1
|
Chakraborty D, Chukwuka AV, Podder S, Sharma P, Bhowmick S, Mistri TK, Saha NC. Effects of α-olefin sulfonate (AOS) on Tubifex tubifex: toxicodynamic-toxicokinetic inferences from the general unified threshold (GUTS) model, biomarker responses and molecular docking predictions. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:905-920. [PMID: 39020070 DOI: 10.1007/s10646-024-02790-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/19/2024]
Abstract
We investigated the potential ecological risks and harm to aquatic organisms posed by anionic surfactants such as α-olefin sulfonate (AOS), which are commonly found in industrial and consumer products, including detergents. This study assessed acute (96-h) and subchronic (14-day) responses using antioxidant activity, protein levels, and histopathological changes in Tubifex tubifex exposed to different AOS concentrations (10% of the LC50, 20% of the LC50, and a control). Molecular docking was used to investigate the potential interactions between the key stress biomarker enzymes (superoxide dismutase, catalase, and cytochrome c oxidase) of Tubifex tubifex. Acute AOS exposure showed a concentration-dependent decrease in survival, and the general unified threshold (GUTS) model revealed that survivorship is linked to individual response patterns rather than random (stochastic) fluctuations. The GUTS model also revealed dose-dependent toxicity patterns in Tubifex tubifex exposed to α-olefin sulfonate (AOS), with adaptive mechanisms at lower concentrations but significant increases in mortality beyond a certain threshold, emphasizing the role of the AOS concentration in shaping its toxicological impact. Exposure to AOS disrupted antioxidant activity, inducing oxidative stress, with GST and GPx showing positive associations with surfactant concentration and increased lipid peroxidation (elevated MDA levels); moreover, AOS exposure decreased protein concentration, signifying disturbances in vital cellular processes. Histopathological examinations revealed various tissue-level alterations, including cellular vacuolation, cytoplasmic swelling, inflammation, necrosis, and apoptosis. Molecular docking analysis demonstrated interactions between AOS and enzymes (-catalase, superoxide dismutase, and cytochrome c oxidase) in Tubifex tubifex, including hydrophobic and hydrogen bond interactions, with the potential to disrupt enzyme structures and activities, leading to cellular process disruptions, oxidative stress, and tissue damage. According to the species sensitivity distribution (SSD), the difference in toxicity between Tilapia melanopleura (higher sensitivity) and Daphnia magna (low sensitivity) to AOS suggests distinct toxicokinetic and toxicodynamic mechanisms attributable to more complex physiology in Tilapia and efficient detoxification in Daphnia due to its smaller size.
Collapse
Affiliation(s)
| | - Azubuike Victor Chukwuka
- Department of Environmental Quality Control (EQC), National Environmental Standards and Regulations Enforcement Agency, Abuja, Nigeria.
| | - Sanjoy Podder
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Shovonlal Bhowmick
- Department of Chemical Technology, University of Calcutta, Kolkata, India
| | - Tapan Kumar Mistri
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur Campus, Chennai, India
| | - Nimai Chandra Saha
- Department of Zoology, Bidhannagar College, Salt Lake City, West Bengal, India.
| |
Collapse
|
2
|
Hawryłkowicz V, Stasiewicz B, Maciejewska D, Sołek-Pastuszka J, Komorniak N, Skonieczna-Żydecka K, Martynova-Van Kley A, Stachowska E. The Link between Inflammation, Lipid Derivatives, and Microbiota Metabolites in COVID-19 Patients: Implications on Eating Behaviors and Nutritional Status. Int J Mol Sci 2024; 25:7899. [PMID: 39063142 PMCID: PMC11276903 DOI: 10.3390/ijms25147899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Extreme inflammation that continues even after infections can lead to a cytokine storm. In recent times, one of the most common causes of cytokine storm activation has been SARS-CoV-2 infection. A cytokine storm leads to dysregulation and excessive stimulation of the immune system, producing symptoms typical of post-COVID syndrome, including chronic fatigue, shortness of breath, joint pain, trouble concentrating (known as "brain fog"), and even direct organ damage in the heart, lungs, kidneys, and brain. This work summarizes the current knowledge regarding inflammation and the cytokine storm related to SARS-CoV-2 infection. Additionally, changes in lipid metabolism and microbiota composition under the influence of inflammation in COVID-19, along with the possible underlying mechanisms, are described. Finally, this text explores potential health implications related to changes in eating behaviors and nutritional status in COVID-19 patients. Although research on the cytokine storm is still ongoing, there is convincing evidence suggesting that severe immune and inflammatory responses during the acute phase of COVID-19 may lead to long-term health consequences. Understanding these links is key to developing treatment strategies and supporting patients after infection.
Collapse
Affiliation(s)
- Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Beata Stasiewicz
- Department of Human Nutrition, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Sloneczna 45f, 10-718 Olsztyn, Poland
| | - Dominika Maciejewska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | - Joanna Sołek-Pastuszka
- Department of Anesthesiology and Intensive Care, Pomeranian Medical University, 71-242 Szczecin, Poland;
| | - Natalia Komorniak
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| | | | | | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University, 71-460 Szczecin, Poland; (V.H.); (D.M.); (N.K.)
| |
Collapse
|
3
|
Eltayeb A, Al-Sarraj F, Alharbi M, Albiheyri R, Mattar E, Abu Zeid IM, Bouback TA, Bamagoos A, Aljohny BO, Uversky VN, Redwan EM. Overview of the SARS-CoV-2 nucleocapsid protein. Int J Biol Macromol 2024; 260:129523. [PMID: 38232879 DOI: 10.1016/j.ijbiomac.2024.129523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 01/19/2024]
Abstract
Since the emergence of SARS-CoV in 2003, researchers worldwide have been toiling away at deciphering this virus's biological intricacies. In line with other known coronaviruses, the nucleocapsid (N) protein is an important structural component of SARS-CoV. As a result, much emphasis has been placed on characterizing this protein. Independent research conducted by a variety of laboratories has clearly demonstrated the primary function of this protein, which is to encapsidate the viral genome. Furthermore, various accounts indicate that this particular protein disrupts diverse intracellular pathways. Such observations imply its vital role in regulating the virus as well. The opening segment of this review will expound upon these distinct characteristics succinctly exhibited by the N protein. Additionally, it has been suggested that the N protein possesses diagnostic and vaccine capabilities when dealing with SARS-CoV. In light of this fact, we will be reviewing some recent headway in the use cases for N protein toward clinical purposes within this article's concluding segments. This forward movement pertains to both developments of COVID-19-oriented therapeutic targets as well as diagnostic measures. The strides made by medical researchers offer encouragement, knowing they are heading toward a brighter future combating global pandemic situations such as these.
Collapse
Affiliation(s)
- Ahmed Eltayeb
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Faisal Al-Sarraj
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ehab Mattar
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Isam M Abu Zeid
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Thamer A Bouback
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Princess Dr. Najla Bint Saud Al-Saud Center for Excellence Research in Biotechnology, King Abdulaziz University, P.O. Box 80200, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Bassam O Aljohny
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Vladimir N Uversky
- Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| | - Elrashdy M Redwan
- Department of Biological Science, Faculty of Sciences, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia; Centre of Excellence in Bionanoscience Research, King Abdulaziz University, Jeddah, Saudi Arabia; Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Technology Applications, New Borg EL-Arab, 21934 Alexandria, Egypt.
| |
Collapse
|
4
|
Guo Y, Huo J, Bai R, Zhang J, Yao J, Ma K, Zhang Z, Li H, Zhang C. The effects of free Cys residues on the structure, activity, and tetrameric stability of mammalian uricase. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12597-y. [PMID: 37256327 DOI: 10.1007/s00253-023-12597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
Mammalian uricases contain four conserved cysteine (Cys) residues, but little is known about their structures and functions. In this study, we first confirmed that all four Cys residues are free and not involved in disulfide bond formation, using canine uricase as a model protein. Cys residues had a greater effect on stability than on activity based on single Cys-to-Ser (serine) substitutions. Circular dichroism (CD) and homology modeling indicated that C188S reduces β-sheet contents and inter- and intra-subunit hydrophobic interaction, potentially impairing the core tetrameric β-barrel structure of the tunneling-fold protein, and ultimately decreased the tetrameric stability. Additionally, the inactivation of C188S during the stability tests may be a complex process involving depolymerization followed by irregular aggregation. Double mutations or thiol blockage of Cys188 and Cys195 significantly disrupted the formation and stability of tetrameric uricase, which may be mediated by the free thiols in Cys residues. The present results demonstrated that the free Cys residues are essential for tetrameric formation and stability in mammalian uricase. This implies that free cysteine residues, although not involved in disulfide bonding, may play important structural roles in certain proteins, underscoring the significance of the hydrophobic characteristics of the free thiols in Cys residues. KEY POINTS: • Four Cys residues are not involved in disulfide bonding in mammalian uricase. • The hydrophobicity of free thiols is critical for tetrameric stability in uricase. • Free Cys residues can serve structural roles without involving in disulfide bonds.
Collapse
Affiliation(s)
- Yong Guo
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Jingjing Huo
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Runchao Bai
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan, 250022, Shandong, People's Republic of China
| | - Jingyuan Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Jipeng Yao
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Kaijie Ma
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China
| | - Zengtao Zhang
- Renrui Biotechnology Inc., Rizhao, 276599, Shandong, People's Republic of China
| | - Haigang Li
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China.
| | - Chun Zhang
- College of Pharmacy, Linyi University, Linyi, 276000, Shandong, People's Republic of China.
- Renrui Biotechnology Inc., Rizhao, 276599, Shandong, People's Republic of China.
| |
Collapse
|
5
|
Browne RB, Goswami N, Borah P, Roy JD. Study of Glabranin as an Inhibitor Against Prostate Cancer: Molecular Docking, Molecular Dynamics Simulation, MM-PBSA Calculation and QSAR Prediction. Indian J Clin Biochem 2023. [DOI: 10.1007/s12291-023-01134-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
6
|
Huerta-Miranda GA, García-García WI, Vidal-Limon A, Miranda-Hernández M. Use of simplified models for theoretical prediction of the interactions between available antibodies and the receptor-binding domain of SARS-CoV-2 spike protein. J Biomol Struct Dyn 2023; 41:1018-1027. [PMID: 34935602 DOI: 10.1080/07391102.2021.2019123] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The negative impact of infectious diseases like COVID-19 on public health and the global economy is evident. This pandemic represents a significant challenge for the scientific community to develop new practical analytical methods for accurately diagnosing emerging cases. Due to their selectivity and sensitivity, new methodologies based on antigen/antibody interactions to detect COVID-19 biomarkers are necessary. In this context, the theoretical, computational modeling reduces experimental efforts and saves resources for rational biosensor design. This study proposes using molecular dynamics to predict the interactions between the Receptor Binding Domain (RBD) of the SARS-CoV-2 spike protein simplified model and a set of highly characterized antibodies. The binding free energy of the antigen/antibody complexes was calculated for the simplified models and compared against the complete SARS-CoV-2 ectodomain to validate the methodology. The structural data derived from our molecular dynamics and end-point free energy calculations showed a positive correlation between both approximations, with a 0.82 Pearson correlation coefficient; t = 3.661, df = 3, p-value = 0.03522, with a 95% confident interval. Furthermore, we identified the interfacial residues that could generate covalent bonds with a specific chemical surface without perturbing the binding dynamics to develop highly sensitive and specific diagnostic devices. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- G A Huerta-Miranda
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - W I García-García
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - A Vidal-Limon
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| | - M Miranda-Hernández
- Instituto de Energías Renovables, Universidad Nacional Autónoma de México, Temixco, Morelos, México
| |
Collapse
|
7
|
Wu W, Cheng Y, Zhou H, Sun C, Zhang S. The SARS-CoV-2 nucleocapsid protein: its role in the viral life cycle, structure and functions, and use as a potential target in the development of vaccines and diagnostics. Virol J 2023; 20:6. [PMID: 36627683 PMCID: PMC9831023 DOI: 10.1186/s12985-023-01968-6] [Citation(s) in RCA: 50] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) continues to take a heavy toll on personal health, healthcare systems, and economies around the globe. Scientists are expending tremendous effort to develop diagnostic technologies for detecting positive infections within the shortest possible time, and vaccines and drugs specifically for the prevention and treatment of COVID-19 disease. At the same time, emerging novel variants have raised serious concerns about vaccine efficacy. The SARS-CoV-2 nucleocapsid (N) protein plays an important role in the coronavirus life cycle, and participates in various vital activities after virus invasion. It has attracted a large amount of attention for vaccine and drug development. Here, we summarize the latest research of the N protein, including its role in the SARS-CoV-2 life cycle, structure and function, and post-translational modifications in addition to its involvement in liquid-liquid phase separation (LLPS) and use as a basis for the development of vaccines and diagnostic techniques.
Collapse
Affiliation(s)
- Wenbing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Ying Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Hong Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China
| | - Changzhen Sun
- Drug Research Center of Integrated Traditional Chinese and Western Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, 646000, China
| | - Shujun Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, 646000, China.
| |
Collapse
|
8
|
Singh MP, Singh N, Mishra D, Ehsan S, Chaturvedi VK, Chaudhary A, Singh V, Vamanu E. Computational Approaches to Designing Antiviral Drugs against COVID-19: A Comprehensive Review. Curr Pharm Des 2023; 29:2601-2617. [PMID: 37916490 DOI: 10.2174/0113816128259795231023193419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/21/2023] [Indexed: 11/03/2023]
Abstract
The global impact of the COVID-19 pandemic caused by SARS-CoV-2 necessitates innovative strategies for the rapid development of effective treatments. Computational methodologies, such as molecular modelling, molecular dynamics simulations, and artificial intelligence, have emerged as indispensable tools in the drug discovery process. This review aimed to provide a comprehensive overview of these computational approaches and their application in the design of antiviral agents for COVID-19. Starting with an examination of ligand-based and structure-based drug discovery, the review has delved into the intricate ways through which molecular modelling can accelerate the identification of potential therapies. Additionally, the investigation extends to phytochemicals sourced from nature, which have shown promise as potential antiviral agents. Noteworthy compounds, including gallic acid, naringin, hesperidin, Tinospora cordifolia, curcumin, nimbin, azadironic acid, nimbionone, nimbionol, and nimocinol, have exhibited high affinity for COVID-19 Mpro and favourable binding energy profiles compared to current drugs. Although these compounds hold potential, their further validation through in vitro and in vivo experimentation is imperative. Throughout this exploration, the review has emphasized the pivotal role of computational biologists, bioinformaticians, and biotechnologists in driving rapid advancements in clinical research and therapeutic development. By combining state-of-the-art computational techniques with insights from structural and molecular biology, the search for potent antiviral agents has been accelerated. The collaboration between these disciplines holds immense promise in addressing the transmissibility and virulence of SARS-CoV-2.
Collapse
Affiliation(s)
- Mohan P Singh
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Nidhi Singh
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India
| | - Divya Mishra
- Centre of Bioinformatics, University of Allahabad, Prayagraj 211002, India
| | - Saba Ehsan
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Vivek K Chaturvedi
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Anupriya Chaudhary
- Centre of Biotechnology, University of Allahabad, Prayagraj 211002, India
| | - Veer Singh
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Patna 800007, India
| | - Emanuel Vamanu
- Faculty of Biotechnology, University of Agricultural Sciences and Veterinary Medicine of Bucharest, Bucharest 011464, Romania
| |
Collapse
|
9
|
Houchi S, Messasma Z. Exploring the inhibitory potential of Saussurea costus and Saussurea involucrata phytoconstituents against the Spike glycoprotein receptor binding domain of SARS-CoV-2 Delta (B.1.617.2) variant and the main protease (M pro) as therapeutic candidates, using Molecular docking, DFT, and ADME/Tox studies. J Mol Struct 2022; 1263:133032. [PMID: 35431327 PMCID: PMC8993769 DOI: 10.1016/j.molstruc.2022.133032] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/20/2022] [Accepted: 04/07/2022] [Indexed: 02/06/2023]
Abstract
The B.1.617.2 Delta variant is considered to be the most infectious of all SARS-CoV2 variants. Here, an attempt has been made through in-silico screening of 55 bioactive compounds from two selected plants, Saussurea costus and Saussurea involucrata as potential inhibitors of two viral proteases, main protease Mpro (PDB ID:6LU7) and the RBD of SGP of Sars-CoV-2 B1.617.2 Delta variant (PDB ID:7ORB) where the binding energy, molecular interactions, ADMET/Tox, chemical descriptors and Quantum-Chemical Calculations were explored. Molecular docking results demonstrated that the three top docked compounds formed relatively stable complexes within the active site and displayed remarkable binding energy in the order of Tangshenoside III, Rutin and Hesperidin (-9.35, -9.14 and -8.57 kcal/mol, respectively) with Mpro and Rutin, Tangshenoside III and Hesperidin (-9.07, -7.71 and -7.57 kcal/mol) with RBD of SGP. These compounds are non-Mutagen and non-carcinogen. Therefore, according to the Lipinski's Rule of Five they exhibited three violations concerning hydrogen acceptor, donor and molecular weight. However, based on the Quantum-Chemical Calculations results the selected ligands have effective reactivity, as they showed lower band gaps. The difference of the ELUMO and EHOMO was low, ranging from 0.0639 to 0.0978 a.u, implying the strong affinity of these inhibitors towards the target proteins. Among the three inhibitors, Rutin exhibited higher reactivity against two viral proteases, main protease (Mpro) and the Sars-CoV-2 B1.617.2, as the band energy gap was lowest among all the three phytochemicals, 0.0639 a.u This could indicate that Rutincan be potential anti-viral drug candidates against the existing SARS-CoV-2, the B.1.617.2 Delta variant.
Collapse
Affiliation(s)
- Selma Houchi
- Department of Biochemistry, Laboratory of Applied Biochemistry, Faculty of Life and Nature Sciences, University of Ferhat Abbas Setif-1, Algeria
| | - Zakia Messasma
- Department of Process Engineering, Laboratory of Electrochemistry, Molecular Engineering and Redox Catalysis, Faculty of Technology, University of Ferhat Abbas Setif-1, 19000, Algeria
- Department of Chemistry, Faculty of Sciences, University of Ferhat Abbas Setif-1, 19000, Algeria
| |
Collapse
|
10
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
11
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Belém MO, Pinto YO, Moreira HHT, Magalhaes ICL, Castelo-Branco DSCM, Montenegro RC, de Andrade CR. The spike glycoprotein of SARS-CoV-2: A review of how mutations of spike glycoproteins have driven the emergence of variants with high transmissibility and immune escape. Int J Biol Macromol 2022; 208:105-125. [PMID: 35300999 PMCID: PMC8920968 DOI: 10.1016/j.ijbiomac.2022.03.058] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/23/2022]
Abstract
Late in 2019, SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) emerged, causing an unknown type of pneumonia today called coronaviruses disease 2019 (COVID-19). COVID-19 is still an ongoing global outbreak that has claimed and threatened many lives worldwide. Along with the fastest vaccine developed in history to fight SARS-CoV-2 came a critical problem, SARS-CoV-2. These new variants are a result of the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which is by far the most critical protein for SARS-CoV-2 to recognize cells and escape the immune system, in addition to playing a role in SARS-CoV-2 infection, pathogenicity, transmission, and evolution. In this review, we discuss mutation of S protein and how these mutations have led to new variants that are usually more transmissible and can thus mitigate the immunity produced by vaccination. Here, analysis of S protein sequences and structures from variants point out the mutations among them, how they emerge, and the behavior of S protein from each variant. This review brings details in an understandable way about how the variants of SARS-CoV-2 are a result of mutations in S protein, making them more transmissible and even more aggressive than their relatives.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil; Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Mônica O Belém
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| | - Yago O Pinto
- Medical Education Institution-Idomed, Canindé, Ceará, Brazil
| | | | | | - Débora S C M Castelo-Branco
- Department of Pathology and Legal Medicine, Postgraduate Program in Medical Microbiology, Group of Applied Medical Microbiology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceará, Brazil
| | - Claudia R de Andrade
- Laboratory of Translational Research, Christus University Center, Fortaleza, Ceará 60192, Brazil
| |
Collapse
|
12
|
Parra ALC, Bezerra LP, Shawar DE, Neto NAS, Mesquita FP, da Silva GO, Souza PFN. Synthetic antiviral peptides: a new way to develop targeted antiviral drugs. Future Virol 2022. [DOI: 10.2217/fvl-2021-0308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The global concern over emerging and re-emerging viral infections has spurred the search for novel antiviral agents. Peptides with antiviral activity stand out, by overcoming limitations of the current drugs utilized, due to their biocompatibility, specificity and effectiveness. Synthetic peptides have been shown to be viable alternatives to natural peptides due to several difficulties of using of the latter in clinical trials. Various platforms have been utilized by researchers to predict the most effective peptide sequences against HIV, influenza, dengue, MERS and SARS. Synthetic peptides are already employed in the treatment of HIV infection. The novelty of this study is to discuss, for the first time, the potential of synthetic peptides as antiviral molecules. We conclude that synthetic peptides can act as new weapons against viral threats to humans.
Collapse
Affiliation(s)
- Aura LC Parra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Dur E Shawar
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Nilton AS Neto
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Felipe P Mesquita
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| | - Gabrielly O da Silva
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
| | - Pedro FN Souza
- Department of Biochemistry & Molecular Biology, Federal University of Ceara, Fortaleza, Ceara, 60440-554, Brazil
- Drug Research & Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Rodolfo Teófilo, 1000, Fortaleza, Brazil
| |
Collapse
|
13
|
Souza PF, vanTilburg M, Mesquita FP, Amaral JL, Lima LB, Montenegro RC, Lopes FE, Martins RX, Vieira L, Farias DF, Monteiro-Moreira ACO, Freitas CD, Bezerra AS, Guedes MIF, Castelo-Branco D, Oliveira JT. Neutralizing Effect of Synthetic Peptides toward SARS-CoV-2. ACS OMEGA 2022; 7:16222-16234. [PMID: 35530749 PMCID: PMC9063117 DOI: 10.1021/acsomega.2c02203] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
The outbreak caused by SARS-CoV-2 has taken many lives worldwide. Although vaccination has started, the development of drugs to either alleviate or abolish symptoms of COVID-19 is still necessary. Here, four synthetic peptides were assayed regarding their ability to protect Vero E6 cells from SARS-CoV-2 infection and their toxicity to human cells and zebrafish embryos. All peptides had some ability to protect cells from infection by SARS-CoV-2 with the D614G mutation. Molecular docking predicted the ability of all peptides to interact with and induce conformational alterations in the spike protein containing the D614G mutation. PepKAA was the most effective peptide, by having the highest docking score regarding the spike protein and reducing the SARS-CoV-2 plaque number by 50% (EC50) at a concentration of 0.15 mg mL-1. Additionally, all peptides had no toxicity to three lines of human cells as well as to zebrafish larvae and embryos. Thus, these peptides have potential activity against SARS-CoV-2, making them promising to develop new drugs to inhibit cell infection by SARS-CoV-2.
Collapse
Affiliation(s)
- Pedro F.N. Souza
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Maurício
F. vanTilburg
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Felipe P. Mesquita
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Jackson L. Amaral
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Luina B. Lima
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Raquel C. Montenegro
- Drug
Research and Development Center, Department of Physiology and Pharmacology, Federal University of Ceará, Rua Coronel Nunes de Melo 100,
P.O. Box 60430-275, Fortaleza, Ceará 60020-181, Brazil
| | - Francisco E.S. Lopes
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Rafael X. Martins
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Leonardo Vieira
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Davi F. Farias
- Laboratory
for Risk Assessment of Novel Technologies (LabRisk), Department of
Molecular Biology, Federal University of
Paraiba, Campus I Lot. Cidade Universitaria, P.O. Box 58051-900, João Pessoa, Paraíba 58051-900, Brazil
| | - Ana C. O. Monteiro-Moreira
- School
of Pharmacy, University of Fortaleza, Av. Washington Soares, 1321, Edson Queiroz, P.O. Box 60811-905, Fortaleza, Fortaleza, Ceará 60811-690, Brazil
| | - Cleverson D.T. Freitas
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| | - Arnaldo S. Bezerra
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Maria I. F. Guedes
- Biotechnology
and Molecular Biology Laboratory, Renorbio, State University of Ceará, Av. Dr. Silas Munguba, 1700—Itaperi, P.O.
Box 60714-903, Fortaleza, Ceará 60020-181, Brazil
| | - Débora
S.C.M. Castelo-Branco
- Department
of Pathology and Legal Medicine, Federal
University of Ceará, Rodolfo Teófilo, P.O. Box 60010-681, Fortaleza, Ceará 60020-181, Brazil
| | - Jose T.A. Oliveira
- Department
of Biochemistry and Molecular Biology, Federal
University of Ceará, Av Mister Hull, S/n—Pici, P.O. Box 60440-593, Fortaleza, Ceará 60020-181, Brazil
| |
Collapse
|
14
|
Chourasia R, Padhi S, Phukon LC, Abedin MM, Sirohi R, Singh SP, Rai AK. Peptide candidates for the development of therapeutics and vaccines against β-coronavirus infection. Bioengineered 2022; 13:9435-9454. [PMID: 35387556 PMCID: PMC9161909 DOI: 10.1080/21655979.2022.2060453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 01/18/2023] Open
Abstract
Betacoronaviruses (β-CoVs) have caused major viral outbreaks in the last two decades in the world. The mutation and recombination abilities in β-CoVs resulted in zoonotic diseases in humans. Proteins responsible for viral attachment and replication are highly conserved in β-CoVs. These conserved proteins have been extensively studied as targets for preventing infection and the spread of β-CoVs. Peptides are among the most promising candidates for developing vaccines and therapeutics against viral pathogens. The immunostimulatory and viral inhibitory potential of natural and synthetic peptides has been extensively studied since the SARS-CoV outbreak. Food-derived peptides demonstrating high antiviral activity can be used to develop effective therapeutics against β-CoVs. Specificity, tolerability, and customizability of peptides can be explored to develop potent drugs against β-CoVs. However, the proteolytic susceptibility and low bioavailability of peptides pose challenges for the development of therapeutics. This review illustrates the potential role of peptides in eliciting an adaptive immune response and inhibiting different stages of the β-CoV life cycle. Further, the challenges and future directions associated with developing peptide-based therapeutics and vaccines against existing and future β-CoV pathogens have been discussed.
Collapse
Affiliation(s)
- Rounak Chourasia
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Srichandan Padhi
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Loreni Chiring Phukon
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Md Minhajul Abedin
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
| | - Ranjana Sirohi
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, 02841, Republic of Korea
| | - Sudhir P Singh
- Centre of Innovative and Applied Bioprocessing (DBT-CIAB), Sector-81, S.A.S. Nagar, Mohali- 140306, India
| | - Amit Kumar Rai
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Regional Centre, Tadong- 737102, India
- Institute of Bioresources and Sustainable Development (DBT-IBSD), Mizoram Node, Aizawl, India
| |
Collapse
|
15
|
Maleki Dizaj S, Salatin S, Khezri K, Lee JY, Lotfipour F. Targeting Multidrug Resistance With Antimicrobial Peptide-Decorated Nanoparticles and Polymers. Front Microbiol 2022; 13:831655. [PMID: 35432230 PMCID: PMC9009044 DOI: 10.3389/fmicb.2022.831655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/09/2022] [Indexed: 01/21/2023] Open
Abstract
As a category of small peptides frequently found in nature, antimicrobial peptides (AMPs) constitute a major part of the innate immune system of various organisms. Antimicrobial peptides feature various inhibitory effects against fungi, bacteria, viruses, and parasites. Due to the increasing concerns of antibiotic resistance among microorganisms, development of antimicrobial peptides is an emerging tool as a favorable applicability prospect in food, medicine, aquaculture, animal husbandry, and agriculture. This review presents the latest research progress made in the field of antimicrobial peptides, such as their mechanism of action, classification, application status, design techniques, and a review on decoration of nanoparticles and polymers with AMPs that are used in treating multidrug resistance. Lastly, we will highlight recent progress in antiviral peptides to treat emerging viral diseases (e.g., anti-coronavirus peptides) and discuss the outlook of AMP applications.
Collapse
Affiliation(s)
- Solmaz Maleki Dizaj
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Dental Biomaterials, Faculty of Dentistry, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sara Salatin
- Dental and Periodontal Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Khadijeh Khezri
- Deputy of Food and Drug Administration, Urmia University of Medical Sciences, Urmia, Iran
| | - Jyh-Yeuan Lee
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Farzaneh Lotfipour
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- Food and Drug Safety Research Center, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Mackin RT, Edwards JV, Atuk EB, Beltrami N, Condon BD, Jayawickramarajah J, French AD. Structure/Function Analysis of Truncated Amino-Terminal ACE2 Peptide Analogs That Bind to SARS-CoV-2 Spike Glycoprotein. Molecules 2022; 27:2070. [PMID: 35408469 PMCID: PMC9000588 DOI: 10.3390/molecules27072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/21/2022] [Indexed: 11/16/2022] Open
Abstract
The global burden of the SARS-CoV-2 pandemic is thought to result from a high viral transmission rate. Here, we consider mechanisms that influence host cell-virus binding between the SARS-CoV-2 spike glycoprotein (SPG) and the human angiotensin-converting enzyme 2 (ACE2) with a series of peptides designed to mimic key ACE2 hot spots through adopting a helical conformation analogous to the N-terminal α1 helix of ACE2, the region experimentally shown to bind to the SARS-CoV-2 receptor-binding domain (RBD). The approach examines putative structure/function relations by assessing SPG binding affinity with surface plasmon resonance (SPR). A cyclic peptide (c[KFNHEAEDLFEKLM]) was characterized in an α-helical conformation with micromolar affinity (KD = 500 µM) to the SPG. Thus, stabilizing the helical structure of the 14-mer through cyclization improves binding to SPG by an order of magnitude. In addition, end-group peptide analog modifications and residue substitutions mediate SPG binding, with net charge playing an apparent role. Therefore, we surveyed reported viral variants, and a correlation of increased positive charge with increased virulence lends support to the hypothesis that charge is relevant to enhanced viral fusion. Overall, the structure/function relationship informs the importance of conformation and charge for virus-binding analog design.
Collapse
Affiliation(s)
- Robert T. Mackin
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | - J. Vincent Edwards
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | - E. Berk Atuk
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA; (E.B.A.); (N.B.); (J.J.)
| | - Noah Beltrami
- Department of Chemistry, Tulane University, New Orleans, LA 70118, USA; (E.B.A.); (N.B.); (J.J.)
| | - Brian D. Condon
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| | | | - Alfred D. French
- United States Department of Agriculture, Agricultural Research Service, Southern Regional Research Center (USDA-ARS-SRRC), New Orleans, LA 70124, USA; (R.T.M.); (B.D.C.); (A.D.F.)
| |
Collapse
|
17
|
Su H, Wu G, Zhan L, Xu F, Qian H, Li Y, Zhu X. Exploration of the Mechanism of Lianhua Qingwen in Treating Influenza Virus Pneumonia and New Coronavirus Pneumonia with the Concept of "Different Diseases with the Same Treatment" Based on Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:5536266. [PMID: 35145559 PMCID: PMC8822319 DOI: 10.1155/2022/5536266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 02/07/2023]
Abstract
The 31 main components of Lianhua Qingwen (LHQW) were obtained through a literature and database search; the components included glycyrrhizic acid, emodin, chlorogenic acid, isophoroside A, forsythia, menthol, luteolin, quercetin, and rutin. Sixty-eight common targets for the treatment of novel coronavirus pneumonia (NCP) and influenza virus pneumonia (IVP) were also obtained. A "component-target-disease" network was constructed with Cytoscape 3.2.1 software, and 20 key targets, such as cyclooxygenase2 (COX2), interleukin-6 (IL-6), mitogen-activated protein kinase14 (Mapk14), and tumor necrosis factor (TNF), were screened from the network. The David database was used to perform a Kyoto Encyclopedia of Genes and Genomes (KEGG) signal pathway enrichment analysis and gene ontology (GO) biological process enrichment. Results showed that the key targets of LHQW in the treatment of NCP and IVP mainly involved biological processes, such as immune system process intervention, cell proliferation, apoptosis and invasion, toxic metabolism, cytokine activity, and regulation of the synthesis process. KEGG enrichment analysis revealed that 115 signalling pathways were related to the treatment of LHQW. Amongst them, IL-17, T cell receptor, Th17 cell differentiation, TNF, toll-like receptor, MAPK, apoptosis, and seven other signalling pathways were closely related to the occurrence and development of NCP and IVP. Molecular docking showed that each component had different degrees of binding with six targets, namely, 3C-like protease (3CL), angiotensin-converting enzyme 2 (ACE2), COX2, hemagglutinin (HA), IL-6, and neuraminidase (NA). Rutin, isoforsythiaside A, hesperidin and isochlorogenic acid B were the best components for docking with the six core targets. The first five components with the best docking results were isoforsythiaside, hesperidin, isochlorogenic acid B, forsythin E, and quercetin. In conclusion, LHQW has many components, targets, and pathways. The findings of this work can provide an important theoretical basis for determining the mechanism of LHQW in treating NCP and IVP.
Collapse
Affiliation(s)
- Huihui Su
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Guosong Wu
- Department of Pharmacy, Baiyun Branch of Nanfang Hospital of Southern Medical University, Guangzhou 510599, China
| | - Lulu Zhan
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Fei Xu
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Huiqin Qian
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Yanling Li
- College of Pharmacy, Sanquan College of Xinxiang Medical University, Xinxiang 453000, China
| | - Ximei Zhu
- Clinical Pharmacists, The Maternal and Child Health Care Hospital of HuaDu District (Huzhong Hospital), Guangzhou 510800, China
| |
Collapse
|
18
|
Browne RB, Goswami N, Borah P, Roy JD. Computational approaches for evaluation of isobavachin as potential inhibitor against t877a and w741l mutations in prostate cancer. J Biomol Struct Dyn 2022; 41:2398-2418. [PMID: 35118933 DOI: 10.1080/07391102.2022.2032353] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Prostate cancer is the World's second most common cancer, with the fifth-highest male mortality rate. Point mutations such as T877A and W741L are frequently seen in advanced prostate cancer patients, conferring drug-resistance and hence driving cancer growth. Such occurrence of drug resistance in prostate cancer necessitates designing of suitable ligands to ensure better interactions with the receptors which can block the progression of the disease. The present study focus on the modification of plant-derived flavonoids that might act as inhibitors against such point mutations namely, T877A and W741L. In T877A mutation threonine is substituted by alanine at the 877 codon and W741L mutation, tryptophan is substituted by lysine at the 741 codon in prostate cancer. The study revolved on the aspect of the evaluation of Isobavachin and its derivatives as a potential agent to tackle such point mutations by using the in silico approach. A total of 98 molecular dockings were performed to find the ligand-receptor complexes with the lowest binding energy employing Autodock Software to conduct the blind and site-specific docking. Additionally, ligands were screened for Drug-likeness and toxicity using several tools yielding eight possible drug candidates. Based on the results of Molecular Docking, Drug-likeness, and ADMET testing, ten structures, including six complexes and three receptors were subjected to molecular dynamics simulation of 100 ns covering RMSD, RMSF, Rg, and MM/PBSA. Based on the simulation results, Isobavachin, IsoMod4, and IsoMod7 were concluded to be stable and exhibited potential properties for developing a novel drug to combat prostate cancer and its associated drug-resistance.
Collapse
Affiliation(s)
- Rene Barbie Browne
- Department of Biochemistry, Assam Don Bosco University, Guwahati, Assam, India
| | - Nabajyoti Goswami
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Probodh Borah
- Department of Animal Biotechnology, College of Veterinary Science, Assam Agricultural University, Guwahati, Assam, India
| | - Jayanti Datta Roy
- Department of Bio-Sciences, Assam Don Bosco University, Guwahati, Assam, India
| |
Collapse
|
19
|
Abstract
Tweetable abstract Synthetic antiviral peptides are a promising option to overcome future viral diseases.
Collapse
Affiliation(s)
- Pedro FN Souza
- Collaborating Professor of Biochemistry & Molecular Biology Graduate Program at The Department of Biochemistry & Molecular Biology, Federal University of Ceará
| |
Collapse
|
20
|
Yu MM. Can a radioimmunoassay kit be developed for accurate detection of the S protein of severe acute respiratory syndrome coronavirus 2? World J Clin Infect Dis 2021; 11:60-62. [DOI: 10.5495/wjcid.v11.i3.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/18/2021] [Accepted: 10/20/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at the end of 2019 spread worldwide within only a few months. The screening and timely isolation of infected individuals have been regarded as an effective means of epidemic prevention and control. Therefore, effective screening of infected individuals plays a vital role in epidemic prevention and control. At present, reverse transcription-polymerase chain reaction (RT–PCR) is the main method for the in vitro detection of SARS-CoV-2. However, RT–PCR requires certified laboratories, expensive equipment, and trained technicians. Therefore, it is necessary to develop simpler and more convenient methods. Some studies have shown that the PepKAA peptide has a high affinity for the S protein of SARS-CoV-2. The tyrosine in PepKAA is labeled with 125I and used to design a radioimmunoassay kit for the detection of the S protein of SARS-CoV-2, which is of great significance for the early diagnosis of COVID-19.
Collapse
Affiliation(s)
- Ming-Ming Yu
- Department of Nuclear Medicine, the Affiliated Hospital of Qingdao University, Qingdao 266100, Shandong Province, China
| |
Collapse
|
21
|
Chamata Y, Jackson KG, Watson KA, Jauregi P. Whey-Derived Peptides at the Heart of the COVID-19 Pandemic. Int J Mol Sci 2021; 22:11662. [PMID: 34769093 PMCID: PMC8584039 DOI: 10.3390/ijms222111662] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 12/14/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key regulator of blood pressure and hypertension. Angiotensin-converting enzyme 2 (ACE2) and angiotensin-converting enzyme I (ACE) are two main components of the RAS that play a major role in blood pressure homeostasis. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses ACE2 as a receptor to enter cells. Despite some controversies, numerous studies have reported a significant association between the use of ACE inhibitors and reduced risk of COVID-19. In our previous studies, we produced and identified peptide sequences present in whey hydrolysates exhibiting high ACE inhibitory activity. Therefore, the aim of this work is to obtain an improved understanding of the function of these natural peptides as RAS inhibitors and investigate their potential therapeutic role in the COVID-19 pandemic. The molecular interactions between peptides IPP, LIVTQ, IIAE, LVYPFP, and human ACE2 were assessed by employing a molecular docking approach. The results show that natural whey-derived peptides have a dual inhibitory action against both ACE and ACE2. This dual activity distinguishes these ACE inhibitory peptides from synthetic drugs, such as Captopril and Lisinopril which were not shown to inhibit ACE2 activity, and may represent a potential strategy in the treatment of COVID-19.
Collapse
Affiliation(s)
- Yara Chamata
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kim G. Jackson
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| | - Kimberly A. Watson
- Health and Life Sciences Building, School of Biological Sciences, University of Reading, Reading RG6 6EX, UK;
| | - Paula Jauregi
- Harry Nursten Building, Department of Food and Nutritional Sciences, University of Reading, Reading RG6 6DZ, UK; (K.G.J.); (P.J.)
| |
Collapse
|
22
|
Benítez-Cardoza CG, Vique-Sánchez JL. Identifying compounds that prevent the binding of the SARS-CoV-2 S-protein to ACE2. Comput Biol Med 2021; 136:104719. [PMID: 34358993 PMCID: PMC8325380 DOI: 10.1016/j.compbiomed.2021.104719] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 02/08/2023]
Abstract
We investigated compounds selected by molecular docking to identify a specific treatment for COVID-19 that decreases the interaction between angiotensin-converting enzyme 2 (ACE2) and the receptor-binding domain (RBD) of SARS-CoV-2. Five compounds that interact with ACE2 amino acids Gln24, Asp30, His34, Tyr41, Gln42, Met82, Lys353, and Arg357 were evaluated using specific binding assays for their effects on the interaction between ACE2 with RBD. The compound labeled ED demonstrated favorable ACE2-binding, with an IC50 of 31.95 μM. ED cytotoxicity, evaluated using PC3 cells in an MTT assay, was consistent with the low theoretical toxicity previously reported. We propose that ED mainly interacts with His34, Glu37, and Lys353 in ACE2 and that it has an inhibitory effect on the interaction of ACE2 with the RBD of the S-protein. We recommend further investigation to develop ED into a potential drug or adjuvant in COVID-19 treatment.
Collapse
Affiliation(s)
| | - José Luis Vique-Sánchez
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico; Ciencias de La Salud Mexicali, Universidad Autónoma de Baja California, Mexicali, BC, Mexico.
| |
Collapse
|
23
|
Mahnam K, Lotfi M, Shapoorabadi FA. Examining the interactions scorpion venom peptides (HP1090, Meucin-13, and Meucin-18) with the receptor binding domain of the coronavirus spike protein to design a mutated therapeutic peptide. J Mol Graph Model 2021; 107:107952. [PMID: 34119951 PMCID: PMC8174010 DOI: 10.1016/j.jmgm.2021.107952] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022]
Abstract
The spike protein of SARS-CoV-2 (Severe Acute Respiratory Syndrome coronavirus 2) interacts with the ACE2 receptor in human cells and starts the infection of COVID-19 disease. Given the importance of spike protein's interaction with ACE2 receptor, we selected some antiviral peptides of venom scorpion such as HP1090, meucin-13, and meucin-18 and performed docking and molecular docking analysis of them with the RBD domain of spike protein. The results showed that meucin-18 (FFGHLFKLATKIIPSLFQ) had better interaction with the RBD domain of spike protein than other peptides. We also designed some mutations in meucin-18 and investigated their interactions with the RBD domain. The results revealed that the A9T mutation had more effective interaction with the RBD domain than the meucin-18 and was able to inhibit spike protein's interaction with ACE2 receptor. Hence, peptide “FFGHLFKLTTKIIPSLFQ” can be considered as the potential drug for the treatment of COVID-19 disease.
Collapse
Affiliation(s)
- Karim Mahnam
- Biology Department, Faculty of Science, Shahrekord University, Shahrekord, Iran; Nanotechnology Research Center, Shahrekord University, 8818634141, Shahrekord, Iran.
| | - Maryam Lotfi
- Biotechnology Department, Faculty of Agriculture, Payame Noor University, Esfahan, Iran
| | - Farzaneh Ahmadi Shapoorabadi
- Biotechnology Department, Faculty of Biological Science and Technology, Shahid Ashrafi Esfahani University, Esfahan, Iran
| |
Collapse
|
24
|
Cai Q, Yin F, Hao L, Jiang W. Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells Dev 2021; 30:459-472. [PMID: 33715385 DOI: 10.1089/scd.2020.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Liming Hao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wenhua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
25
|
Souza PFN, Mesquita FP, Amaral JL, Landim PGC, Lima KRP, Costa MB, Farias IR, Lima LB, Montenegro RC. The human pandemic coronaviruses on the show: The spike glycoprotein as the main actor in the coronaviruses play. Int J Biol Macromol 2021; 179:1-19. [PMID: 33667553 PMCID: PMC7921731 DOI: 10.1016/j.ijbiomac.2021.02.203] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/25/2021] [Accepted: 02/26/2021] [Indexed: 01/28/2023]
Abstract
Three coronaviruses (CoVs) have threatened the world population by causing outbreaks in the last two decades. In late 2019, the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) emerged and caused the coronaviruses to disease 2019 (COVID-19), leading to the ongoing global outbreak. The other pandemic coronaviruses, SARS-CoV and Middle East respiratory syndrome CoV (MERS-CoV), share a considerable level of similarities at genomic and protein levels. However, the differences between them lead to distinct behaviors. These differences result from the accumulation of mutations in the sequence and structure of spike (S) glycoprotein, which plays an essential role in coronavirus infection, pathogenicity, transmission, and evolution. In this review, we brought together many studies narrating a sequence of events and highlighting the differences among S proteins from SARS-CoV, MERS-CoV, and SARS-CoV-2. It was performed here, analysis of S protein sequences and structures from the three pandemic coronaviruses pointing out the mutations among them and what they come through. Additionally, we investigated the receptor-binding domain (RBD) from all S proteins explaining the mutation and biological importance of all of them. Finally, we discuss the mutation in the S protein from several new isolates of SARS-CoV-2, reporting their difference and importance. This review brings into detail how the variations in S protein that make SARS-CoV-2 more aggressive than its relatives coronaviruses and other differences between coronaviruses.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil.
| | - Felipe P Mesquita
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Patrícia G C Landim
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Karollyny R P Lima
- Department of Biochemistry and Molecular Biology, Federal University of Ceara, Brazil
| | - Marília B Costa
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Izabelle R Farias
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Luina B Lima
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| | - Raquel C Montenegro
- Drug research and Development Center, Department of Medicine, Federal University of Ceara, Brazil
| |
Collapse
|
26
|
Amaral JL, Oliveira JTA, Lopes FES, Freitas CDT, Freire VN, Abreu LV, Souza PFN. Quantum biochemistry, molecular docking, and dynamics simulation revealed synthetic peptides induced conformational changes affecting the topology of the catalytic site of SARS-CoV-2 main protease. J Biomol Struct Dyn 2021; 40:8925-8937. [PMID: 33949286 PMCID: PMC8108194 DOI: 10.1080/07391102.2021.1920464] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
The recent outbreak caused by SARS-CoV-2 continues to threat and take many lives all over the world. The lack of an efficient pharmacological treatments are serious problems to be faced by scientists and medical staffs worldwide. In this work, an in silico approach based on the combination of molecular docking, dynamics simulations, and quantum biochemistry revealed that the synthetic peptides RcAlb-PepI, PepGAT, and PepKAA, strongly interact with the main protease (Mpro) a pivotal protein for SARS-CoV-2 replication. Although not binding to the proteolytic site of SARS-CoV-2 Mpro, RcAlb-PepI, PepGAT, and PepKAA interact with other protein domain and allosterically altered the protease topology. Indeed, such peptide-SARS-CoV-2 Mpro complexes provoked dramatic alterations in the three-dimensional structure of Mpro leading to area and volume shrinkage of the proteolytic site, which could affect the protease activity and thus the virus replication. Based on these findings, it is suggested that RcAlb-PepI, PepGAT, and PepKAA could interfere with SARS-CoV-2 Mpro role in vivo. Also, unlike other antiviral drugs, these peptides have no toxicity to human cells. This pioneering in silico investigation opens up opportunity for further in vivo research on these peptides, towards discovering new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jackson L. Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Jose T. A. Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco E. S. Lopes
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
- Center for Permanent Education in Health Care, CEATS/School of Public Health of Ceará-ESP-CE, Fortaleza, Brazil
| | - Cleverson D. T. Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Valder N. Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Leonardo V. Abreu
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Pedro F. N. Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
27
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 DOI: 10.21203/rs.3.rs-40890/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/23/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|
28
|
Berries anthocyanins as potential SARS-CoV–2 inhibitors targeting the viral attachment and replication; molecular docking simulation. EGYPTIAN JOURNAL OF PETROLEUM 2021; 30. [PMCID: PMC7825908 DOI: 10.1016/j.ejpe.2021.01.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The viral respiratory disease, severe acute respiratory syndrome (SARS), has turned into a global health concern. Till now, there is no drug or vaccine has yet been specifically approved for SARS-CoV-2. One of the urgent solutions against the recent COVID-19 disease is the use of dietary molecules, which can be found abundantly in functional food. In the current study, we have conducted a molecular docking approach for eighteen dietary molecules belong to the subclass of anthocyanins, as potential inhibitors of the main protease and spike glycoprotein of SARS-CoV-2. Both selected targets, playing a vital role in attachment and replication of the virus. The results indicated that cyanidin-3-arabinoside exhibited the lowest binding energy and located onto the pocket through a sufficient number of hydrogen bonds with the main protease virus. However, pelargonidin-3-glucoside and pelargonidin 3-rhamnoside display significant binding energy with the spike glycoprotein of SARS-CoV-2. All compounds mentioned above shown high drug-likeness and fulfils the Lipinski’s rule of five, as well as confer favorable toxicity parameters, in addition to ADME values. Considering the obtained results, regular consumption of berry fruits, which are rich in anthocyanin compounds, should be supportive to inhibit viral infectious by reducing of propagation and pathogenicity of SARS-CoV–2.
Collapse
|
29
|
Souza PFN, Amaral JL, Bezerra LP, Lopes FES, Freire VN, Oliveira JTA, Freitas CDT. ACE2-derived peptides interact with the RBD domain of SARS-CoV-2 spike glycoprotein, disrupting the interaction with the human ACE2 receptor. J Biomol Struct Dyn 2021; 40:5493-5506. [PMID: 33427102 PMCID: PMC7876913 DOI: 10.1080/07391102.2020.1871415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Vaccines could be the solution to the current SARS-CoV-2 outbreak. However, some studies have shown that the immunological memory only lasts three months. Thus, it is imperative to develop pharmacological treatments to cope with COVID-19. Here, the in silico approach by molecular docking, dynamic simulations and quantum biochemistry revealed that ACE2-derived peptides strongly interact with the SARS-CoV-2 RBD domain of spike glycoprotein (S-RBD). ACE2-Dev-PepI, ACE2-Dev-PepII, ACE2-Dev-PepIII and ACE2-Dev-PepIV complexed with S-RBD provoked alterations in the 3D structure of S-RBD, leading to disruption of the correct interaction with the ACE2 receptor, a pivotal step for SARS-CoV-2 infection. This wrong interaction between S-RBD and ACE2 could inhibit the entry of SARS-CoV-2 in cells, and thus virus replication and the establishment of COVID-19 disease. Therefore, we suggest that ACE2-derived peptides can interfere with recognition of ACE2 in human cells by SARS-CoV-2 in vivo. Bioinformatic prediction showed that these peptides have no toxicity or allergenic potential. By using ACE2-derived peptides against SARS-CoV-2, this study points to opportunities for further in vivo research on these peptides, seeking to discover new drugs and entirely new perspectives to treat COVID-19.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Jackson L Amaral
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil.,Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Leandro P Bezerra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Francisco E S Lopes
- Center for Permanent Education in Health Care, CEATS/School of Public Health of Ceará-ESP-CE, Fortaleza, Brazil
| | - Valder N Freire
- Department of Physics, Federal University of Ceará, Fortaleza, Brazil
| | - Jose T A Oliveira
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
30
|
Kobryn AE, Maruyama Y, Velázquez-Martínez CA, Yoshida N, Gusarov S. Modeling the interaction of SARS-CoV-2 binding to the ACE2 receptor via molecular theory of solvation. NEW J CHEM 2021. [DOI: 10.1039/d1nj02015c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The angiotensin-converting enzyme 2 (ACE2) protein is a cell gate receptor for the SARS-CoV-2 virus, responsible for the development of symptoms associated with the Covid-19 disease.
Collapse
Affiliation(s)
- Alexander E. Kobryn
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2M9, Canada
| | - Yutaka Maruyama
- Architecture Development Team, FLAGSHIP 2020 Project, RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Carlos A. Velázquez-Martínez
- 2142-L Katz Group Centre for Research, University of Alberta, 11315-87 Avenue NW, Edmonton, Alberta, T6G 2H5, Canada
| | - Norio Yoshida
- Department of Chemistry, Graduate School of Science, Kyushu University, 744, Motooka, Nishi-ku, Fukuoka, 819-0395, Japan
| | - Sergey Gusarov
- Nanotechnology Research Centre, National Research Council Canada, 11421 Saskatchewan Drive NW, Edmonton, Alberta, T6G 2M9, Canada
| |
Collapse
|
31
|
Petit L, Vernès L, Cadoret JP. Docking and in silico toxicity assessment of Arthrospira compounds as potential antiviral agents against SARS-CoV-2. JOURNAL OF APPLIED PHYCOLOGY 2021; 33:1579-1602. [PMID: 33776210 PMCID: PMC7979453 DOI: 10.1007/s10811-021-02372-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/03/2021] [Accepted: 01/03/2021] [Indexed: 05/07/2023]
Abstract
UNLABELLED A race is currently being launched as a result of the international health situation. This race aims to find, by various means, weapons to counter the Covid-19 pandemic now widespread on all continents. The aquatic world and in particular that of photosynthetic organisms is regularly highlighted but paradoxically little exploited in view of the tremendous possibilities it offers. Computational tools allow not only to clear the existence and activity of many molecules but also to model their relationships with receptors identified in potential hosts. On a routine basis, our laboratory carries out a research activity on functionalities of molecules derived from algae using in silico tools. We have implemented our skills in algae biology and in modeling, as tests in order to identify molecules expressed by the genus Arthrospira showing an antiviral potential and more particularly anti-SARS-CoV-2. Using consensus docking and redocking with Autodock Vina and SwissDock, we were able to identify several promising molecules from Arthrospira: phycocyanobilin, phycoerythrobilin, phycourobilin, and folic acid. These four compounds showed reliable binding energies comprised between - 6.95 and - 7.45 kcal.mol-1 in Autodock Vina and between - 9.285 and - 10.35 kcal.mol-1 with SwissDock. Toxicity prediction as well as current regulations provided promising arguments for the inclusion of these compounds in further studies to assess their ability to compete with the SARS-CoV-2/ACE2 complex both in vitro and in vivo. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10811-021-02372-9.
Collapse
Affiliation(s)
- Léna Petit
- Algama, 81 rue Réaumur, 75002 Paris, France
| | - Léa Vernès
- Algama, 81 rue Réaumur, 75002 Paris, France
| | | |
Collapse
|
32
|
Souza PFN. The forgotten 2S albumin proteins: Importance, structure, and biotechnological application in agriculture and human health. Int J Biol Macromol 2020; 164:4638-4649. [PMID: 32937155 DOI: 10.1016/j.ijbiomac.2020.09.049] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/17/2020] [Accepted: 09/08/2020] [Indexed: 01/21/2023]
Abstract
2S albumin proteins are a group of important seed storage proteins (SSPs) essential to seeds at early and late developmental stages, by providing amino acids and other nutrients during germination and for seed defense. 2S albumins possess a well-conserved cysteine supporting the stability of temperature, pH, and proteolysis. The 3D structure rich in alpha-helices and positively charged is particularly suited for antibacterial and antifungal activity, which is presented by many 2S albumins. However, the hypervariable region present in 2S albumins induces allergenic reactions. Because of that, 2S albumins have never been recognized for their biotechnological potential. However, the development of servers used for the rational design of antimicrobial molecules has now brought a new application to 2S albumins, acting as a model to design antimicrobial molecules without the toxic or allergenic effects of 2S albumins. Therefore, this review is focused on discussing the importance of 2S albumins to seed development and defense and the biochemical, structural and functional properties of these proteins thought to play a role in their antimicrobial activity. Additionally, the application of 2S albumins to design synthetic antimicrobial peptides is discussed, potentially bringing new functions to these forgotten proteins.
Collapse
Affiliation(s)
- Pedro F N Souza
- Laboratory of Plant Defense Proteins, Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará CEP 60.440-554, Brazil.
| |
Collapse
|
33
|
Quantum biochemistry in cancer immunotherapy: New insights about CTLA-4/ipilimumab and design of ipilimumab-derived peptides with high potential in cancer treatment. Mol Immunol 2020; 127:203-211. [PMID: 33011403 DOI: 10.1016/j.molimm.2020.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/17/2020] [Accepted: 09/21/2020] [Indexed: 01/22/2023]
|
34
|
Huan Y, Kong Q, Mou H, Yi H. Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Front Microbiol 2020; 11:582779. [PMID: 33178164 PMCID: PMC7596191 DOI: 10.3389/fmicb.2020.582779] [Citation(s) in RCA: 636] [Impact Index Per Article: 159.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 09/23/2020] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) are a class of small peptides that widely exist in nature and they are an important part of the innate immune system of different organisms. AMPs have a wide range of inhibitory effects against bacteria, fungi, parasites and viruses. The emergence of antibiotic-resistant microorganisms and the increasing of concerns about the use of antibiotics resulted in the development of AMPs, which have a good application prospect in medicine, food, animal husbandry, agriculture and aquaculture. This review introduces the progress of research on AMPs comprehensively and systematically, including their classification, mechanism of action, design methods, environmental factors affecting their activity, application status, prospects in various fields and problems to be solved. The research progress on antivirus peptides, especially anti-coronavirus (COVID-19) peptides, has been introduced given the COVID-19 pandemic worldwide in 2020.
Collapse
Affiliation(s)
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | | | | |
Collapse
|