1
|
Hu Y, Wang X, Wu H, Yao Y. The nuclear and cytoplasmic colocalization of MdGST12 regulated by MdWRKY26 and MdHY5 promotes anthocyanin accumulation by forming homodimers and interact with MdUFGT and MdDFR under light conditions in Malus. Int J Biol Macromol 2025; 289:138666. [PMID: 39689790 DOI: 10.1016/j.ijbiomac.2024.138666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/10/2024] [Indexed: 12/19/2024]
Abstract
The glutathione S-transferase (GST) gene family participates in the sequestration of anthocyanins into vacuoles. In this study, MdGST12 was identified as a candidate gene during light-induced anthocyanin accumulation. The methylation levels of the MdGST12 promoter exhibited marked differences among apple fruit treated with different light intensities. Interestingly, it was revealed that MdGST12 was localized in both the cytoplasm and nucleus. Moreover, MdHY5 and MdWRKY26 bind to the G-box and W-box cis-elements within the MdGST12 promoter, respectively. Instantaneous and stable transformation in plantlets, fruit, and calli, confirmed the role of MdGST12 and MdWRKY26 in promoting anthocyanin accumulation in apples. Moreover, the silencing of MdGST12 or MdWRKY26 by RNA interference significantly damaged the anthocyanin accumulation. Surprisingly, we found that MdGST12 could act as a transactivator and that the interaction between MdGST12 and MdDFR further enhances transcriptional activation of the MdDFR promoter. Moreover, MdGST12 also interacts with MdUFGT. Further study revealed that MdGST12 could interact with itself forming homodimers in the nucleus. Taken together, our study first revealed that MdGST12 regulated by MdWRKY26 and MdHY5 interacts with MdDFR and enters the nucleus, enhancing the transcriptional level of MdDFR and promoting anthocyanin accumulation in Malus under light conditions. It first revealed the complexity of GST's function in addition to the function of transferases and transporters in plants.
Collapse
Affiliation(s)
- Yujing Hu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| | - Xingsui Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Haofan Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China
| | - Yuncong Yao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing University of Agriculture, Beijing 102206, China; College of Plant Science and Technology, Beijing University of Agriculture, Beijing 102206, China; Beijing Key Laboratory for Agricultural Application and New Technique, Beijing 102206, China.
| |
Collapse
|
2
|
Huang C, Zhao T, Li J, Wang L, Tang Y, Wang Y, Li Y, Zhang C. Glutathione transferase VvGSTU60 is essential for proanthocyanidin accumulation and cooperates synergistically with MATE in grapes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39645653 DOI: 10.1111/tpj.17197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 10/24/2024] [Accepted: 11/23/2024] [Indexed: 12/09/2024]
Abstract
Proanthocyanidin, synthesized in the endoplasmic reticulum and stored in vacuoles, is key to grape and wine quality. Glutathione S-transferase (GST) plays a crucial role in proanthocyanidin accumulation. However, little is known about the mechanisms of GSTs in the process. Here, we found that a TAU-type GST VvGSTU60 is required for proanthocyanidin accumulation in Vitis vinifera. Gene expression analysis revealed a favorable correlation between the expression pattern of VvGSTU60 and proanthocyanidin accumulation in the seed of V. vinifera. We discovered that the overexpression of VvGSTU60 in grapes resulted in a significant increase in proanthocyanidin content, whereas the opposite effect occurred when VvGSTU60 was interfered with. Biochemical analysis indicates that VvGSTU60 forms homodimers and heterodimers with VvGST1. Interestingly, we also found that VvGSTU60 interacts with VvDTX41B, a MATE transporter protein localized on the tonoplast. Heterologous expression of VvDTX41B in the Arabidopsis tt12 mutant rescues the proanthocyanidin deficiency, and interfering with VvDTX41B expression in grapes remarkably reduces the accumulation of proanthocyanidin. In addition, compared with the VvGSTU60-OE callus, the content of proanthocyanidin in VvDTX41B-RNAi + VvGSTU60-OE callus was significantly decreased but higher than that in VvDTX41B-RNAi callus. The results suggest that VvGSTU60 and VvDTX41B are coordinated in proanthocyanidin accumulation. These findings offer new insights into the accumulation mechanisms of proanthocyanidin in plants and provide the molecular basis for optimizing grape quality and wine production.
Collapse
Affiliation(s)
- Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Jinhua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| | - Yan Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling, Shaanxi, 712100, China
| |
Collapse
|
3
|
Hu W, Chen Y, Xu Z, Liu L, Yan D, Liu M, Yan Q, Zhang Y, Yang L, Gao C, Liu R, Qin W, Miao P, Ma M, Wang P, Gao B, Li F, Yang Z. Natural variations in the Cis-elements of GhRPRS1 contributing to petal colour diversity in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3473-3488. [PMID: 39283921 PMCID: PMC11606410 DOI: 10.1111/pbi.14468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 11/27/2024]
Abstract
The cotton genus comprises both diploid and allotetraploid species, and the diversity in petal colour within this genus offers valuable targets for studying orthologous gene function differentiation and evolution. However, the genetic basis for this diversity in petal colour remains largely unknown. The red petal colour primarily comes from C, G, K, and D genome species, and it is likely that the common ancestor of cotton had red petals. Here, by employing a clone mapping strategy, we mapped the red petal trait to a specific region on chromosome A07 in upland cotton. Genomic comparisons and phylogenetic analyses revealed that the red petal phenotype introgressed from G. bickii. Transcriptome analysis indicated that GhRPRS1, which encodes a glutathione S-transferase, was the causative gene for the red petal colour. Knocking out GhRPRS1 resulted in white petals and the absence of red spots, while overexpression of both genotypes of GhRPRS1 led to red petals. Further analysis suggested that GhRPRS1 played a role in transporting pelargonidin-3-O-glucoside and cyanidin-3-O-glucoside. Promoter activity analysis indicated that variations in the promoter, but not in the gene body of GhRPRS1, have led to different petal colours within the genus. Our findings provide new insights into orthologous gene evolution as well as new strategies for modifying promoters in cotton breeding.
Collapse
Affiliation(s)
- Wei Hu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Yanli Chen
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of AgricultureNanjingChina
- The Institute of Industrial Crops, Jiangsu Academy of Agricultural SciencesNanjingChina
| | - Linqiang Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Da Yan
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Miaoyang Liu
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Qingdi Yan
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Yihao Zhang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Lan Yang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Chenxu Gao
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
| | - Renju Liu
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Wenqiang Qin
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Pengfei Miao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Meng Ma
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Peng Wang
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Baibai Gao
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
| | - Zhaoen Yang
- State Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationZhengzhou UniversityZhengzhouChina
- Institute of Cotton Research, Chinese Academy of Agricultural SciencesAnyangChina
- Henan Institute of Grain and Cotton ResearchZhengzhouChina
| |
Collapse
|
4
|
Kontouri A, Ataya FS, Madesis P, Labrou N. Comparative Characterization of Three Homologous Glutathione Transferases from the Weed Lolium perenne. Foods 2024; 13:3584. [PMID: 39594000 PMCID: PMC11593036 DOI: 10.3390/foods13223584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The comparative analysis of homologous enzymes is a valuable approach for elucidating enzymes' structure-function relationships. Glutathione transferases (GSTs, EC. 2.5.1.18) are crucial enzymes in maintaining the homeostatic stability of plant cells by performing various metabolic, regulatory, and detoxifying functions. They are promiscuous enzymes that catalyze a broad range of reactions that involve the nucleophilic attack of the activated thiolate of glutathione (GSH) to electrophilic compounds. In the present work, three highly homologous (96-98%) GSTs from ryegrass Lolium perenne (LpGSTs) were identified by in silico homology searches and their full-length cDNAs were isolated, cloned, and expressed in E. coli cells. The recombinant enzymes were purified by affinity chromatography and their substrate specificity and kinetic parameters were determined. LpGSTs belong to the tau class of the GST superfamily, and despite their high sequence homology, their substrate specificity displays remarkable differences. High catalytic activity was determined towards hydroxyperoxides and alkenals, suggesting a detoxification role towards oxidative stress metabolites. The prediction of the structure of the most active LpGST by molecular modeling allowed the identification of a non-conserved residue (Phe215) with key structural and functional roles. Site-saturation mutagenesis at position 215 and the characterization of eight mutant enzymes revealed that this site plays pleiotropic roles, affecting the affinity of the enzyme for the substrates, catalytic constant, and structural stability. The results of the work have improved our understanding of the GST family in L. perenne, a significant threat to agriculture, sustainable food production, and safety worldwide.
Collapse
Affiliation(s)
- Annie Kontouri
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| | - Farid Shokry Ataya
- Department of Biochemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia;
| | - Panagiotis Madesis
- Institute of Applied Biosciences, CERTH, 6th km Charilaou-Thermis Road, P.O. Box 361, Thermi, GR-57001 Thessaloniki, Greece;
| | - Nikolaos Labrou
- Laboratory of Enzyme Technology, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, 75 Iera Odos Street, GR-11855 Athens, Greece
| |
Collapse
|
5
|
Qiu L, Chen K, Pan J, Ma Z, Zhang J, Wang J, Cheng T, Zheng T, Pan H, Zhang Q. Genome-wide analysis of glutathione S-transferase genes in four Prunus species and the function of PmGSTF2, activated by PmMYBa1, in regulating anthocyanin accumulation in Prunus mume. Int J Biol Macromol 2024; 281:136506. [PMID: 39395520 DOI: 10.1016/j.ijbiomac.2024.136506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/08/2024] [Accepted: 10/09/2024] [Indexed: 10/14/2024]
Abstract
Glutathione S-transferases (GSTs) are proteases with multiple physiological functions and play an important role in plant responses to abiotic stresses. Nevertheless, there is a paucity of systematic research on GST genes in Prunus genus. Here, 330 GST genes in four Prunus species were identified for the first time and classified into eight subgroups based on protein sequence and conserved structure, among which Tau subfamily genes had the largest number. The amino acid lengths of GST-encoded proteins in the four species ranged from 66 to 1152 aa, most of which were soluble proteins and located in the cytoplasm and chloroplasts. The GST family was propelled by tandem duplications, yet robust purifying selection constrained its divergence. Conserved motif and domain analysis revealed that the majority of PmGSTs exhibited a highly conserved GST-N structure. The expression pattern of PmGSTs exhibited tissue specificity and spatiotemporal specificity. qRT-PCR validated the transcriptome results and 11 genes were differentially expressed in varieties with different flower and stem colors. In addition, we discovered an anthocyanin-related gene PmGSTF2, which can effectively restore the anthocyanin and proanthocyanidin deficiency-related phenotypes of the Arabidopsis tt19 mutant. Recombinant PmGSTF2 enhanced the water solubility of cyanidin and cyanidin-3-O-glucoside in vitro. Moreover, PmMYBa1 could directly bind to the promoter of PmGSTF2 and activate its expression. The findings revealed that GSTs were preserved in Prunus species and that PmGSTF2 was critical in regulating anthocyanin accumulation.
Collapse
Affiliation(s)
- Like Qiu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Ke Chen
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jing Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Zhiyuan Ma
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jiaojiao Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Jia Wang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangren Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Tangchun Zheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, State Key Laboratory of Efficient Production of Forest Resources, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China.
| |
Collapse
|
6
|
Obel HO, Zhou X, Liu S, Yang Y, Liu J, Zhuang Y. Genome-Wide Identification of Glutathione S-Transferase Genes in Eggplant ( Solanum melongena L.) Reveals Their Potential Role in Anthocyanin Accumulation on the Fruit Peel. Int J Mol Sci 2024; 25:4260. [PMID: 38673847 PMCID: PMC11050406 DOI: 10.3390/ijms25084260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Anthocyanins are ubiquitous pigments derived from the phenylpropanoid compound conferring red, purple and blue pigmentations to various organs of horticultural crops. The metabolism of flavonoids in the cytoplasm leads to the biosynthesis of anthocyanin, which is then conveyed to the vacuoles for storage by plant glutathione S-transferases (GST). Although GST is important for transporting anthocyanin in plants, its identification and characterization in eggplant (Solanum melongena L.) remains obscure. In this study, a total of 40 GST genes were obtained in the eggplant genome and classified into seven distinct chief groups based on the evolutionary relationship with Arabidopsis thaliana GST genes. The seven subgroups of eggplant GST genes (SmGST) comprise: dehydroascorbate reductase (DHAR), elongation factor 1Bγ (EF1Bγ), Zeta (Z), Theta(T), Phi(F), Tau(U) and tetra-chlorohydroquinone dehalogenase TCHQD. The 40 GST genes were unevenly distributed throughout the 10 eggplant chromosomes and were predominantly located in the cytoplasm. Structural gene analysis showed similarity in exons and introns within a GST subgroup. Six pairs of both tandem and segmental duplications have been identified, making them the primary factors contributing to the evolution of the SmGST. Light-related cis-regulatory elements were dominant, followed by stress-related and hormone-responsive elements. The syntenic analysis of orthologous genes indicated that eggplant, Arabidopsis and tomato (Solanum lycopersicum L.) counterpart genes seemed to be derived from a common ancestry. RNA-seq data analyses showed high expression of 13 SmGST genes with SmGSTF1 being glaringly upregulated on the peel of purple eggplant but showed no or low expression on eggplant varieties with green or white peel. Subsequently, SmGSTF1 had a strong positive correlation with anthocyanin content and with anthocyanin structural genes like SmUFGT (r = 0.9), SmANS (r = 0.85), SmF3H (r = 0.82) and SmCHI2 (r = 0.7). The suppression of SmGSTF1 through virus-induced gene silencing (VIGs) resulted in a decrease in anthocyanin on the infiltrated fruit surface. In a nutshell, results from this study established that SmGSTF1 has the potential of anthocyanin accumulation in eggplant peel and offers viable candidate genes for the improvement of purple eggplant. The comprehensive studies of the SmGST family genes provide the foundation for deciphering molecular investigations into the functional analysis of SmGST genes in eggplant.
Collapse
Affiliation(s)
- Hesbon Ochieng Obel
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Xiaohui Zhou
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Songyu Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yan Yang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Jun Liu
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| | - Yong Zhuang
- Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (H.O.O.); (X.Z.); (S.L.); (Y.Y.); (J.L.)
- Laboratory for Horticultural Crop Genetic Improvement, Nanjing 210014, China
| |
Collapse
|
7
|
RNA-Seq Analysis Demystify the Pathways of UV-A Supplementation in Different Photoperiods Integrated with Blue and Red Light on Morphology and Phytochemical Profile of Kale. Antioxidants (Basel) 2023; 12:antiox12030737. [PMID: 36978985 PMCID: PMC10045344 DOI: 10.3390/antiox12030737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/09/2023] [Accepted: 03/10/2023] [Indexed: 03/19/2023] Open
Abstract
As an indispensable element in the morphology and phytochemical profile of plants, UV-A has proved to help promote the growth and quality of kale. In this study, UV-A supplementation in different photoperiods (light period supplemental UVA = LS, dark period supplemental UVA = DS, and light-dark period supplemental UVA = LDS) contributed to yielding greater biomass production (fresh weight, dry weight, and plant moisture content), thus improving morphology (plant height, stem diameter, etc.) and promoting higher phytochemicals content (flavonoids, vitamin c, etc.), especially glucosinolates. To fathom its mechanisms, this study, using RNA-seq, verified that UV-A supplementation treatments signally generated related DEGs of plant hormone signal pathway, circadian rhythm plant pathway, glucosinolate pathway, etc. Moreover, 2047 DEGs were obtained in WGCNA, illustrating the correlations between genes, treatments, and pathways. Additionally, DS remarkedly up-regulated related DEGs of the key pathways and ultimately contributed to promoting the stem diameter, plant height, etc., thus increasing the pigment, biomass, vitamin c, etc., enhancing the antioxidant capacity, and most importantly, boosting the accumulations of glucosinolates in kale. In short, this study displayed new insights into UV-A supplementation affected the pathways related to the morphology and phytochemical profile of kale in plant factories.
Collapse
|
8
|
Chai Q, Wang X, Gao M, Zhao X, Chen Y, Zhang C, Jiang H, Wang J, Wang Y, Zheng M, Baltaevich AM, Zhao J, Zhao J. A glutathione S-transferase GhTT19 determines flower petal pigmentation via regulating anthocyanin accumulation in cotton. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:433-448. [PMID: 36385569 PMCID: PMC9884026 DOI: 10.1111/pbi.13965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/04/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Anthocyanin accumulations in the flowers can improve seed production of hybrid lines, and produce higher commodity value in cotton fibre. However, the genetic mechanism underlying the anthocyanin pigmentation in cotton petals is poorly understood. Here, we showed that the red petal phenotype was introgressed from Gossypium bickii through recombination with the segment containing the R3 bic region in the A07 chromosome of Gossypium hirsutum variety LR compared with the near-isogenic line of LW with white flower petals. The cyanidin-3-O-glucoside (Cy3G) was the major anthocyanin in red petals of cotton. A GhTT19 encoding a TT19-like GST was mapped to the R3 bic site associated with red petals via map-based cloning, but GhTT19 homologue gene from the D genome was not expressed in G. hirsutum. Intriguingly, allelic variations in the promoters between GhTT19LW and GhTT19LR , rather than genic regions, were found as genetic causal of petal colour variations. GhTT19-GFP was found localized in both the endoplasmic reticulum and tonoplast for facilitating anthocyanin transport. An additional MYB binding element found only in the promoter of GhTT19LR , but not in that of GhTT19LW , enhanced its transactivation by the MYB activator GhPAP1. The transgenic analysis confirmed the function of GhTT19 in regulating the red flower phenotype in cotton. The essential light signalling component GhHY5 bonded to and activated the promoter of GhPAP1, and the GhHY5-GhPAP1 module together regulated GhTT19 expression to mediate the light-activation of petal anthocyanin pigmentation in cotton. This study provides new insights into the molecular mechanisms for anthocyanin accumulation and may lay a foundation for faster genetic improvement of cotton.
Collapse
Affiliation(s)
- Qichao Chai
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Xiuli Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Mingwei Gao
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Xuecheng Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of HorticultureHunan Agricultural UniversityChangshaChina
| | - Ying Chen
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Chao Zhang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Hui Jiang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Jiabao Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Yongcui Wang
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Meina Zheng
- College of Life SciencesShandong Normal UniversityJinanChina
| | - Ahmedov Miraziz Baltaevich
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
| | - Jian Zhao
- Key Laboratory of Tea Science of Ministry of Education, College of HorticultureHunan Agricultural UniversityChangshaChina
| | - Junsheng Zhao
- Key Laboratory of Cotton Breeding and Cultivation in Huang‐Huai‐Hai Plain, Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanChina
- College of Life SciencesShandong Normal UniversityJinanChina
| |
Collapse
|