1
|
Zhang L, Wang H, Xue C, Liu Y, Zhang Y, Liu Z, Meng X, Liu M, Zhao J. The crotonylated and succinylated proteins of jujube involved in phytoplasma-stress responses. BMC Biol 2024; 22:113. [PMID: 38750524 PMCID: PMC11094900 DOI: 10.1186/s12915-024-01917-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 05/10/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Protein posttranslational modifications (PTMs) are fast and early responses to environmental changes, including pathogen infection. Jujube witches' broom (JWB) is a phytoplasma disease causing great economic loss in jujube production. After phytoplasma infection, the transcriptional, translational, and metabolic levels in jujube were activated, enabling it to survive during phytoplasma invasion. However, no study has yet reported on PTMs in jujube. Lysine crotonylation (Kcr) and lysine succinylation (Ksu) have been popular studies in recent years and their function in plant phytoplasma-stress responses remains unclear. RESULTS Here, 1656 crotonylated and 282 succinylated jujube proteins were first identified under phytoplasma-stress, of which 198 were simultaneously crotonylated and succinylated. Comparative analysis revealed that 656 proteins, 137 crotonylated and 43 succinylated proteins in jujube were regulated by phytoplasma infection, suggesting that Kcr was more universal than Ksu. Kcr differentially expressed proteins (DEPs) were related to ribosomes, photosynthetic and carbon metabolism, while Ksu DEPs were mainly involved in carbon metabolism, the TCA cycle and secondary metabolite biosynthesis. The crosstalk network among proteome, crotonylome and succinylome showed that DEPs related to ribosomal, peroxidases and glutathione redox were enriched. Among them, ZjPOD51 and ZjPHGPX2 significantly increased at the protein and Kcr level under phytoplasma-stress. Notably, 7 Kcr sites were identified in ZjPHGPX2, a unique antioxidant enzyme. After inhibitor nicotinamide (NAM) treatment, GPX enzyme activity in jujube seedlings was reduced. Further, site-directed mutagenesis of key Kcr modification sites K130 and/or K135 in ZjPHGPX2 significantly reduced its activity. CONCLUSIONS This study firstly provided large-scale datasets of Kcr and Ksu in phytoplasma-infected jujube and revealed that Kcr modification in ZjPHGPX2 positively regulates its activity.
Collapse
Affiliation(s)
- Liman Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Huibin Wang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Chaoling Xue
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yin Liu
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Yao Zhang
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Xiangrui Meng
- College of Life Science, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China.
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory of Plant Physiology and Molecular Pathology, Hebei Agricultural University, Baoding, China.
| |
Collapse
|
2
|
do Carmo Santos ML, Santos TA, Dos Santos Lopes N, Macedo Ferreira M, Martins Alves AM, Pirovani CP, Micheli F. The selenium-independent phospholipid hydroperoxide glutathione peroxidase from Theobroma cacao (TcPHGPX) protects plant cells against damages and cell death. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108332. [PMID: 38224638 DOI: 10.1016/j.plaphy.2023.108332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/02/2023] [Accepted: 12/31/2023] [Indexed: 01/17/2024]
Abstract
Proteins from the glutathione peroxidase (GPX) family, such as GPX4 or PHGPX in animals, are extensively studied for their antioxidant functions and apoptosis inhibition. GPXs can be selenium-independent or selenium-dependent, with selenium acting as a potential cofactor for GPX activity. However, the relationship of plant GPXs to these functions remains unclear. Recent research indicated an upregulation of Theobroma cacao phospholipid hydroperoxide glutathione peroxidase gene (TcPHGPX) expression during early witches' broom disease stages, suggesting the use of antioxidant mechanisms as a plant defense strategy to reduce disease progression. Witches' broom disease, caused by the hemibiotrophic fungus Moniliophthora perniciosa, induces cell death through elicitors like MpNEP2 in advanced infection stages. In this context, in silico and in vitro analyses of TcPHGPX's physicochemical and functional characteristics may elucidate its antioxidant potential and effects against cell death, enhancing understanding of plant GPXs and informing strategies to control witches' broom disease. Results indicated TcPHGPX interaction with selenium compounds, mainly sodium selenite, but without improving the protein function. Protein-protein interaction network suggested cacao GPXs association with glutathione and thioredoxin metabolism, engaging in pathways like signaling, peroxide detection for ABA pathway components, and anthocyanin transport. Tests on tobacco cells revealed that TcPHGPX reduced cell death, associated with decreased membrane damage and H2O2 production induced by MpNEP2. This study is the first functional analysis of TcPHGPX, contributing to knowledge about plant GPXs and supporting studies for witches' broom disease control.
Collapse
Affiliation(s)
- Maria Luíza do Carmo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Taís Araújo Santos
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Natasha Dos Santos Lopes
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Monaliza Macedo Ferreira
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Akyla Maria Martins Alves
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil
| | - Fabienne Micheli
- Universidade Estadual de Santa Cruz (UESC), Departamento de Ciências Biológicas (DCB), Centro de Biotecnologia e Genética (CBG), Rodovia Ilhéus-Itabuna, Km 16, 45662-900, Ilhéus, BA, Brazil; CIRAD, UMR AGAP, F-34398, Montpellier, France.
| |
Collapse
|
3
|
Zuo X, Yang C, Yan Y, Huang G, Li R. Systematic analysis of the thioredoxin gene family in Citrus sinensis: identification, phylogenetic analysis, and gene expression patterns. PLANT SIGNALING & BEHAVIOR 2023; 18:2294426. [PMID: 38104280 PMCID: PMC10730155 DOI: 10.1080/15592324.2023.2294426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
Thioredoxin (TRX) proteins play essential roles in reactive oxygen species scavenging in plants. We executed an exhaustive analysis of the TRX gene family in Citrus sinensis (CsTRXs), encompassing identification, phylogenetic analysis, detection of conserved motifs and domains, gene structure, cis-acting elements, gene expression trends, and subcellular localization analysis. Our findings established that a total of 22 CsTRXs with thioredoxin domains were identified in the genome of C. sinensis. Phylogenetic analysis indicated that CsTRXs were divided into six subclusters. Conserved motifs analysis of CsTRXs indicated a wide range of conserved motifs. A significant number of cis-acting elements associated with both abiotic and biotic stress responses, inclusive of numerous phytohormone-related elements, were detected in the promoter regions of CsTRXs. The expression levels of CsTRXs including CsTRXf1, CsTRXh1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were observed to be reduced upon pathogen infection. Subcellular localization analysis found that CsTRXf1, CsTRXm1, CsTRXo3, CsTRXx2 and CsTRXy1 were predominantly localized in chloroplasts, whereas CsTRXh1 was distributed indiscriminately. This research yields integral data on CsTRXs, facilitating future efforts to decipher the gene functions of CsTRXs.
Collapse
Affiliation(s)
| | | | - Yana Yan
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| | - Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, China
| |
Collapse
|
4
|
Hou S, Zhang Q, Chen J, Meng J, Wang C, Du J, Guo Y. Genome-Wide Identification and Analysis of the GRAS Transcription Factor Gene Family in Theobroma cacao. Genes (Basel) 2022; 14:57. [PMID: 36672798 PMCID: PMC9858872 DOI: 10.3390/genes14010057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/03/2022] [Accepted: 12/05/2022] [Indexed: 12/28/2022] Open
Abstract
GRAS genes exist widely and play vital roles in various physiological processes in plants. In this study, to identify Theobroma cacao (T. cacao) GRAS genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the GRAS gene family in T. cacao. A total of 46 GRAS genes of T. cacao were identified. Chromosomal distribution analysis showed that all the TcGRAS genes were evenly distributed on ten chromosomes. Phylogenetic relationships revealed that GRAS proteins could be divided into twelve subfamilies (HAM: 6, LISCL: 10, LAS: 1, SCL4/7: 1, SCR: 4, DLT: 1, SCL3: 3, DELLA: 4, SHR: 5, PAT1: 6, UN1: 1, UN2: 4). Of the T. cacao GRAS genes, all contained the GRAS domain or GRAS superfamily domain. Subcellular localization analysis predicted that TcGRAS proteins were located in the nucleus, chloroplast, and endomembrane system. Gene duplication analysis showed that there were two pairs of tandem repeats and six pairs of fragment duplications, which may account for the rapid expansion in T. cacao. In addition, we also predicted the physicochemical properties and cis-acting elements. The analysis of GO annotation predicted that the TcGRAS genes were involved in many biological processes. This study highlights the evolution, diversity, and characterization of the GRAS genes in T. cacao and provides the first comprehensive analysis of this gene family in the cacao genome.
Collapse
Affiliation(s)
- Sijia Hou
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Jing Chen
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Junhong Du
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, National Engineering Laboratory for Tree Breeding, College of Biological Science and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
5
|
Du J, Zhang Q, Hou S, Chen J, Meng J, Wang C, Liang D, Wu R, Guo Y. Genome-Wide Identification and Analysis of the R2R3-MYB Gene Family in Theobroma cacao. Genes (Basel) 2022; 13:1572. [PMID: 36140738 PMCID: PMC9498333 DOI: 10.3390/genes13091572] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 11/16/2022] Open
Abstract
The MYB gene family is involved in the regulation of plant growth, development and stress responses. In this paper, to identify Theobroma cacao R2R3-MYB (TcMYB) genes involved in environmental stress and phytohormones, we conducted a genome-wide analysis of the R2R3-MYB gene family in Theobroma cacao (cacao). A total of 116 TcMYB genes were identified, and they were divided into 23 subgroups according to the phylogenetic analysis. Meanwhile, the conserved motifs, gene structures and cis-acting elements of promoters were analyzed. Moreover, these TcMYB genes were distributed on 10 chromosomes. We conducted a synteny analysis to understand the evolution of the cacao R2R3-MYB gene family. A total of 37 gene pairs of TcMYB genes were identified through tandem or segmental duplication events. Additionally, we also predicted the subcellular localization and physicochemical properties. All the studies showed that TcMYB genes have multiple functions, including responding to environmental stresses. The results provide an understanding of R2R3-MYB in Theobroma cacao and lay the foundation for a further functional analysis of TcMYB genes in the growth of cacao.
Collapse
Affiliation(s)
- Junhong Du
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Qianqian Zhang
- Chinese Institute for Brain Research, Beijing 102206, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Sijia Hou
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jing Chen
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Jianqiao Meng
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Cong Wang
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Dan Liang
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Rongling Wu
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| | - Yunqian Guo
- Center for Computational Biology, College of Biological Science and Technology, National Engineering Laboratory for Tree Breeding, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Bela K, Riyazuddin R, Csiszár J. Plant Glutathione Peroxidases: Non-Heme Peroxidases with Large Functional Flexibility as a Core Component of ROS-Processing Mechanisms and Signalling. Antioxidants (Basel) 2022; 11:antiox11081624. [PMID: 36009343 PMCID: PMC9404953 DOI: 10.3390/antiox11081624] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/29/2022] Open
Abstract
Glutathione peroxidases (GPXs) are non-heme peroxidases catalyzing the reduction of H2O2 or organic hydroperoxides to water or corresponding alcohols using glutathione (GSH) or thioredoxin (TRX) as a reducing agent. In contrast to animal GPXs, the plant enzymes are non-seleno monomeric proteins that generally utilize TRX more effectively than GSH but can be a putative link between the two main redox systems. Because of the substantial differences compared to non-plant GPXs, use of the GPX-like (GPXL) name was suggested for Arabidopsis enzymes. GPX(L)s not only can protect cells from stress-induced oxidative damages but are crucial components of plant development and growth. Due to fine-tuning the H2O2 metabolism and redox homeostasis, they are involved in the whole life cycle even under normal growth conditions. Significantly new mechanisms were discovered related to their transcriptional, post-transcriptional and post-translational modifications by describing gene regulatory networks, interacting microRNA families, or identifying Lys decrotonylation in enzyme activation. Their involvement in epigenetic mechanisms was evidenced. Detailed genetic, evolutionary, and bio-chemical characterization, and comparison of the main functions of GPXs, demonstrated their species-specific roles. The multisided involvement of GPX(L)s in the regulation of the entire plant life ensure that their significance will be more widely recognized and applied in the future.
Collapse
Affiliation(s)
- Krisztina Bela
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
| | - Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Institute of Plant Biology, Biological Research Centre, Temesvári krt. 62., H-6726 Szeged, Hungary
| | - Jolán Csiszár
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52., H-6726 Szeged, Hungary
- Correspondence:
| |
Collapse
|
7
|
Xiao R, Wei Y, Zhang Y, Xu F, Ma C, Gong Q, Gao J, Xu Y. Trilobatin, a Naturally Occurring Food Additive, Ameliorates Exhaustive Exercise-Induced Fatigue in Mice: Involvement of Nrf2/ARE/Ferroptosis Signaling Pathway. Front Pharmacol 2022; 13:913367. [PMID: 35814232 PMCID: PMC9263197 DOI: 10.3389/fphar.2022.913367] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/12/2022] [Indexed: 01/10/2023] Open
Abstract
Nrf2-mediated oxidative stress is a promising target of exhaustive exercise-induced fatigue (EEIF). Trilobatin (TLB) is a naturally occurring food additive with antioxidant effect and Nrf2 activation potency. The present study aimed to investigate the effect of TLB on EEIF and elucidate its underlying mechanism. Our results showed that TLB exerted potent anti-EEIF effect, as reflected by the rope climbing test and exhaustive swimming test. Moreover, TLB also effectively reduced the levels of lactate, creatine kinase, and blood urea nitrogen, and increased liver glycogen and skeletal muscle glycogen in mice after EEIF insult. Additionally, TLB also balanced the redox status as evidenced by decreasing the generation of reactive oxygen species and improving the antioxidant enzyme activities including superoxide dismutase, catalase, and glutathione peroxidase, as well as the level of glutathione both in the tissue of muscle and myocardium. Furthermore, TLB promoted nuclear factor erythroid 2-related factor 2 (Nrf2) from the cytoplasm to the nucleus, and upregulated its downstream antioxidant response element (ARE) including quinone oxidoreductase-1 and heme oxygenase-1. Intriguingly, TLB also upregulated the GPx4 protein expression and reduced iron overload in mice after EEIF insult. Encouragingly, the beneficial effect of TLB on EEIF-induced oxidative stress and ferroptosis were substantially abolished in Nrf2-deficient mice. In conclusion, our findings demonstrate, for the first time, that TLB alleviates EEIF-induced oxidative stress through mediating Nrf2/ARE/ferroptosis axis.
Collapse
Affiliation(s)
- Ran Xiao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yu Wei
- Department of Neurology, The Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yueping Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Fan Xu
- Spemann Graduate School of Biology and Medicine (SGBM), Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Congjian Ma
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qihai Gong
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jianmei Gao
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Yingshu Xu
- School of Pharmacy, Zunyi Medical University, Zunyi, China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
- *Correspondence: Yingshu Xu,
| |
Collapse
|
8
|
Rathinam M, Tyagi S, Konda AK, Rengarajan D, Rama Prashat G, Sreevathsa R. Relevance of methionine sulfoxide reductase(s) (MSR) as candidate proteins in redox homeostasis-mediated resistance response to Helicoverpa armigera (Hübner) in the pigeonpea wild relative Cajanus platycarpus (Benth.) Maesen. Int J Biol Macromol 2022; 215:290-302. [PMID: 35718158 DOI: 10.1016/j.ijbiomac.2022.06.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/09/2022] [Accepted: 06/14/2022] [Indexed: 11/30/2022]
Abstract
Pod borer, Helicoverpa armigera, a polyphagus herbivore causes extensive economic losses to crops, including pigeonpea. Exploitation of pod borer resistance in wild relatives is pertinent due to the absence of resistance sources in cultivated pigeonpea and crossing-incompatibility with the resistant wild relatives. We present leads obtained in deeper understanding of pod borer resistance mechanism in Cajanus platycarpus, a pigeonpea wild relative. Surge in cellular ROS during herbivory leads to redox-PTMs (post translational modifications) of methionine-rich proteins including antioxidant enzymes, causing oxidative damage. Plants then officiate methionine sulfoxide reductases (MSRs), that maintain the redox status of methionine and hence homeostasis. We demonstrate functionality of MSRs (MSRA and MSRB) in the resistance response of the wild relative to pod borer. Among 5 MSRA and 3 MSRB genes, CpMSRA2 and CpMSRB1 were herbivore-responsive based on expression during herbivory. Clues about the stress-responsiveness were obtained upon analyses of cis-elements and co-expressing genes. Apparently, the wild relative followed a non-canonical mode of redox management, as divulged by antioxidant enzymes and the scavenging capacity. Differential lipid peroxidation as an early response provided evidences for an effective redox management in the wild relative. This is the first report signifying redox homeostasis in the resistance response towards herbivory.
Collapse
Affiliation(s)
- Maniraj Rathinam
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | - Shaily Tyagi
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India
| | | | - Dineshkumar Rengarajan
- Division of Biochemistry, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - G Rama Prashat
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi 110012, India
| | - Rohini Sreevathsa
- ICAR-National Institute for Plant Biotechnology, Pusa Campus, New Delhi 110012, India.
| |
Collapse
|
9
|
do Amaral M, Freitas ACO, Santos AS, Dos Santos EC, Ferreira MM, da Silva Gesteira A, Gramacho KP, Marinho-Prado JS, Pirovani CP. TcTI, a Kunitz-type trypsin inhibitor from cocoa associated with defense against pathogens. Sci Rep 2022; 12:698. [PMID: 35027639 PMCID: PMC8758671 DOI: 10.1038/s41598-021-04700-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/23/2021] [Indexed: 02/05/2023] Open
Abstract
Protease inhibitors (PIs) are important biotechnological tools of interest in agriculture. Usually they are the first proteins to be activated in plant-induced resistance against pathogens. Therefore, the aim of this study was to characterize a Theobroma cacao trypsin inhibitor called TcTI. The ORF has 740 bp encoding a protein with 219 amino acids, molecular weight of approximately 23 kDa. rTcTI was expressed in the soluble fraction of Escherichia coli strain Rosetta [DE3]. The purified His-Tag rTcTI showed inhibitory activity against commercial porcine trypsin. The kinetic model demonstrated that rTcTI is a competitive inhibitor, with a Ki value of 4.08 × 10-7 mol L-1. The thermostability analysis of rTcTI showed that 100% inhibitory activity was retained up to 60 °C and that at 70-80 °C, inhibitory activity remained above 50%. Circular dichroism analysis indicated that the protein is rich in loop structures and β-conformations. Furthermore, in vivo assays against Helicoverpa armigera larvae were also performed with rTcTI in 0.1 mg mL-1 spray solutions on leaf surfaces, which reduced larval growth by 70% compared to the control treatment. Trials with cocoa plants infected with Mp showed a greater accumulation of TcTI in resistant varieties of T. cacao, so this regulation may be associated with different isoforms of TcTI. This inhibitor has biochemical characteristics suitable for biotechnological applications as well as in resistance studies of T. cacao and other crops.
Collapse
Affiliation(s)
- Milena do Amaral
- Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km - 16, Ilhéus, BA, CEP 45662-900, Brazil
| | - Ana Camila Oliveira Freitas
- Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km - 16, Ilhéus, BA, CEP 45662-900, Brazil
| | - Ariana Silva Santos
- Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km - 16, Ilhéus, BA, CEP 45662-900, Brazil.
| | - Everton Cruz Dos Santos
- Instituto Nacional de Câncer José Alencar Gomes da Silva, Rio de Janeiro, RJ, 20230-130, Brazil
| | - Monaliza Macêdo Ferreira
- Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km - 16, Ilhéus, BA, CEP 45662-900, Brazil
| | | | - Karina Peres Gramacho
- Centro de Pesquisa do Cacau [CEPEC/CEPLAC] Molecular Plant Pathology Laboratory, Km 22 Rod. Ilhéus-Itabuna, Ilhéus, Bahia, 45600-970, Brazil
| | | | - Carlos Priminho Pirovani
- Universidade Estadual de Santa Cruz, UESC, Rodovia Ilhéus-Itabuna, Km - 16, Ilhéus, BA, CEP 45662-900, Brazil
| |
Collapse
|
10
|
Zhang Q, Hou S, Sun Z, Chen J, Meng J, Liang D, Wu R, Guo Y. Genome-Wide Identification and Analysis of the MADS-Box Gene Family in Theobroma cacao. Genes (Basel) 2021; 12:genes12111799. [PMID: 34828404 PMCID: PMC8622960 DOI: 10.3390/genes12111799] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/03/2023] Open
Abstract
The MADS-box family gene is a class of transcription factors that have been extensively studied and involved in several plant growth and development processes, especially in floral organ specificity, flowering time and initiation and fruit development. In this study, we identified 69 candidate MADS-box genes and clustered these genes into five subgroups (Mα: 11; Mβ: 2; Mγ: 14; Mδ: 9; MIKC: 32) based on their phylogenetical relationships with Arabidopsis. Most TcMADS genes within the same subgroup showed a similar gene structure and highly conserved motifs. Chromosomal distribution analysis revealed that all the TcMADS genes were evenly distributed in 10 chromosomes. Additionally, the cis-acting elements of promoter, physicochemical properties and subcellular localization were also analyzed. This study provides a comprehensive analysis of MADS-box genes in Theobroma cacao and lays the foundation for further functional research.
Collapse
Affiliation(s)
- Qianqian Zhang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Sijia Hou
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Zhenmei Sun
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China;
| | - Jing Chen
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Jianqiao Meng
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Dan Liang
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Rongling Wu
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
| | - Yunqian Guo
- Center for Computational Biology, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Q.Z.); (S.H.); (J.C.); (J.M.); (D.L.); (R.W.)
- Correspondence:
| |
Collapse
|