is a medication that is commonly prescribed to manage type 2 diabetes. It has been used for more than 60 years and is highly effective in lowering blood glucose levels. Recent studies indicate that metformin may have additional medical benefits beyond treating diabetes, revealing its potential therapeutic uses. Oral medication is commonly used to administer metformin because of its convenience and cost-effectiveness. However, there are challenges in optimizing its effectiveness. Gastrointestinal side effects and limitations in bioavailability have led to the underutilization of metformin. Innovative drug-delivery systems such as fast-dissolving tablets, micro/nanoparticle formulations, hydrogel and microneedles have been explored to optimize metformin therapy. These strategies enhance metformin dosage, targeting, bioavailability and stability, and provide personalized treatment options for improved glucose homeostasis, antiobesity and metabolic health benefits. Developing new delivery systems for metformin shows potential for improving therapeutic outcomes, broadening its applications beyond diabetes management and addressing unmet medical needs in various clinical settings. However, it is important to improve drug-delivery systems, addressing issues such as complexity, cost, biocompatibility, stability during storage and transportation, loading capacity, required technologies and biomaterials, targeting precision and regulatory approval. Addressing these limitations is crucial for effective, safe and accessible drug delivery in clinical practice. In this review, recent advances in the development and application of metformin-delivery systems for diabetes and obesity are discussed.
Collapse
Affiliation(s)
- Mehrnaz Abbasi
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| | - Braeden Heath
- Department of Biomedical Sciences, College of Sciences and Mathematics, Auburn University, Auburn, Alabama, USA
| | - Lauren McGinness
- Department of Nutritional Sciences, College of Human Sciences, Auburn University, Auburn, Alabama, USA
| |
Collapse
|
2
|
Uskoković V, Velie PN, Wu VM. Toward chronopharmaceutical drug delivery patches and biomaterial coatings for the facilitation of wound healing. J Colloid Interface Sci 2024; 659:355-363. [PMID: 38181699 DOI: 10.1016/j.jcis.2023.12.156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 12/10/2023] [Accepted: 12/27/2023] [Indexed: 01/07/2024]
Abstract
Implantation of a biomaterial entails a form of injury where the integration of the implant into the host tissue greatly depends on the proper healing of the wound. Wound healing, itself, consists of a number of physiological processes, each occurring within a characteristic time window. A composite, multilayered polymeric drug delivery carrier for adhesion to the wound site and its supply with molecules released at precise time windows at which the stages in the healing process that they target occur is conceptualized here. We also present a simplified version of one such multilayered composite fabricated by a combination of solvent casting and dip coating, comprising the base poly(ε-caprolactone) layer reinforced with hydroxyapatite nanoparticles, poly(glutamic acid) mesolayer and poly-l-lysine surface layer, each loaded with specific small molecules and released at moderately distinct timescales, partially matching the chronology of wound healing. To that end, the base layer proved suitable for the delivery of an anti-inflammatory molecule or an angiogenic agent, the mesolayer appeared appropriate for the delivery of an epithelialization promoter or a granulation factor, and the adhesive surface layer interfacing directly with the site of injury showed promise as a carrier of a vasodilator. The drug release mechanisms were diffusion-driven, suggesting that the drug/carrier interaction is a key determinant of the release kinetics, as important as the nature of the polymer and its hydrolytic degradation rate in the aqueous medium. Morphological and phase composition analyses were performed, along with the cell compatibility ones, demonstrating solid adhesion and proliferation of both transformed and primary fibroblasts on both surfaces of the composite films. The design of the multilayered composite drug delivery carriers presented here is prospective, but requires further upgrades to achieve the ideal of a perfect timing of the sequential drug release kinetics and a perfect resonance with the physiological processes defining the chronology of wound healing.
Collapse
Affiliation(s)
- Vuk Uskoković
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, USA; Department of Mechanical Engineering, San Diego State University, San Diego, CA 92182, USA.
| | - Pooja Neogi Velie
- Department of Bioengineering, University of Illinois, Chicago, IL 60607, USA
| | - Victoria M Wu
- Advanced Materials and Nanobiotechnology Laboratory, TardigradeNano LLC, Irvine, CA 92604, USA
| |
Collapse
|
3
|
Pirsa S, Hafezi K. Hydrocolloids: Structure, preparation method, and application in food industry. Food Chem 2023; 399:133967. [DOI: 10.1016/j.foodchem.2022.133967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/25/2022] [Accepted: 08/14/2022] [Indexed: 11/16/2022]
|
4
|
Zou L, Liu Q, Zhu D, Huang Y, Mao Y, Luo X, Liang Z. Experimental and Theoretical Studies of Ultrafine Pd-Based Biochar Catalyst for Dehydrogenation of Formic Acid and Application of In Situ Hydrogenation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17282-17295. [PMID: 35389607 DOI: 10.1021/acsami.2c00343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In this work, a novel "foaming" strategy uses sodium bicarbonate (NaHCO3) and ammonium oxalate ((NH4)2C2O4) as the foaming agent, turning biomass-derived carboxymethyl cellulose (CMC) into N-doped porous carbon. Highly active palladium nanoparticles (Pd NPs) immobilized on nitrogen-doped porous carbon (Pd@MC(2)-P) are produced through a phosphate-mediation approach. The phosphoric acid (H3PO4) becomes the key to the synthesis of highly dispersed ultrafine Pd NPs on active Pd-cluster-edge (the edge of the Pd-cluster-100 and Pd-cluster-111 surfaces). The Pd@MC(2)-P exhibits high activity for formic acid (FA) dehydrogenation with an initial TOFg of 971 h-1 at room temperature. The subsequent hydrogenation of phenol using FA as an in situ hydrogen source on Pd@MC(2)-P and the highly efficient hydrogenation of phenol to cyclohexanone reaches more than 90% selectivity and 80% conversion. Density functional theory (DFT) calculations reveal that the reduced H poisoning and more exposed (100) surface over Pd nanoparticles are the keys to the Pd nanoparticles' high activity.
Collapse
Affiliation(s)
- Liangyu Zou
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Qi Liu
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Daoyun Zhu
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Yangqiang Huang
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Yu Mao
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Xiao Luo
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| | - Zhiwu Liang
- Joint International Center for Carbon-Dioxide Capture and Storage (iCCS), Advanced Catalytic Engineering Research Center of the Ministry of Education, Provincial Hunan Key Laboratory for Cost-Effective Utilization of Fossil Fuel Aimed at Reducing Carbon-Dioxide Emissions, College of Chemistry and Chemical Engineering, Hunan University, Changsha, Hunan 410082, PR China
| |
Collapse
|
5
|
Wang L, Zhang C, Zhang J, Rao Z, Xu X, Mao Z, Chen X. Epsilon-poly-L-lysine: Recent Advances in Biomanufacturing and Applications. Front Bioeng Biotechnol 2021; 9:748976. [PMID: 34650962 PMCID: PMC8506220 DOI: 10.3389/fbioe.2021.748976] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/15/2021] [Indexed: 11/30/2022] Open
Abstract
ε-poly-L-lysine (ε-PL) is a naturally occurring poly(amino acid) of varying polymerization degree, which possesses excellent antimicrobial activity and has been widely used in food and pharmaceutical industries. To provide new perspectives from recent advances, this review compares several conventional and advanced strategies for the discovery of wild strains and development of high-producing strains, including isolation and culture-based traditional methods as well as genome mining and directed evolution. We also summarize process engineering approaches for improving production, including optimization of environmental conditions and utilization of industrial waste. Then, efficient downstream purification methods are described, including their drawbacks, followed by the brief introductions of proposed antimicrobial mechanisms of ε-PL and its recent applications. Finally, we discuss persistent challenges and future perspectives for the commercialization of ε-PL.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Chongyang Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jianhua Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xueming Xu
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
6
|
Guarnizo-Herrero V, Torrado-Salmerón C, Torres Pabón NS, Torrado Durán G, Morales J, Torrado-Santiago S. Study of Different Chitosan/Sodium Carboxymethyl Cellulose Proportions in the Development of Polyelectrolyte Complexes for the Sustained Release of Clarithromycin from Matrix Tablets. Polymers (Basel) 2021; 13:polym13162813. [PMID: 34451351 PMCID: PMC8400629 DOI: 10.3390/polym13162813] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/19/2022] Open
Abstract
This study investigated the combination of different proportions of cationic chitosan and anionic carboxymethyl cellulose (CMC) for the development of polyelectrolyte complexes to be used as a carrier in a sustained-release system. Analysis via scanning electron microscopy (SEM) Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and powder X-ray diffraction (PXRD) confirmed ionic interactions occur between the chitosan and carboxymethyl cellulose chains, which increases drug entrapment. The results of the dissolution study in acetate buffer (pH 4.2) showed significant increases in the kinetic profiles of clarithromycin for low proportions of chitosan/carboxymethyl cellulose tablets, while the tablets containing only chitosan had high relaxation of chitosan chains and disintegrated rapidly. The Korsmeyer–Peppas kinetic model for the different interpolymer complexes demonstrated that the clarithromycin transport mechanism was controlled by Fickian diffusion. These results suggest that the matrix tablets with different proportions of chitosan/carboxymethyl cellulose enhanced the ionic interaction and enabled the prolonged release of clarithromycin.
Collapse
Affiliation(s)
- Víctor Guarnizo-Herrero
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Carlos Torrado-Salmerón
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
| | - Norma Sofía Torres Pabón
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Guillermo Torrado Durán
- Department of Biomedical Science, Faculty of Pharmacy, University of Alcalá de Henares, Ctra Madrid-Barcelona Km 33,600, 28805 Madrid, Spain; (N.S.T.P.); (G.T.D.)
| | - Javier Morales
- Department of Science and Pharmaceutical Technology, Faculty of Chemical and Pharmaceutical Sciences, University of Chile, Santiago 8380494, Chile;
| | - Santiago Torrado-Santiago
- Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; (V.G.-H.); (C.T.-S.)
- Instituto Universitario de Farmacia Industrial, Complutense University, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Correspondence: ; Tel.: +34-091-394-1620
| |
Collapse
|
7
|
H. Aodah A, H. Fayed M, Alalaiwe A, B. Alsulays B, F. Aldawsari M, Khafagy ES. Design, Optimization, and Correlation of In Vitro/In Vivo Disintegration of Novel Fast Orally Disintegrating Tablet of High Dose Metformin Hydrochloride Using Moisture Activated Dry Granulation Process and Quality by Design Approach. Pharmaceutics 2020; 12:pharmaceutics12070598. [PMID: 32605039 PMCID: PMC7408287 DOI: 10.3390/pharmaceutics12070598] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/05/2023] Open
Abstract
Compression of cohesive, poorly compactable, and high-dose metformin hydrochloride into the orally disintegrating tablet (ODT) is challenging. The objective of this study was to develop metformin ODT using the moisture activated dry granulation (MADG) process. There are no reports in the literature regarding the development of ODT based on MADG technology. The feasibility of developing metformin ODT was assessed utilizing a 32 full factorial design to elucidate the influence of water amount (X1) and the amount of pregelatinized starch (PGS; X2) as independent variables on key granules and tablets’ characteristics. The prepared granules and tablets were characterized for granule size, bulk density, flow properties, tablets’ weight variation, breaking force, friability, capping tendency, in vitro and in vivo disintegration, and drug release. Regression analysis showed that X1 and X2 had a significant (p ≤ 0.05) impact on key granules and tablets’ properties with a predominant effect of the water amount. Otherwise, the amount of PGS had a pronounced effect on tablet disintegration. Optimized ODT was found to show better mechanical strength, low friability, and short disintegration time in the oral cavity. Finally, this technique is expected to provide better ODT for many kinds of high-dose drugs that can improve the quality of life of patients.
Collapse
Affiliation(s)
- Alhussain H. Aodah
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Correspondence: ; Tel.: +96-65-9910-8161
| | - Mohamed H. Fayed
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Kayyali Chair for Pharmaceutical Industries, Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - Bader B. Alsulays
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - Mohammed F. Aldawsari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
| | - El-Sayed Khafagy
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj 11942, Saudi Arabia; (M.H.F.); (A.A.); (B.B.A.); (M.F.A.); (E.-S.K.)
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|