1
|
Palamidi A, Koumentakou I, Michopoulou A, Bikiaris DN, Terzopoulou Z. Optimization of chitosan-gelatin-based 3D-printed scaffolds for tissue engineering and drug delivery applications. Int J Pharm 2024; 666:124776. [PMID: 39343329 DOI: 10.1016/j.ijpharm.2024.124776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The combination of biocompatible materials and advanced three-dimensional (3D) additive manufacturing technologies holds great potential in the development of finely tuned complex scaffolds with reproducible macro- and micro-structural characteristics for biomedical applications, such as tissue engineering and drug delivery. In this study, biocompatible printable inks based on chitosan, collagen and gelatin were developed and 3D-printed with a pneumatic-based extrusion printer. The printability of various chitosan-gelatin (CS-Gel) hydrogel inks was assessed by evaluating the quality of the printed constructs. The inks required an extrusion pressure of 150 ± 40 MPa with G22 and G25 nozzles for optimal printing. Inks with low chitosan concentrations (<4% w/v) exhibited poor printability, while inks with 4 % w/v chitosan and 1 % w/v gelatin (CG) demonstrated satisfactory extrusion and printing quality. The addition of collagen (0.1 % w/v) to the optimized ink (CGC) did not compromise printability. Post-printing stabilization using KOH produced self-supporting scaffolds with consistent morphological integrity, while weaker bases like NaOH/EtOH and ammonia vapors resulted in lower pore sizes and reduced structural stability. Water evaporation studies showed that neutralized samples had slower evaporation rates due to the strong intermolecular interactions formed during the neutralization process, contributing to a stable crosslinked network. FTIR spectra confirmed the formation of polyelectrolyte complexes in the CS-Gel and CS-Gel-Collagen blends, further enhancing structural stability. Swelling tests indicated that neutralized constructs maintained stability in different pH environments, with KOH-treated samples exhibiting the lowest swelling ratios and the highest structural stability. After optimizing the ink composition, 10 wt% Levofloxacin was loaded in the constructs as a model antibiotic and it's in vitro release rate was quantified. Drug loading was approximately 4 % for both ink compositions GC and CGC. CG Levo released over 80 % of levofloxacin within the first hour, reaching full release in 24 h, indicating inadequate control, while CGK Levo exhibited slower initial release (55 % in 15 min) followed by stabilized release after 4 h, likely due to controlled diffusion from expanded constructs. These findings demonstrate that the developed hydrogel inks and optimized printing parameters can produce scaffolds suitable for tissue engineering applications. Finally, the cell compatibility of the 3D-printed constructs was confirmed with MTT assay on fibroblasts and the antimicrobial activity of the drug-loaded constructs was tested against E. coli and S. aureus, showing an increase of the bacteria free zone from 8 ± 0.4 mm of the control against E. coli up to 16.4 ± 0.37 mm in the presence of the KOH-treated CG Levo printed construct.
Collapse
Affiliation(s)
- Artemis Palamidi
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, Greece; Laboratory of Industrial Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece.
| |
Collapse
|
2
|
Samiotaki C, Koumentakou I, Christodoulou E, Bikiaris ND, Vlachou M, Karavas E, Tourlouki K, Kehagias N, Barmpalexis P. Fabrication of PLA-Based Nanoneedle Patches Loaded with Transcutol-Modified Chitosan Nanoparticles for the Transdermal Delivery of Levofloxacin. Molecules 2024; 29:4289. [PMID: 39339284 PMCID: PMC11433958 DOI: 10.3390/molecules29184289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Current transdermal drug delivery technologies, like patches and ointments, effectively deliver low molecular weight drugs through the skin. However, delivering larger, hydrophilic drugs and macromolecules remains a challenge. In the present study, we developed novel transdermal nanoneedle patches containing levofloxacin-loaded modified chitosan nanoparticles. Chitosan was chemically modified with transcutol in three ratios (1/1, 1/2, 1/3, w/w), and the optimum ratio was used for nanoparticle fabrication via the ionic gelation method. The successful modification was confirmed using ATR-FTIR spectroscopy, while DLS results revealed that only the 1/3 ratio afforded suitably sized particles of 220 nm. After drug encapsulation, the particle size increased to 435 nm, and the final formulations were examined via XRD and an in vitro dissolution test, which suggested that the nanoparticles reach 60% release in a monophasic pattern at 380 h. We then prepared transdermal patches with pyramidal geometry nanoneedles using different poly(lactic acid)/poly(ethylene adipate) (PLA/PEAd) polymer blends of varying ratios, which were characterized in terms of morphology and mechanical compressive strength. The 90/10 blend exhibited the best mechanical properties and was selected for further testing. Ex vivo permeation studies proved that the nanoneedle patches containing drug-loaded nanoparticles achieved the highest levofloxacin permeation (88.1%).
Collapse
Affiliation(s)
- Christina Samiotaki
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Ioanna Koumentakou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Evi Christodoulou
- Laboratory of Polymer Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos D Bikiaris
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Marilena Vlachou
- Section of Pharmaceutical Technology, Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 15784 Athens, Greece
| | - Evangelos Karavas
- Pharmathen S.A., Pharmaceutical Industry, Dervenakion Str. 6, Pallini Attikis, 15351 Athens, Greece
| | | | - Nikolaos Kehagias
- Institute of Nanoscience and Nanotechnology, NCSR Demokritos, 15341 Paraskevi, Greece
| | - Panagiotis Barmpalexis
- Laboratory of Pharmaceutical Technology, Division of Pharmaceutical Technology, School of Pharmacy, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
3
|
Wang G, Li H, Shao X, Teng S, Wu Q. Design and development of pH-responsive levofloxacin-loaded metal-organic framework for the promising treatment of pediatric abdominal wound repair. Regen Ther 2024; 26:170-179. [PMID: 38911026 PMCID: PMC11192780 DOI: 10.1016/j.reth.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/24/2024] [Accepted: 05/09/2024] [Indexed: 06/25/2024] Open
Abstract
With over 9 million fatalities per year expected by 2030, infectious diseases will remain a significant burden on the world economy and cause high mortality rates. An excellent method to increase the bioactivity of levofloxacin (LEV) in pediatric abdominal wound repair is the finding of a stimuli-based drug delivery system (DDS). We designed and developed an LEV incorporated with zeolite imidazole framework-8 (ZIF-8) as a promising nanocarrier for wound healing applications. The spectral analysis and morphological analysis confirm the formation of our newly fabricated composites. Mouse embryonic fibroblast NIH3T3 cells, the cytotoxicity, cytocompatibility, and cell proliferation characteristics of LEV@ZIF-8 were evaluated in vitro. LEV@ZIF-8 composite considerably improved the biocompatibility against NIH3T3 cells after 72-h of exposure, according to in vitro experiments. Under acidic circumstances, the pH-responsive drug release studies exhibit superior LEV release, and in physiological circumstances, there is no unintended drug release. The LEV@ZIF-8 composite-treated cells demonstrate the most remarkable cell growth and migration method in a very short time, according to the results of the wound scratch experiment. The composite exposure concentration depended on inhibition against various microorganisms in the antibacterial activity testing. According to the study, LEV@ZIF-8 are appropriate and effective DDS for stimuli-based pediatric abdominal wound repair.
Collapse
Affiliation(s)
- Guoyan Wang
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Hongwei Li
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Xinhua Shao
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Shuisheng Teng
- Department of Pediatric General Surgery, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| | - Qiong Wu
- Department of Pediatric Respiratory Medicine, The First People's Hospital of Chengzhou, Chenzhou, 423000, China
| |
Collapse
|
4
|
Bîrcă AC, Gherasim O, Niculescu AG, Grumezescu AM, Vasile BȘ, Mihaiescu DE, Neacșu IA, Andronescu E, Trușcă R, Holban AM, Hudiță A, Croitoru GA. Infection-Free and Enhanced Wound Healing Potential of Alginate Gels Incorporating Silver and Tannylated Calcium Peroxide Nanoparticles. Int J Mol Sci 2024; 25:5196. [PMID: 38791232 PMCID: PMC11120750 DOI: 10.3390/ijms25105196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/01/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
The treatment of chronic wounds involves precise requirements and complex challenges, as the healing process cannot go beyond the inflammatory phase, therefore increasing the healing time and implying a higher risk of opportunistic infection. Following a better understanding of the healing process, oxygen supply has been validated as a therapeutic approach to improve and speed up wound healing. Moreover, the local implications of antimicrobial agents (such as silver-based nano-compounds) significantly support the normal healing process, by combating bacterial contamination and colonization. In this study, silver (S) and tannylated calcium peroxide (CaO2@TA) nanoparticles were obtained by adapted microfluidic and precipitation synthesis methods, respectively. After complementary physicochemical evaluation, both types of nanoparticles were loaded in (Alg) alginate-based gels that were further evaluated as possible dressings for wound healing. The obtained composites showed a porous structure and uniform distribution of nanoparticles through the polymeric matrix (evidenced by spectrophotometric analysis and electron microscopy studies), together with a good swelling capacity. The as-proposed gel dressings exhibited a constant and suitable concentration of released oxygen, as shown for up to eight hours (UV-Vis investigation). The biofilm modulation data indicated a synergistic antimicrobial effect between silver and tannylated calcium peroxide nanoparticles, with a prominent inhibitory action against the Gram-positive bacterial biofilm after 48 h. Beneficial effects in the human keratinocytes cultured in contact with the obtained materials were demonstrated by the performed tests, such as MTT, LDH, and NO.
Collapse
Affiliation(s)
- Alexandra Catalina Bîrcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Center for Advanced Research on New Materials, Products and Innovative Processes—CAMPUS Research Institute, National University of Science and Technology POLITEHNICA Bucharest, 060042 Bucharest, Romania
| | - Oana Gherasim
- Lasers Department, National Institute for Laser, Plasma and Radiation Physics, 077125 Magurele, Romania;
| | - Adelina-Gabriela Niculescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
| | - Bogdan Ștefan Vasile
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania;
| | - Ionela Andreea Neacșu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Roxana Trușcă
- Department of Science and Engineering of Oxide Materials and Nanomaterials, National University of Science and Technology POLITEHNICA Bucharest, 011061 Bucharest, Romania; (A.C.B.); (A.-G.N.); (B.Ș.V.); (I.A.N.); (E.A.); (R.T.)
| | - Alina Maria Holban
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Microbiology and Immunology, University of Bucharest, 077206 Bucharest, Romania
| | - Ariana Hudiță
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 050657 Bucharest, Romania; (A.M.H.); (A.H.)
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania
| | - George-Alexandru Croitoru
- Department II, Faculty of Dental Medicine, Carol Davila University of Medicine and Pharmacy, 8 Eroii Sanitari Street, 050474 Bucharest, Romania;
| |
Collapse
|
5
|
Zhao C, Wang H, Sun X, Liu Y, Chen J, Li J, Qiu F, Han Q. Non-Covalent Cross-Linking Hydrogel: A New Method for Visceral Hemostasis. Gels 2024; 10:326. [PMID: 38786243 PMCID: PMC11121205 DOI: 10.3390/gels10050326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/23/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Excessive blood loss could lead to pathological conditions such as tissue necrosis, organ failure, and death. The limitations of recently developed hemostatic approaches, such as their low mechanical strength, inadequate wet tissue adhesion, and weak hemostatic activity, pose challenges for their application in controlling visceral bleeding. In this study, a novel hydrogel (CT) made of collagen and tannic acid (TA) was proposed. By altering the proportions between the two materials, the mechanical properties, adhesion, and coagulation ability were evaluated. Compared to commercial hydrogels, this hydrogel has shown reduced blood loss and shorter hemostatic time in rat hepatic and cardiac bleeding models. This was explained by the hydrogel's natural hemostatic properties and the significant benefits of wound closure in a moist environment. Better biodegradability was achieved through the non-covalent connection between tannic acid and collagen, allowing for hemostasis without hindering subsequent tissue repair. Therefore, this hydrogel is a new method for visceral hemostasis that offers significant advantages in treating acute wounds and controlling major bleeding. And the production method is simple and efficient, which facilitates its translation to clinical applications.
Collapse
Affiliation(s)
- Chenyu Zhao
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Han Wang
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Xue Sun
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Ying Liu
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China;
| | - Jingjing Chen
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Jiaqi Li
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 211198, China
| | - Fanshan Qiu
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| | - Qianqian Han
- National Institutes for Food and Drug Control, Beijing 100050, China; (C.Z.); (H.W.); (X.S.); (J.C.); (J.L.); (F.Q.)
| |
Collapse
|
6
|
Yang Y, Wang X, Li Y, Mu B, Yang F, Wang A, Liu X. The hemostatic performance and mechanism of palygorskite with structural regulate by oxalic acid gradient leaching. Biomed Mater 2024; 19:035045. [PMID: 38636501 DOI: 10.1088/1748-605x/ad407a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Palygorskite (Pal) is a naturally available one-dimensional clay mineral, featuring rod-shaped morphology, nanoporous structure, permanent negative charges as well as abundant surface hydroxyl groups, exhibiting promising potential as a natural hemostatic material. In this study, the hemostatic performance and mechanisms of Pal were systematically investigated based on the structural regulate induced by oxalic acid (OA) gradient leaching from perspectives of structure, surface attributes and ion release.In vitroandin vivohemostasis evaluation showed that Pal with OA leaching for 1 h exhibited a superior blood procoagulant effect compared with the raw Pal as well as the others leached for prolonging time. This phenomenon might be ascribed to the synergistic effect of the intact nanorod-like morphology, the increase in the surface negative charge, the release of metal ions (Fe3+and Mg2+), and the improved blood affinity, which promoted the intrinsic coagulation pathway, the fibrinogenesis and the adhesion of blood cells, thereby accelerating the formation of robust blood clots. This work is expected to provide experimental and theoretical basis for the construction of hemostatic biomaterials based on clay minerals.
Collapse
Affiliation(s)
- Yinfeng Yang
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xiaomei Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Yalong Li
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Bin Mu
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Fangfang Yang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Aiqin Wang
- Key Laboratory of Clay Minerals of Gansu Province, Center of Eco-Material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Xinyue Liu
- The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou 730030, People's Republic of China
| |
Collapse
|
7
|
Zhang B, Wang M, Tian H, Cai H, Wu S, Jiao S, Zhao J, Li Y, Zhou H, Guo W, Qu W. Functional hemostatic hydrogels: design based on procoagulant principles. J Mater Chem B 2024; 12:1706-1729. [PMID: 38288779 DOI: 10.1039/d3tb01900d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Uncontrolled hemorrhage results in various complications and is currently the leading cause of death in the general population. Traditional hemostatic methods have drawbacks that may lead to ineffective hemostasis and even the risk of secondary injury. Therefore, there is an urgent need for more effective hemostatic techniques. Polymeric hemostatic materials, particularly hydrogels, are ideal due to their biocompatibility, flexibility, absorption, and versatility. Functional hemostatic hydrogels can enhance hemostasis by creating physical circumstances conducive to hemostasis or by directly interfering with the physiological processes of hemostasis. The procoagulant principles include increasing the concentration of localized hemostatic substances or establishing a physical barrier at the physical level and intervention in blood cells or the coagulation cascade at the physiological level. Moreover, synergistic hemostasis can combine these functions. However, some hydrogels are ineffective in promoting hemostasis or have a limited application scope. These defects have impeded the advancement of hemostatic hydrogels. To provide inspiration and resources for new designs, this review provides an overview of the procoagulant principles of hemostatic hydrogels. We also discuss the challenges in developing effective hemostatic hydrogels and provide viewpoints.
Collapse
Affiliation(s)
- Boxiang Zhang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Min Wang
- Department of Colorectal & Anal Surgery, The Second Hospital of Jilin University, Changchun 130000, Jilin Province, China
| | - Heng Tian
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Hang Cai
- Department of Pharmacy, The Second Hospital of Jilin University, Changchun, 130041, P. R. China
| | - Siyu Wu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Simin Jiao
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China
| | - Jie Zhao
- Key Laboratory of Bionic Engineering, Ministry of Education, Jilin University, Changchun, 130022, P. R. China
| | - Yan Li
- Trauma and Reparative Medicine, Karolinska University Hospital, Stockholm, Sweden
- The Division of Orthopedics and Biotechnology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
| | - Huidong Zhou
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenlai Guo
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| | - Wenrui Qu
- Department of Hand Surgery, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, 130041, P. R. China.
| |
Collapse
|
8
|
Chen S, Kong C, Yu N, Xu X, Li B, Zhang J. Management of non-compressible hemorrhage and re-bleeding by a liquid hemostatic polysaccharide floccuronic acid. Int J Biol Macromol 2024; 257:128695. [PMID: 38072343 DOI: 10.1016/j.ijbiomac.2023.128695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/28/2023] [Accepted: 12/07/2023] [Indexed: 01/27/2024]
Abstract
Effective management of excessive bleeding requires liquid hemostatic agents, especially in scenarios involving uncompressible and postoperative hemorrhage. This study introduces the microbial exopolysaccharide floccuronic acid (FA) as a liquid hemostatic agent, characterized by a high weight average molecular weight of 2.38 × 108 Da. The investigation focuses on the flocculation effect, hemostatic efficiency in both in vitro and in vivo settings, elucidating its hemostatic mechanism, and assessing its safety profile. Results reveal that FA solution significantly accelerates the coagulation process, leading to the formation of compact clots while specifically interfering with fibrin. Notably, FA demonstrates excellent hemostatic effects in animal liver models and a rat arterial rebleeding model. The biocompatible and biodegradable characteristics further underscore FA's potential as a valuable liquid hemostatic material, particularly suited for non-compressible and re-bleeding scenarios.
Collapse
Affiliation(s)
- Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Ning Yu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China
| | - Bing Li
- Nanjing Southern Element Biotechnology Co., Ltd, Nanjing 211899, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China; Key laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of industry and information technology, Nanjing 210094, China.
| |
Collapse
|
9
|
Tsamesidis I, Tzika P, Georgiou D, Charisis A, Hans S, Lordan R, Zabetakis I, Kalogianni EP. Oil from Mullet Roe Byproducts: Effect of Oil Extraction Method on Human Erythrocytes and Platelets. Foods 2023; 13:79. [PMID: 38201107 PMCID: PMC10778715 DOI: 10.3390/foods13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from roe byproducts was produced that was rich in the ω-3 fatty acids eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA). Oils are customarily characterized for their composition and degree of oxidation but little is known of their biological effects, especially the effect of the extraction method. Methods: The purpose of this study was to evaluate the effects of freshly extracted mullet roe oil from mullet roe byproducts and the effect of the extraction method on human red blood cells (hRBCs) and platelets. To this end, the hemocompatibility (cytotoxicity), oxidative effects, and erythrocyte membrane changes were examined after 1 and 24 h of incubation. Antiplatelet effects were also assessed in vitro. Results: The expeller press oil extraction method and alcalase-assisted extraction produced the most biocompatible oils, as shown by hemocompatibility measurements and the absence of erythrocyte membrane alterations. Solvent extracts and protease-assisted extraction oils resulted in the rupture of red blood cells at different examined dilutions, creating hemolysis. Conclusions: It seems that the proper functioning of oil-erythrocyte interactions cannot be explained solely by ROS. Further investigations combining chemical analysis with oil-cell interactions could be used as an input to design high nutritional value oils using green extraction technologies. All samples exhibited promising antiplatelet and antiblood clotting effects in vitro.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Paraskevi Tzika
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Despoina Georgiou
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Aggelos Charisis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Sakshi Hans
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Eleni P. Kalogianni
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| |
Collapse
|
10
|
Chen X, Yan G, Chen M, Yang P, Xu B. Alkylated chitosan-attapulgite composite sponge for rapid hemostasis. BIOMATERIALS ADVANCES 2023; 153:213569. [PMID: 37531822 DOI: 10.1016/j.bioadv.2023.213569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 06/30/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
This study reported the development of a composite sponge (ACATS) based on alkylated chitosan (AC) and attapulgite (AT) for rapid hemostasis. The well-designed ACATS, with an optimal AC N-alkylation of 5.9 % and an optimal AC/AT mass ratio of 3:1, exhibited a hierarchical porous structure with a favorable biocompatibility. The ACATS can effectively and rapidly stop the uncontrolled bleeding in 235 ± 64 s with a total blood loss of 8.4 ± 4.0 g in comparison with those of Celox as a positive control (602 ± 101 s and 22.3 ± 2.4 g, respectively) using rabbit carotid artery injury model in vivo. ACATS could rapidly interact with blood and its components, including platelets (PLs), red blood cells (RBCs), and coagulation factors, resulting in these blood components rapidly accumulation and the following thrombus formation and coagulation factors activation.
Collapse
Affiliation(s)
- Xue Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Guoliang Yan
- Basic Medical Department of School of Medicine, Xiamen University, Xiamen 361102, China
| | - Ming Chen
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China; Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China; Pingtan Research Institute of Xiamen University, Pingtan 350400, China.
| | - Ping Yang
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| | - Bolin Xu
- Department of Marine Biological Science & Technology, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Koumentakou I, Noordam MJ, Michopoulou A, Terzopoulou Z, Bikiaris DN. 3D-Printed Chitosan-Based Hydrogels Loaded with Levofloxacin for Tissue Engineering Applications. Biomacromolecules 2023; 24:4019-4032. [PMID: 37604780 DOI: 10.1021/acs.biomac.3c00362] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Herein, we demonstrate the feasibility of a three-dimensional printed chitosan (CS)-poly(vinyl alcohol) (PVA)-gelatin (Gel) hydrogel incorporating the antimicrobial drug levofloxacin (LEV) as a potential tissue engineering scaffold. Hydrogels were prepared by physically cross-linking the polymers, and the printability of the prepared hydrogels was determined. The hydrogel with 3% w/v of CS, 3% w/v of PVA, and 2% w/v of Gel presented the best printability, producing smooth and uniform scaffolds. The integrity of 3D-printed scaffolds was improved via a neutralization process since after testing three different neutralized agents, i.e., NH3 vapors, EtOH/NaOH, and KOH solutions. It was proved that the CS/PVA/Gel hydrogel was formed by hydrogen bonds and remained amorphous in the 3D-printed structures. Drug loading studies confirmed the successful incorporation of LEV, and its in vitro release continued for 48 h. The cytotoxicity/cytocompatibility tests showed that all prepared scaffolds were cytocompatible.
Collapse
Affiliation(s)
- Ioanna Koumentakou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Michiel Jan Noordam
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Thessaloniki 57001, Greece
- Laboratory of Biological Chemistry, Medical School, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Zoi Terzopoulou
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| | - Dimitrios N Bikiaris
- Laboratory of Polymer and Colors Chemistry and Technology, Department of Chemistry, Aristotle University of Thessaloniki, GR54124 Thessaloniki, Greece
| |
Collapse
|
12
|
Gheorghiță D, Moldovan H, Robu A, Bița AI, Grosu E, Antoniac A, Corneschi I, Antoniac I, Bodog AD, Băcilă CI. Chitosan-Based Biomaterials for Hemostatic Applications: A Review of Recent Advances. Int J Mol Sci 2023; 24:10540. [PMID: 37445718 DOI: 10.3390/ijms241310540] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Hemorrhage is a detrimental event present in traumatic injury, surgery, and disorders of bleeding that can become life-threatening if not properly managed. Moreover, uncontrolled bleeding can complicate surgical interventions, altering the outcome of surgical procedures. Therefore, to reduce the risk of complications and decrease the risk of morbidity and mortality associated with hemorrhage, it is necessary to use an effective hemostatic agent that ensures the immediate control of bleeding. In recent years, there have been increasingly rapid advances in developing a novel generation of biomaterials with hemostatic properties. Nowadays, a wide array of topical hemostatic agents is available, including chitosan-based biomaterials that have shown outstanding properties such as antibacterial, antifungal, hemostatic, and analgesic activity in addition to their biocompatibility, biodegradability, and wound-healing effects. This review provides an analysis of chitosan-based hemostatic biomaterials and discusses the progress made in their performance, mechanism of action, efficacy, cost, and safety in recent years.
Collapse
Affiliation(s)
- Daniela Gheorghiță
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Horațiu Moldovan
- Faculty of Medicine, "Carol Davila" University of Medicine and Pharmacy, 050474 Bucharest, Romania
- Department of Cardiovascular Surgery, Clinical Emergency Hospital Bucharest, 014461 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alina Robu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Ana-Iulia Bița
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Elena Grosu
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Aurora Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iuliana Corneschi
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
| | - Iulian Antoniac
- Faculty of Material Science and Engineering, University Politehnica of Bucharest, 313 Splaiul Independentei, District 6, 060042 Bucharest, Romania
- Academy of Romanian Scientists, 54 Splaiul Independentei, 050094 Bucharest, Romania
| | - Alin Dănuț Bodog
- Faculty of Medicine and Pharmacy, University of Oradea, 10 P-ta 1 December Street, 410073 Oradea, Romania
| | - Ciprian Ionuț Băcilă
- Faculty of Medicine, Lucian Blaga University of Sibiu, 10 Victoriei Boulevard, 550024 Sibiu, Romania
| |
Collapse
|
13
|
Jia B, Li G, Cao E, Luo J, Zhao X, Huang H. Recent progress of antibacterial hydrogels in wound dressings. Mater Today Bio 2023; 19:100582. [PMID: 36896416 PMCID: PMC9988584 DOI: 10.1016/j.mtbio.2023.100582] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Hydrogels are essential biomaterials due to their favorable biocompatibility, mechanical properties similar to human soft tissue extracellular matrix, and tissue repair properties. In skin wound repair, hydrogels with antibacterial functions are especially suitable for dressing applications, so novel antibacterial hydrogel wound dressings have attracted widespread attention, including the design of components, optimization of preparation methods, strategies to reduce bacterial resistance, etc. In this review, we discuss the fabrication of antibacterial hydrogel wound dressings and the challenges associated with the crosslinking methods and chemistry of the materials. We have investigated the advantages and limitations (antibacterial effects and antibacterial mechanisms) of different antibacterial components in the hydrogels to achieve good antibacterial properties, and the response of hydrogels to stimuli such as light, sound, and electricity to reduce bacterial resistance. Conclusively, we provide a systematic summary of antibacterial hydrogel wound dressings findings (crosslinking methods, antibacterial components, antibacterial methods) and an outlook on long-lasting antibacterial effects, a broader antibacterial spectrum, diversified hydrogel forms, and the future development prospects of the field.
Collapse
Affiliation(s)
- Ben Jia
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Guowei Li
- School of Civil Aviation, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Ertai Cao
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Jinlong Luo
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China
| | - Heyuan Huang
- School of Aeronautics, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, Guangdong, 518063, China
| |
Collapse
|
14
|
An Overview on Wound Dressings and Sutures Fabricated by Electrospinning. BIOTECHNOL BIOPROC E 2023. [DOI: 10.1007/s12257-021-0364-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
15
|
Optimization Preparation and Evaluation of Chitosan Grafted Norfloxacin as a Hemostatic Sponge. Polymers (Basel) 2023; 15:polym15030672. [PMID: 36771973 PMCID: PMC9920232 DOI: 10.3390/polym15030672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Considering the great harm to the human body caused by severe and massive bleeding, in this study, chitosan-grafted norfloxacin (CTS-NF) composites were prepared with chitosan (CTS) and norfloxacin (NF) as raw materials by a 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide-mediated coupling method to solve the limitations of slow hemostatic and poor anti-infective effects of current dressings on the market. The effects of the mass ratio of CTS to NF (MCTS/MNF), reaction temperature T and reaction time t on the grafting rate (η%) of the products were investigated through single factor tests. The preparation process was optimized with the η% as an evaluation index by means of the Box-Behnken test design and response surface analysis. The antimicrobial activity was evaluated by inhibition zone assay, and the hemostatic activity of the prepared composites was evaluated in vitro and in vivo. The results suggested that the optimum preparation conditions were the mass ratio of CTS to NF (MCTS/MNF) 5:3, reaction temperature 65 °C, and reaction time 4 h. Under this condition, the η% of CTS-NF was 45.5%. The CTS-NF composites displayed significant antimicrobial activities. Moreover, in vitro hemostasis results revealed that the CTS-NF composite had a lower blood clotting index and absorbed red blood cells to promote aggregation. In vivo ear and live hemostasis, the CTS-NF groups showed short hemostatic time (49.75 ± 3.32 s and 50.00 ± 7.21 s) and more blood loss (0.07 ± 0.010 g and 0.075 ± 0.013 g). The results showed that CTS-NF reduced the bleeding time and volume, exhibiting a significant coagulation effect. Therefore, the CTS-NF sponge is expected to be a new, effective hemostatic and antibacterial material in the future.
Collapse
|
16
|
Ahmady AR, Razmjooee K, Saber-Samandari S, Toghraie D. Fabrication of chitosan-gelatin films incorporated with thymol-loaded alginate microparticles for controlled drug delivery, antibacterial activity and wound healing: In-vitro and in-vivo studies. Int J Biol Macromol 2022; 223:567-582. [PMID: 36356874 DOI: 10.1016/j.ijbiomac.2022.10.249] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/26/2022] [Accepted: 10/27/2022] [Indexed: 11/09/2022]
Abstract
Previously, studies have demonstrated the unique characteristics of chitosan-gelatin films as wound dressings applications. However, their application has been limited due to their inadequacy of antimicrobial and anti-inflammatory characteristics. To improve the intended multifunctional characteristics of chitosan-gelatin film, in this study, we designed a novel composite film with the capability of controlled and prolonged release of thymol as a natural antioxidant and antimicrobial drug. Here, thymol-loaded ALG MPs (Thymol-ALG MPs) were prepared by electrospraying method and incorporated into the chitosan-gelatin film. The composite wound dressings of Thymol-ALG MPs incorporated in chitosan-gelatin film (CS-GEL/Thymol-ALG MPs) were characterized by in vitro and in vivo evaluations. The Thymol-ALG MPs demonstrated spherical and uniform morphology, with high encapsulation efficiency (88.9 ± 1.1 %). The CS-GEL/Thymol-ALG MPs exhibited high antibacterial activity against both Gram-positive and Gram-negative bacteria and no cytotoxicity for the L929 fibroblast cells. The release trend of thymol from CS-GEL/Thymol-ALG MPs and Thymol-ALG MPs followed a pseudo-Fickian diffusion mechanism. This wound dressing effectively accelerates the wound healing process at rats' full-thickness skin excisions. Also, the histological analysis demonstrated that the CS-GEL/Thymol-ALG MPs could significantly enhance epithelialization, collagen deposition, and induce skin regeneration. The present antibacterial composite film has promising characteristics for wound dressings applications.
Collapse
Affiliation(s)
- Azin Rashidy Ahmady
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Kavoos Razmjooee
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Saeed Saber-Samandari
- Composites Research Laboratory (CRLab), Amirkabir University of Technology, Tehran, Iran; New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran.
| | - Davood Toghraie
- Department of Mechanical Engineering, Khomeinishahr Branch, Islamic Azad University, Khomeinishahr, Iran.
| |
Collapse
|
17
|
Miron A, Sarbu A, Zaharia A, Sandu T, Iovu H, Fierascu RC, Neagu AL, Chiriac AL, Iordache TV. A Top-Down Procedure for Synthesizing Calcium Carbonate-Enriched Chitosan from Shrimp Shell Wastes. Gels 2022; 8:742. [PMID: 36421564 PMCID: PMC9690297 DOI: 10.3390/gels8110742] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/03/2022] [Accepted: 11/11/2022] [Indexed: 07/29/2023] Open
Abstract
Chitosan is used in medicine, pharmaceuticals, cosmetics, agriculture, water treatment, and food due to its superior biocompatibility and biodegradability. Nevertheless, the complex and relatively expensive extraction costs hamper its exploitation and, implicitly, the recycling of marine waste, the most abundant source of chitosan. In the spirit of developing environmental-friendly and cost-effective procedures, the present study describes one method worth consideration to deliver calcium-carbonate-enriched chitosan from shrimp shell waste, which proposes to maintain the native minerals in the structure of chitin in order to improve the thermal stability and processability of chitosan. Therefore, a synthesis protocol was developed starting from an optimized deacetylation procedure using commercial chitin. The ultimate chitosan product from shrimp shells, containing native calcium carbonate, was further compared to commercial chitosan and chitosan synthesized from commercial chitin. Finally, the collected data during the study pointed out that the prospected method succeeded in delivering calcium-carbonate-enriched chitosan with high deacetylation degree (approximately 75%), low molecular weight (Mn ≈ 10.000 g/ mol), a crystallinity above 59 calculated in the (020) plane, high thermal stability (maximum decomposition temperature over 300 °C), and constant viscosity on a wide range of share rates (quasi-Newtonian behavior), becoming a viable candidate for future chitosan-based materials that can expand the application horizon.
Collapse
Affiliation(s)
- Andreea Miron
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Andrei Sarbu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anamaria Zaharia
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Teodor Sandu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Horia Iovu
- Advanced Polymer Materials Group, University POLITEHNICA of Bucharest,1-7 Gh. Polizu Street, 011061 Bucharest, Romania
| | - Radu Claudiu Fierascu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Ana-Lorena Neagu
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Anita-Laura Chiriac
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| | - Tanta-Verona Iordache
- Advanced Polymer Materials and Polymer Recycling Group, National Institute for Research & Development in Chemistry and Petrochemistry ICECHIM, Spl. Independentei 202, 6th District, 060021 Bucharest, Romania
| |
Collapse
|
18
|
Zou CY, Lei XX, Hu JJ, Jiang YL, Li QJ, Song YT, Zhang QY, Li-Ling J, Xie HQ. Multi-crosslinking hydrogels with robust bio-adhesion and pro-coagulant activity for first-aid hemostasis and infected wound healing. Bioact Mater 2022; 16:388-402. [PMID: 35415284 PMCID: PMC8965776 DOI: 10.1016/j.bioactmat.2022.02.034] [Citation(s) in RCA: 87] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Bio-adhesive polysaccharide-based hydrogels have attracted much attention in first-aid hemostasis and wound healing for excellent biocompatibility, antibacterial property and pro-healing bioactivity. Yet, the inadequate mechanical properties and bio-adhesion limit their applications. Herein, based on dynamic covalent bonds, photo-triggered covalent bonds and hydrogen bonds, multifunctional bio-adhesive hydrogels comprising modified carboxymethyl chitosan, modified sodium alginate and tannic acid are developed. Multi-crosslinking strategy endows hydrogels with improved strength and flexibility simultaneously. Owing to cohesion enhancement strategy and self-healing ability, considerable bio-adhesion is presented by the hydrogel with a maximal adhesion strength of 162.6 kPa, 12.3-fold that of commercial fibrin glue. Based on bio-adhesion and pro-coagulant activity (e.g., the stimulative aggregation and adhesion of erythrocytes and platelets), the hydrogel reveals superior hemostatic performance in rabbit liver injury model with blood loss of 0.32 g, only 54.2% of that in fibrin glue. The healing efficiency of hydrogel for infected wounds is markedly better than commercial EGF Gel and Ag+ Gel due to the enhanced antibacterial and antioxidant properties. Through the multi-crosslinking strategy, the hydrogels show enhanced mechanical properties, fabulous bio-adhesion, superior hemostatic performance and promoting healing ability, thereby have an appealing application value for the first-aid hemostasis and infected wound healing.
Collapse
Affiliation(s)
- Chen-Yu Zou
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Xiong-Xin Lei
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan-Juan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Otolaryngology, Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yan-Lin Jiang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qian-Jin Li
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Yu-Ting Song
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Qing-Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Jesse Li-Ling
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
- Department of Medical Genetics, West China Second Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Hui-Qi Xie
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Med-X Center for Materials, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
19
|
3D Bioprinted Chitosan-Based Hydrogel Scaffolds in Tissue Engineering and Localised Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14091978. [PMID: 36145727 PMCID: PMC9500618 DOI: 10.3390/pharmaceutics14091978] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/17/2022] [Accepted: 09/18/2022] [Indexed: 11/17/2022] Open
Abstract
Bioprinting is an emerging technology with various applications in developing functional tissue constructs for the replacement of harmed or damaged tissues and simultaneously controlled drug delivery systems (DDSs) for the administration of several active substances, such as growth factors, proteins, and drug molecules. It is a novel approach that provides high reproducibility and precise control over the fabricated constructs in an automated way. An ideal bioink should possess proper mechanical, rheological, and biological properties essential to ensure proper function. Chitosan is a promising natural-derived polysaccharide to be used as ink because of its attractive properties, such as biodegradability, biocompatibility, low cost, and non-immunogenicity. This review focuses on 3D bioprinting technology for the preparation of chitosan-based hydrogel scaffolds for the regeneration of tissues delivering either cells or active substances to promote restoration.
Collapse
|
20
|
Gardikiotis I, Cojocaru FD, Mihai CT, Balan V, Dodi G. Borrowing the Features of Biopolymers for Emerging Wound Healing Dressings: A Review. Int J Mol Sci 2022; 23:ijms23158778. [PMID: 35955912 PMCID: PMC9369430 DOI: 10.3390/ijms23158778] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/02/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Wound dressing design is a dynamic and rapidly growing field of the medical wound-care market worldwide. Advances in technology have resulted in the development of a wide range of wound dressings that treat different types of wounds by targeting the four phases of healing. The ideal wound dressing should perform rapid healing; preserve the body’s water content; be oxygen permeable, non-adherent on the wound and hypoallergenic; and provide a barrier against external contaminants—at a reasonable cost and with minimal inconvenience to the patient. Therefore, choosing the best dressing should be based on what the wound needs and what the dressing does to achieve complete regeneration and restoration of the skin’s structure and function. Biopolymers, such as alginate (ALG), chitosan (Cs), collagen (Col), hyaluronic acid (HA) and silk fibroin (SF), are extensively used in wound management due to their biocompatibility, biodegradability and similarity to macromolecules recognized by the human body. However, most of the formulations based on biopolymers still show various issues; thus, strategies to combine them with molecular biology approaches represent the future of wound healing. Therefore, this article provides an overview of biopolymers’ roles in wound physiology as a perspective on the development of a new generation of enhanced, naturally inspired, smart wound dressings based on blood products, stem cells and growth factors.
Collapse
Affiliation(s)
- Ioannis Gardikiotis
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Florina-Daniela Cojocaru
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| | - Cosmin-Teodor Mihai
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Vera Balan
- Biomedical Sciences Department, Faculty of Medical Bioengineering, Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
| | - Gianina Dodi
- Advanced Research and Development Center for Experimental Medicine (CEMEX), Grigore T. Popa University of Medicine and Pharmacy of Iasi, 9-13 Kogalniceanu Street, 700454 Iasi, Romania
- Correspondence: (F.-D.C.); (G.D.)
| |
Collapse
|
21
|
Chen D, Liu X, Qi Y, Ma X, Wang Y, Song H, Zhao Y, Li W, Qin J. Poly(aspartic acid) based self-healing hydrogel with blood coagulation characteristic for rapid hemostasis and wound healing applications. Colloids Surf B Biointerfaces 2022; 214:112430. [PMID: 35272235 DOI: 10.1016/j.colsurfb.2022.112430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/23/2022] [Accepted: 02/23/2022] [Indexed: 12/11/2022]
Abstract
External hemorrhage, caused by insufficient hemostasis or surgical failure, could leads to shock or even tissue necrosis as the results of excessive blood loss. Furthermore, delayed coagulation, chronic inflammation, bacterial infection and slow cell proliferation are also major challenges to effective wound repairing. In this study, a novel hemostatic hydrogel was prepared by cross-linking inorganic polyphosphate (PolyP) conjugated poly(aspartic acid) hydrazide (PAHP) and PEO90 dialdehyde (PEO90 DA). Based on the dynamic characteristics of the acylhydrazone bond, the hydrogel could repair its cracks when broken under external forces. At the same time, the hydrogel showed outstanding biocompatibility and tissue adhesion with remarkable hemostatic performance. The New Zealand rabbit ear artery used as a in vivo hemostasis model and the results showed the PAHP hydrogel could stop bleeding of traumatic wound and reduce blood loss significantly. Meanwhile, the PAHP hydrogel presented intrinsic antibacterial activity, thus could inhibit the bacterial infection. In addition, the hydrogel loaded with mouse epidermal growth factor (mEGF) accelerated the wound repair rate and promoted the regeneration of fresh tissue in the mouse full thickness skin defect model. Altogether, the PAHP hydrogels exhibits great potential in the biomedical application, especially in wound dressing materials and tissue repairing.
Collapse
Affiliation(s)
- Danyang Chen
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Xiaojun Liu
- Warrenmore Biotechnology Ltd., Handan 056002, China
| | - Yuehua Qi
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Xiangbo Ma
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Yong Wang
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China
| | - Hongzan Song
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China
| | - Youliang Zhao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wenjuan Li
- Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China.
| | - Jianglei Qin
- College of Chemistry and Environmental Science, Hebei University, Baoding, Hebei 071002, China; Key Laboratory of Pathogenesis mechanism and control of inflammatory-autoimmune diseases in Hebei Province, Hebei University, Baoding, Hebei 071002, China.
| |
Collapse
|
22
|
Chen J, Yang X, Chen Y, Feng Y, Pan J, Shi C. Expandable, biodegradable, bioactive quaternized gelatin sponges for rapidly controlling incompressible hemorrhage and promoting wound healing. BIOMATERIALS ADVANCES 2022; 136:212776. [PMID: 35929314 DOI: 10.1016/j.bioadv.2022.212776] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 06/15/2023]
Abstract
Designing expandable sponges with biodegradability and effective antibacterial properties are the urgent challenge for incompressible hemorrhage and wound healing. In the present investigation, based on quaternized gelatin (QG) and oxidized dextran (OD), a series of expandable sponges (ODQG) with high-water absorption capacity and robust mechanical properties were prepared. ODQG had good biodegradability in vitro and in vivo, and had inherent antibacterial activity (90% for E. coli and 99.74% for S. aureus). Due to the synergy effect of electrostatic interaction and blood concentration, ODQG could effectively attract and activate red blood cells/platelets and accelerate the coagulation process. Therefore, ODQG showed better hemostatic performance than Kuaikang® gelatin sponges and gauzes in incompressible hemorrhage model. Furthermore, ODQG could regulate inflammatory factor (TNF-α) and cytokines (TGF-β, VEGF), and greatly promote wound healing process. The biodegradable sponges with excellent antibacterial properties might have potential application prospect for incompressible hemostasis and wound healing in the future.
Collapse
Affiliation(s)
- Jie Chen
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yeyi Chen
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Yakai Feng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China.
| | - Jingye Pan
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Changcan Shi
- Department of Intensive Care, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| |
Collapse
|
23
|
Wang X, Dang Q, Liu C, Chang G, Song H, Xu Q, Ma Y, Li B, Zhang B, Cha D. Antibacterial porous sponge fabricated with capric acid-grafted chitosan and oxidized dextran as a novel hemostatic dressing. Carbohydr Polym 2022; 277:118782. [PMID: 34893218 DOI: 10.1016/j.carbpol.2021.118782] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/22/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
This work aims to fabricate multifunctional hemostatic sponges (C-ODs). Porous C-ODs were first constructed by using capric acid-modified chitosan (CSCA) and oxidized dextrans (ODs) with different oxidation degrees. Batches of experiments showed that (i) CSCA (33.39% of grafting degree), ODs, and C-ODs (100-200 μm in pore size) were synthesized, evidenced by FT-IR, 1H NMR, elemental analysis, hydroxylamine hydrochloride titration, and SEM results; (ii) among C-ODs, C-OD2 had appropriate porosity (85.0%), swelling (20 times its dry weight), absorption, water retention, water vapor transmission, and mechanical properties; (iii) C-OD2 possessed low toxicity (relative cell viability > 86%), low hemolysis rate (0.65%), suitable tissue adhesion (4.74 kPa), and strong antibacterial efficacy (five strains); and (iv) C-OD2's dynamic blood clotting was within 30 s. In three animal injury models, C-OD2's hemostasis time and blood loss were fairly lower than commercial gelatin sponge. Totally, C-OD2 might serve as an ideal hemostatic dressing.
Collapse
Affiliation(s)
- Xiaoyu Wang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qifeng Dang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Chengsheng Liu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China.
| | - Guozhu Chang
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Hao Song
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Qing Xu
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Yue Ma
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Boyuan Li
- College of Marine Life Sciences, Ocean University of China, 5 Yushan Road, Qingdao 266003, PR China
| | - Bonian Zhang
- Qingdao Aorun Biotechnology Co., Ltd., Room 602, Century Mansion, 39 Donghaixi Road, Qingdao 266071, PR China
| | - Dongsu Cha
- The Graduate School of Biotechnology, Korea University, Seoul 136-701, South Korea
| |
Collapse
|
24
|
Shang K, Tao L, Jiang S, Yan J, Hu S, Yang G, Ma C, Cheng S, Wang X, Yin J. Highly Flexible Hydrogel Dressing with Efficient Antibacterial, Antioxidative, and Wound Healing Performances. Biomater Sci 2022; 10:1373-1383. [DOI: 10.1039/d1bm02010b] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bacterial induced wound infection is very common in real life, but the abuse of antibiotics brings a potential threat to human health. The development of non-antibiotic type antibacterial materials appears...
Collapse
|
25
|
Yu P, Zhong W. Hemostatic materials in wound care. BURNS & TRAUMA 2021; 9:tkab019. [PMID: 34541007 PMCID: PMC8445204 DOI: 10.1093/burnst/tkab019] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/08/2021] [Indexed: 12/22/2022]
Abstract
Blood plays an essential role in the human body. Hemorrhage is a critical cause of both military and civilian casualties. The human body has its own hemostatic mechanism that involves complex processes and has limited capacity. However, in emergency situations such as battlefields and hospitals, when the hemostatic mechanism of the human body itself cannot stop bleeding effectively, hemostatic materials are needed for saving lives. In this review, the hemostatic mechanisms and performance of the most commonly used hemostatic materials, (including fibrin, collagen, zeolite, gelatin, alginate, chitosan, cellulose and cyanoacrylate) and the commercial wound dressings based on these materials, will be discussed. These materials may have limitations, such as poor tissue adhesion, risk of infection and exothermic reactions, that may lessen their hemostatic efficacy and cause secondary injuries. High-performance hemostatic materials, therefore, have been designed and developed to improve hemostatic efficiency in clinical use. In this review, hemostatic materials with advanced performances, such as antibacterial capacity, superhydrophobicity/superhydrophilicity, superelasticity, high porosity and/or biomimicry, will be introduced. Future prospects of hemostatic materials will also be discussed in this review.
Collapse
Affiliation(s)
- Peiyu Yu
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, 75A Chancellor's Circle, Winnipeg, MB, R3T 2N2 Canada
| |
Collapse
|
26
|
Li Z, Li B, Li X, Lin Z, Chen L, Chen H, Jin Y, Zhang T, Xia H, Lu Y, Zhang Y. Ultrafast in-situ forming halloysite nanotube-doped chitosan/oxidized dextran hydrogels for hemostasis and wound repair. Carbohydr Polym 2021; 267:118155. [PMID: 34119129 DOI: 10.1016/j.carbpol.2021.118155] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 02/07/2023]
Abstract
A series of halloysite nanotube (HNT)-doped chitosan (CS)/oxidized dextran (ODEX) adhesive hydrogels were developed through a Schiff base reaction. The resultant CS/ODEX/HNT hydrogels could not only form in situ on wounds within only 1 s when injected, but could also adapt to wounds of different shapes and depths after injection. We established four rat and rabbit hemorrhage models and demonstrated that the hydrogels are better than the clinically used gelatin sponge for reducing hemostatic time and blood loss, particularly in arterial and deep noncompressible bleeding wounds. Moreover, the natural antibacterial features of CS and ODEX provided the hydrogels with strong bacteria-killing effects. Consequently, they significantly promoted methicillin-resistant Staphylococcus aureus -infected-wound repair compared to commercial gelatin sponge and silver-alginate antibacterial wound dressing. Hence, our multifunctional hydrogels with facile preparation process and utilization procedure could potentially be used as first-aid biomaterials for rapid hemostasis and infected-wound repair in emergency injury events.
Collapse
Affiliation(s)
- Zhan Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Binglin Li
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Xinrong Li
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China
| | - Zefeng Lin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Lingling Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hu Chen
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yan Jin
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Tao Zhang
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Hong Xia
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China
| | - Yao Lu
- Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China; Department of Joint and Orthopedics, Orthopedic Center, Clinical Research Center, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| | - Ying Zhang
- Guangzhou University of Chinese Medicine, Guangzhou 510006, Guangdong, China; Guangdong Key Lab of Orthopedic Technology and Implant Materials, General Hospital of Southern Theater Command of PLA, The First School of Clinical Medicine of Southern Medical University, Guangzhou 510010, China.
| |
Collapse
|
27
|
Chloramphenicol Loaded Sponges Based on PVA/Nanocellulose Nanocomposites for Topical Wound Delivery. JOURNAL OF COMPOSITES SCIENCE 2021. [DOI: 10.3390/jcs5080208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In the present study, polymer sponges based on poly(vinyl alcohol) (PVA) were prepared for the topical wound administration of chloramphenicol (CHL), an antibiotic widely used to treat bacterial infections. Nanocellulose fibrils (CNF) were homogenously dispersed in PVA sponges in three different ratios (2.5, 5, and 10 wt %) to improve the mechanical properties of neat PVA sponges. Infrared spectroscopy showed hydrogen bond formation between CNF and PVA, while scanning electron microscopy photos verified the successful dispersion of CNF to PVA sponges. The addition of CNF successfully enhanced the mechanical properties of PVA sponges, exhibiting higher compressive strength as the content of CNF increased. The PVA sponge containing 10 wt % CNF, due to its higher compression strength, was further studied as a matrix for CHL delivery in 10, 20, and 30 wt % concentration of the drug. X-ray diffraction showed that CHL was encapsulated in an amorphous state in the 10 and 20 wt % samples, while some crystallinity was observed in the 30 wt % ratio. In vitro dissolution studies showed enhanced CHL solubility after its incorporation in PVA/10 wt % CNF sponges. Release profiles showed a controlled release lasting three days for the sample containing 10 wt % CHL and 1.5 days for the other two samples. According to modelling, the release is driven by a pseudo-Fickian diffusion.
Collapse
|
28
|
Lima TDPDL, Passos MF. Skin wounds, the healing process, and hydrogel-based wound dressings: a short review. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:1910-1925. [PMID: 34156314 DOI: 10.1080/09205063.2021.1946461] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Skin wounds are damage to the epithelial layer and the integrity of living tissue. The healing mechanism is dynamic and complex, and often treatments with wound dressings help in tissue regeneration, reducing the risk of infections. Polymeric hydrogels become good candidates for wet curing process. These materials prevent dehydration of the tissue and avoid discomfort to the patient when changing the dressing. In this short review, we demonstrate the importance of the healing process, the types of skin wounds, and the hydrogels that are potentially attractive as wound dressings.
Collapse
|
29
|
Fungal Chitosan-Derived Biomaterials Modified with Kalanchoe pinnata as Potential Hemostatic Agents-Development and Characterization. Polymers (Basel) 2021; 13:polym13081300. [PMID: 33921117 PMCID: PMC8071545 DOI: 10.3390/polym13081300] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/30/2023] Open
Abstract
Massive blood loss is still a great challenge for modern medicine. To stop the hemorrhage during the surgery or after injury apart from suturing or electrocoagulation, the most efficient method of hemostasis restoration is the use of hemostatic agents. Although there are numerous products on the market, there is still a need for biomaterials that are capable of fast and efficient bleeding management without affecting wound closure or embolism. Chitosan is known for its hemostatic activity; however, its quite poor mechanical properties and heterogenous chemical composition still needs some improvements to become superior compared to biological adhesives. The following study deals with the preparation and evaluation of chitosan-derived natural biomaterials containing Kalanchoe pinnata extract with the potential application as a blood-clotting agent. The materials were obtained under microwave-assisted conditions in two different forms (granules/dressing), whose chemical structure and morphology were studied. Their antioxidant properties have been proven. The chitosan-derived hemostatic agents exhibited superior blood sorption abilities and lack of cytotoxicity to L929 mouse fibroblasts. The study also showed the differences in biological properties depending on their preparation method. The potential mechanism of action was proposed as well as their potential in hemostasis revival.
Collapse
|
30
|
Zhong Y, Hu H, Min N, Wei Y, Li X, Li X. Application and outlook of topical hemostatic materials: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:577. [PMID: 33987275 DOI: 10.21037/atm-20-7160] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bleeding complications can cause significant morbidities and mortalities in both civilian and military conditions. The formation of stable blood clots or hemostasis is essential to prevent major blood loss and death from excessive bleeding. However, the body's self-coagulation process cannot accomplish timely hemostasis without the assistance of hemostatic agents under some conditions. In the past two decades, topical hemostatic materials and devices containing platelets, fibrin, and polysaccharides have been gradually developed and introduced to induce faster or more stable blood clot formation, updating or iterating traditional hemostatic materials. Despite the various forms and functions of topical hemostatic materials that have been developed for different clinical conditions, uncontrolled hemorrhage still causes over 30% of trauma deaths across the world. Therefore, it is important to fabricate fast, efficient, safe, and ready-to-use novel hemostatic materials. It is necessary to understand the coagulation process and the hemostatic mechanism of different materials to develop novel topical hemostatic agents, such as tissue adhesives and sealants from various natural and synthetic materials. This review discusses the structural features of topical hemostatic materials related to the stimulation of hemostasis, summarizes the commercially available products and their applications, and reviews the ongoing clinical trials and recent studies concerning the development of different hemostatic materials.
Collapse
Affiliation(s)
- Yuting Zhong
- Department of General Surgery, Chinese PLA Hospital & Chinese PLA Medical School, Beijing, China
| | - Huayu Hu
- School of Medicine, Nankai University, Tianjin, China
| | - Ningning Min
- School of Medicine, Nankai University, Tianjin, China
| | - Yufan Wei
- School of Medicine, Nankai University, Tianjin, China
| | - Xiangdong Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Xiru Li
- Department of General Surgery, Chinese People's Liberation Army General Hospital, Beijing, China
| |
Collapse
|
31
|
Terzopoulou Z, Michopoulou A, Palamidi A, Koliakou E, Bikiaris D. Preparation and Evaluation of Collagen-Based Patches as Curcumin Carriers. Polymers (Basel) 2020; 12:polym12102393. [PMID: 33080789 PMCID: PMC7602968 DOI: 10.3390/polym12102393] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Patients with psoriasis are dissatisfied with the standard pharmacological treatments, whether systemic or topical, with many of them showing interest in complementary and alternative medicine. Curcumin (Cur), a natural polyphenol derived from turmeric, has recently gained attention for skin-related diseases because of its proven anti-inflammatory action. However, topical treatment with Cur would be inadequate because of its hydrophobicity, instability, and low bioavailability. In addition, hyperkeratosis and lack of moisture in psoriatic skin result in low penetration that would prevent actives from permeating the stratum corneum. In this work, a polymer-based formulation of Cur for the topical treatment of psoriasis is reported. To improve the physicochemical stability of Cur, it was first encapsulated in chitosan nanoparticles. The Cur-loaded nanoparticles were incorporated in a hydrophilic, biocompatible collagen-based patch. The nanoparticle-containing porous collagen patches were then chemically cross-linked. Morphology, chemical interactions, swelling ratio, enzymatic hydrolysis, and Cur release from the patches were evaluated. All patches showed excellent swelling ratio, up to ~1500%, and after cross-linking, the pore size decreased, and their hydrolysis rates decelerated. The in vitro release of Cur was sustained with an initial burst release, reaching 55% after 24 h. Cur within the scaffolds imparted a proliferation inhibitory effect on psoriatic human keratinocytes in vitro.
Collapse
Affiliation(s)
- Zoi Terzopoulou
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
- Correspondence: ; Tel.: +30-2310-997-812
| | - Anna Michopoulou
- Biohellenika Biotechnology Company, Leoforos Georgikis Scholis 65, GR 555 35 Thessaloniki, Greece;
| | - Artemis Palamidi
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| | - Elena Koliakou
- Laboratory of Histology and Embryology, Medical School, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece;
| | - Dimitrios Bikiaris
- Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, GR 541 24 Thessaloniki, Greece; (A.P.); (D.B.)
| |
Collapse
|