1
|
Wen J, Xia W, Wang Y, Li J, Guo R, Zhao Y, Fen J, Duan X, Wei G, Wang G, Li Z, Xu H. Pathway elucidation and heterologous reconstitution of the long-chain alkane pentadecane biosynthesis from Pogostemon cablin. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39556096 DOI: 10.1111/pbi.14520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
Very-long-chain (VLC) alkanes are major components of hydrophobic cuticular waxes that cover the aerial epidermis of land plants, serving as a waterproofing barrier to protect the plant against environmental stresses. The mechanism of VLC-alkane biosynthesis has been extensively elucidated in plants. However, little is known about the biosynthesis of long-chain alkanes (LC, C13 ~ C19) such as pentadecane in plants. Alkanes with different chain lengths are also major constituents of fossil fuels and thus the discovery of the alkane biosynthetic machinery in plants would provide a toolbox of enzymes for the production of renewable hydrocarbon sources and next generations of biofuels. The top leaves of Pogostemon cablin at young stage accumulate large amounts of LC-alkane pentadecane, making this plant an excellent system for the elucidation of LC-alkane biosynthetic machinery in plant. We show here that LC-alkane pentadecane biosynthesis in P. cablin involves an endoplasmic reticulum (ER)-localized complex made of PcCER1-LIKE3 and PcCER3, homologues of Arabidopsis ECERIFERUM1 (AtCER1) and AtCER3 proteins that are involved in Arabidopsis VLC-alkane biosynthesis. We reconstitute the biosynthesis of pentadecane in Nicotiana benthamiana by co-expression of PcCER1-LIKE3 and PcCER3 and further improve its production by silencing multifunctional acetyl-CoA carboxylases involved in fatty acid elongation pathway. Taken together, we uncovered the key biosynthetic machinery of LC-alkane pentadecane in P. cablin and demonstrated that using these newly identified enzymes to engineer this LC-alkane for liquid biofuel production in a heterologous plant host is possible.
Collapse
Affiliation(s)
- Jing Wen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Wanxian Xia
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Ying Wang
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Juan Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Ruihao Guo
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Yue Zhao
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Jing Fen
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Xinyu Duan
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Guo Wei
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, China
| | - Guodong Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| | - Haiyang Xu
- Key Laboratory of Plant Hormones and Molecular Breeding of Chongqing, School of Life Sciences, Chongqing University, Chongqing, China
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, China
| |
Collapse
|
2
|
Sheppard TJ, Specht DA, Barstow B. Upper limit efficiency estimates for electromicrobial production of drop-in jet fuels. Bioelectrochemistry 2023; 154:108506. [PMID: 37473694 DOI: 10.1016/j.bioelechem.2023.108506] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/22/2023]
Abstract
Microbes which participate in extracellular electron uptake (EEU) or H2 oxidation have the ability to manufacture organic compounds using electricity as the primary source of metabolic energy. So-called electromicrobial production could be valuable to efficiently synthesize drop-in jet fuels using renewable energy. Here, we calculate the upper limit electrical-to-fuel conversion efficiency for a model jet fuel blend containing 85% straight-chain alkanes and 15% terpenoids. When using the Calvin cycle for carbon-fixation, the energy conversion efficiency is 37.8-4.3+1.8% when using EEU for electron delivery and 40.1-4.6+0.7% when using H2 oxidation. The production efficiency can be raised to 44.2-3.7+0.5% when using the Formolase formate-assimilation pathway, and to 49.2-2.1+0.3% with the Wood-Ljungdahl pathway. This efficiency can be further raised by swapping the well-known Aldehyde Deformolating Oxygenase (ADO) termination pathway with the recently discovered Fatty Acid Photodecarboxylase (FAP) pathway. If these systems were supplied with electricity from a maximally-efficient silicon solar photovoltaic, even the least efficient pathway exceeds the maximum solar-to-fuel efficiency of all known forms of photosynthesis.
Collapse
Affiliation(s)
- Timothy J Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - David A Specht
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
3
|
Saadon S, Ali MSM, Kamarudin NHA, Latip W, Ishak SNH, Basri RS, Johan UUM, Shukri NSA, Rosli NE, Rahman RNZRA. Benefitting multi-enzyme system for the purpose of improving the flow properties of waxy oil. GEOENERGY SCIENCE AND ENGINEERING 2023; 230:212221. [DOI: 10.1016/j.geoen.2023.212221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
4
|
Kim K, Oh S, Jeong D, Lee Y, Moon D, Lee S, Cho J. Systematic Electronic Tuning on the Property and Reactivity of Cobalt-(Hydro)peroxo Intermediates. Inorg Chem 2023; 62:7141-7149. [PMID: 37139810 DOI: 10.1021/acs.inorgchem.3c00826] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
A series of cobalt(III)-peroxo complexes, [CoIII(R2-TBDAP)(O2)]+ (1R2; R2 = Cl, H, and OMe), and cobalt(III)-hydroperoxo complexes, [CoIII(R2-TBDAP)(O2H)(CH3CN)]2+ (2R2), bearing electronically tuned tetraazamacrocyclic ligands (R2-TBDAP = N,N'-di-tert-butyl-2,11-diaza[3.3](2,6)-p-R2-pyridinophane) were prepared from their cobalt(II) precursors and characterized by various physicochemical methods. The X-ray diffraction and spectroscopic analyses unambiguously showed that all 1R2 compounds have similar octahedral geometry with a side-on peroxocobalt(III) moiety, but the O-O bond lengths of 1Cl [1.398(3) Å] and 1OMe [1.401(4) Å] were shorter than that of 1H [1.456(3) Å] due to the different spin states. For 2R2, the O-O bond vibration energies of 2Cl and 2OMe were identical at 853 cm-1 (856 cm-1 for 2H), but their Co-O bond vibration frequencies were observed at 572 cm-1 for 2Cl and 550 cm-1 for 2OMe, respectively, by resonance Raman spectroscopy (560 cm-1 for 2H). Interestingly, the redox potentials (E1/2) of 2R2 increased in the order of 2OMe (0.19 V) < 2H (0.24 V) < 2Cl (0.34 V) according to the electron richness of the R2-TBDAP ligands, but the oxygen-atom-transfer reactivities of 2R2 showed a reverse trend (k2: 2Cl < 2H < 2OMe) with a 13-fold rate enhancement at 2OMe over 2Cl in a sulfoxidation reaction with thioanisole. Although the reactivity trend contradicts the general consideration that electron-rich metal-oxygen species with low E1/2 values have sluggish electrophilic reactivity, this could be explained by a weak Co-O bond vibration of 2OMe in the unusual reaction pathway. These results provide considerable insight into the electronic nature-reactivity relationship of metal-oxygen species.
Collapse
Affiliation(s)
- Kyungmin Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Seongmin Oh
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Donghyun Jeong
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yuri Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dohyun Moon
- Beamline Department, Pohang Accelerator Laboratory, Pohang 37673, Republic of Korea
| | - Sunggi Lee
- Department of Physics and Chemistry, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Republic of Korea
| | - Jaeheung Cho
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
5
|
Basri RS, Rahman RNZRA, Kamarudin NHA, Ali MSM. Carboxylic acid reductases: Structure, catalytic requirements, and applications in biotechnology. Int J Biol Macromol 2023; 240:124526. [PMID: 37080403 DOI: 10.1016/j.ijbiomac.2023.124526] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/07/2023] [Accepted: 04/16/2023] [Indexed: 04/22/2023]
Abstract
Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the enzymes' dynamics, mechanisms, and unique features. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.
Collapse
Affiliation(s)
- Rose Syuhada Basri
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Nor Hafizah Ahmad Kamarudin
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Centre of Foundation Studies for Agricultural Science, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Shukuri Mohamad Ali
- Enzyme and Microbial Technology Research Center, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia; Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| |
Collapse
|
6
|
Sattayawat P, Yunus IS, Jones PR. Production of Fatty Acids and Derivatives Using Cyanobacteria. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023. [PMID: 36764955 DOI: 10.1007/10_2022_213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
Fatty acids and their derivatives are highly valuable chemicals that can be produced through chemical or enzymatic processes using plant lipids. This may compete with human food sources. Therefore, there has been an urge to create a new method for synthesizing these chemicals. One approach is to use microbial cells, specifically cyanobacteria, as a factory platform. Engineering may need to be implemented in order to allow a cost-competitive production and to enable a production of a variety of different fatty acids and derivatives. In this chapter, we explain in details the importance of fatty acids and their derivatives, including fatty aldehydes, fatty alcohols, hydrocarbons, fatty acid methyl esters, and hydroxy fatty acids. The production of these chemicals using cyanobacterial native metabolisms together with strategies to engineer them are also explained. Moreover, recent examples of fatty acid and fatty acid derivative production from engineered cyanobacteria are gathered and reported. Commercial opportunities to manufacture fatty acids and derivatives are also discussed in this chapter. Altogether, it is clear that fatty acids and their derivatives are important chemicals, and with recent advancements in genetic engineering, a cyanobacterial platform for bio-based production is feasible. However, there are regulations and guidelines in place for the use of genetically modified organisms (GMOs) and some further developments are still needed before commercialization can be reached.
Collapse
Affiliation(s)
- Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Ian S Yunus
- Joint BioEnergy Institute, Emeryville, CA, USA.,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Patrik R Jones
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
7
|
Hayashi Y, Arai M. Recent advances in the improvement of cyanobacterial enzymes for bioalkane production. Microb Cell Fact 2022; 21:256. [PMID: 36503511 PMCID: PMC9743570 DOI: 10.1186/s12934-022-01981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022] Open
Abstract
The use of biologically produced alkanes has attracted considerable attention as an alternative energy source to petroleum. In 2010, the alkane synthesis pathway in cyanobacteria was found to include two small globular proteins, acyl-(acyl carrier protein [ACP]) reductase (AAR) and aldehyde deformylating oxygenase (ADO). AAR produces fatty aldehydes from acyl-ACPs/CoAs, which are then converted by ADO to alkanes/alkenes equivalent to diesel oil. This discovery has paved the way for alkane production by genetically modified organisms. Since then, many studies have investigated the reactions catalyzed by AAR and ADO. In this review, we first summarize recent findings on structures and catalytic mechanisms of AAR and ADO. We then outline the mechanism by which AAR and ADO form a complex and efficiently transfer the insoluble aldehyde produced by AAR to ADO. Furthermore, we describe recent advances in protein engineering studies on AAR and ADO to improve the efficiency of alkane production in genetically engineered microorganisms such as Escherichia coli and cyanobacteria. Finally, the role of alkanes in cyanobacteria and future perspectives for bioalkane production using AAR and ADO are discussed. This review provides strategies for improving the production of bioalkanes using AAR and ADO in cyanobacteria for enabling the production of carbon-neutral fuels.
Collapse
Affiliation(s)
- Yuuki Hayashi
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XEnvironmental Science Center, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033 Japan
| | - Munehito Arai
- grid.26999.3d0000 0001 2151 536XDepartment of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan ,grid.26999.3d0000 0001 2151 536XDepartment of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo 153-8902 Japan
| |
Collapse
|
8
|
Zhao R, Zhang BB, Liu Z, Cheng GJ, Wang ZX. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal-Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS AU 2022; 2:745-761. [PMID: 35373207 PMCID: PMC8970012 DOI: 10.1021/jacsau.2c00014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Indexed: 05/12/2023]
Abstract
Aldehyde deformylations occurring in organisms are catalyzed by metalloenzymes through metal-dioxygen active cores, attracting great interest to study small-molecule metal-dioxygen complexes for understanding relevant biological processes and developing biomimetic catalysts for aerobic transformations. As the known deformylation mechanisms, including nucleophilic attack, aldehyde α-H-atom abstraction, and aldehyde hydrogen atom abstraction, undergo outer-sphere pathways, we herein report a distinct inner-sphere mechanism based on density functional theory (DFT) mechanistic studies of aldehyde deformylations with a copper (II)-superoxo complex. The inner-sphere mechanism proceeds via a sequence mainly including aldehyde end-on coordination, homolytic aldehyde C-C bond cleavage, and dioxygen O-O bond cleavage, among which the C-C bond cleavage is the rate-determining step with a barrier substantially lower than those of outer-sphere pathways. The aldehyde C-C bond cleavage, enabled through the activation of the dioxygen ligand radical in a second-order nucleophilic substitution (SN2)-like fashion, leads to an alkyl radical and facilitates the subsequent dioxygen O-O bond cleavage. Furthermore, we deduced the rules for the reactions of metal-dioxygen complexes with aldehydes and nitriles via the inner-sphere mechanism. Expectedly, our proposed inner-sphere mechanisms and the reaction rules offer another perspective to understand relevant biological processes involving metal-dioxygen cores and to discover metal-dioxygen catalysts for aerobic transformations.
Collapse
Affiliation(s)
- Ruihua Zhao
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Bei-Bei Zhang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| | - Zheyuan Liu
- College
of Materials Science and Engineering, Fuzhou
University, Fuzhou 350108, China
| | - Gui-Juan Cheng
- Warshel
Institute for Computational Biology, School of Life and Health Sciences, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Zhi-Xiang Wang
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100039, China
| |
Collapse
|
9
|
Iqbal T, Chakraborty S, Murugan S, Das D. Metalloenzymes for Fatty Acid-Derived Hydrocarbon Biosynthesis: Nature's Cryptic Catalysts. Chem Asian J 2022; 17:e202200105. [PMID: 35319822 DOI: 10.1002/asia.202200105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Indexed: 11/08/2022]
Abstract
Waning resources, massive energy consumption, everdeepening global warming crisis, and climate change have raised grave concerns regarding continued dependence on fossil fuels as the predominant source of energy and generated tremendous interest for developing biofuels, which are renewable. Hydrocarbon-based 'drop-in' biofuels can be a proper substitute for fossil fuels such as gasoline or jet fuel. In Nature, hydrocarbons are produced by diverse organisms such as insects, plants, bacteria, and cyanobacteria. Metalloenzymes play a crucial role in hydrocarbons biosynthesis, and the past decade has witnessed discoveries of a number of metalloenzymes catalyzing hydrocarbon biosynthesis from fatty acids and their derivatives employing unprecedented mechanisms. These discoveries elucidated the enigma related to the divergent chemistries involved in the catalytic mechanisms of these metalloenzymes. There is substantial diversity in the structure, mode of action, cofactor requirement, and substrate scope among these metalloenzymes. Detailed structural analysis along with mutational studies of some of these enzymes have contributed significantly to identifying the key amino acid residues that dictate substrate specificity and catalytic intricacy. In this Review, we discuss the metalloenzymes that catalyze fatty acid-derived hydrocarbon biosynthesis in various organisms, emphasizing the active site architecture, catalytic mechanism, cofactor requirements, and substrate specificity of these enzymes. Understanding such details is essential for successfully implementing these enzymes in emergent biofuel research through protein engineering and synthetic biology approaches.
Collapse
Affiliation(s)
- Tabish Iqbal
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | | | - Subhashini Murugan
- Indian Institute of Science, Department of Inorganic and Physical Chemistry, INDIA
| | - Debasis Das
- Indian Institute of Science, Inorganic and Physical Chemistry, CV Raman Rd, 560012, Bangalore, INDIA
| |
Collapse
|
10
|
Banerjee R, Srinivas V, Lebrette H. Ferritin-Like Proteins: A Conserved Core for a Myriad of Enzyme Complexes. Subcell Biochem 2022; 99:109-153. [PMID: 36151375 DOI: 10.1007/978-3-031-00793-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Ferritin-like proteins share a common fold, a four α-helix bundle core, often coordinating a pair of metal ions. Although conserved, the ferritin fold permits a diverse set of reactions, and is central in a multitude of macromolecular enzyme complexes. Here, we emphasize this diversity through three members of the ferritin-like superfamily: the soluble methane monooxygenase, the class I ribonucleotide reductase and the aldehyde deformylating oxygenase. They all rely on dinuclear metal cofactors to catalyze different challenging oxygen-dependent reactions through the formation of multi-protein complexes. Recent studies using cryo-electron microscopy, serial femtosecond crystallography at an X-ray free electron laser source, or single-crystal X-ray diffraction, have reported the structures of the active protein complexes, and revealed unprecedented insights into the molecular mechanisms of these three enzymes.
Collapse
Affiliation(s)
- Rahul Banerjee
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
| | - Vivek Srinivas
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden
| | - Hugo Lebrette
- Department of Biochemistry and Biophysics, Stockholm University, Stockholm, Sweden.
- Laboratoire de Microbiologie et Génétique Moléculaires (LMGM), Centre de Biologie Intégrative (CBI), CNRS, UPS, Université de Toulouse, Toulouse, France.
| |
Collapse
|