1
|
Fadaly WAA, Elshewy A, Nemr MTM, Abdou K, Sayed AM, Kahk NM. Discovery of novel thiazole derivatives containing pyrazole scaffold as PPAR-γ Agonists, α-Glucosidase, α-Amylase and COX-2 inhibitors; Design, synthesis and in silico study. Bioorg Chem 2024; 152:107760. [PMID: 39197383 DOI: 10.1016/j.bioorg.2024.107760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
A novel series of thiazole derivatives with pyrazole scaffold 16a-l as hybrid rosiglitazone/celecoxib analogs was designed, synthesized and tested for its PPAR-γ activation, α-glucosidase, α-amylase and COX-2 inhibitory activities. Regarding the anti-diabetic activity, all compounds were assessed in vitro against PPAR-γ activation, α-glucosidase and α-amylase inhibition in addition to in vivo hypoglycemic activity (one day and 15 days studies). Compounds 16b, 16c, 16e and 16 k showed good PPAR-γ activation (activation % ≈ 72-79 %) compared to that of the reference drug rosiglitazone (74 %). In addition, the same derivatives 16b, 16c, 16e and 16 k showed the highest inhibitory activities against α-glucosidase (IC50 = 0.158, 0.314, 0.305, 0.128 μM, respectively) and against α-amylase (IC50 = 32.46, 23.21, 7.74, 35.85 μM, respectively) compared to the reference drug acarbose (IC50 = 0.161 and 31.46 μM for α-glucosidase and α-amylase, respectively). The most active derivatives 16b, 16c, 16e and 16 k also revealed good in vivo hypoglycemic effect comparable to that of rosiglitazone. In addition, compounds 16b and 16c had the best COX-2 selectivity index (S.I. = 18.7, 31.7, respectively) compared to celecoxib (S.I. = 10.3). In vivo anti-inflammatory activity of the target derivatives 16b, 16c, 16e and 16 k supported the results of in vitro screening as the derivatives 16b and 16c (ED50 = 8.2 and 24 mg/kg, respectively) were more potent than celecoxib (ED50 = 30 mg/kg). In silico docking, ADME, toxicity, and molecular dynamic studies were carried out to explain the interactions of the most active anti-diabetic and anti-inflammatory compounds 16b, 16c, 16e and 16 k with the target enzymes in addition to their physiochemical parameters.
Collapse
Affiliation(s)
- Wael A A Fadaly
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| | - Ahmed Elshewy
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt; Department of Natural and Applied Sciences, College of Arts and Sciences, The American University of Iraq-Baghdad (AUIB), Baghdad, Iraq
| | - Mohamed T M Nemr
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr El-Eini street 11562, Cairo, Egypt.
| | - Kareem Abdou
- Biochemistry Department, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Ahmed M Sayed
- Department of Pharmacognosy, Collage of Pharmacy, Almaaqal University, 61014 Basrah, Iraq
| | - Nesma M Kahk
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
| |
Collapse
|
2
|
Rafique I, Maqbool T, Javed MS. Synthesis of Pyrazolo[3,4-b]pyridine Derivatives and Their In-Vitro and In-Silico Antidiabetic Activities. J Cell Biochem 2024; 125:e30646. [PMID: 39239805 DOI: 10.1002/jcb.30646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/17/2024] [Accepted: 08/25/2024] [Indexed: 09/07/2024]
Abstract
In the current study, new pyrazolo[3,4-b]pyridine esters, hydrazides, and Schiff bases have been synthesized starting from 3-methyl-1-phenyl-1H-pyrazol-5-amine. The first step involved solvent-free synthesis of pyrazolo[3,4-b]pyridine-6-carboxylate derivatives (2a-d) with 55%-70% yield in the minimum time frame compared with the conventional refluxing method, which was followed by the synthesis of corresponding hydrazides (3a-d) and hydrazones (4a-e). The structures of the synthesized derivatives were confirmed using element analysis, FT-IR, 1H NMR, 13C NMR, and LC-MS techniques. Synthesized hydrazides (3a-d) and hydrazones (4a-e) were also tested for their in-vitro antidiabetic activity and found that all the compounds exhibited significant antidiabetic activity, while 3c (IC50 = 9.6 ± 0.5 μM) among the hydrazides and 4c (IC50 = 13.9 ± 0.7 μM) among the hydrazones were found to be more active in comparison to other synthesized derivatives. These in-vitro results were further validated via docking studies against the α-amylase enzyme using the reference drug acarbose (200.1 ± 10.0 μM). The results were greatly in agreement with their in-vitro studies and these derivatives can be encouraging candidates for further in-vivo studies in mice models.
Collapse
Affiliation(s)
- Iqra Rafique
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Tahir Maqbool
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Salman Javed
- Department of Chemistry, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
3
|
Mortada S, Guerrab W, Missioui M, Salhi N, Naceiri Mrabti H, Rouass L, Benkirane S, Hassane M, Masrar A, Mezzour H, Faouzi MEA, Ramli Y. Synthesis, design, in silico, in vitro and in vivo (streptozotocin-induced diabetes in mice) biological evaluation of novels N-arylacetamide derivatives. J Biomol Struct Dyn 2024; 42:6711-6725. [PMID: 37583282 DOI: 10.1080/07391102.2023.2246574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/07/2023] [Indexed: 08/17/2023]
Abstract
The organic compounds 2-chloro-N-(aryl)acetamide (Ps13-Ps18) and 2-azido-N-(aryl)acetamide (148-153) were synthesized and analyzed using 1 H, 13C NMR. The acute oral toxicity study was carried out according to OECD guidelines, which approve that the compounds (Ps18 and 153) were nontoxic. In addition, the compounds were evaluated for its antidiabetic and antihyperglycemic properties (in vitro and in vivo) and for antioxidant activity by utilizing several tests as 1,1-diphenyl2-picrylhydrazyl DPPH, (2,2'-azino-bis(3-ethyl benzthiazoline-6-sulfonicacid) ABTS, reducing power test FRAP and hydrogen peroxide activity H2O2. The molecular docking studies were performed to investigate the antidiabetic activity of Ps18 and 153 and compared with the experimental results. These compounds are a potent antidiabetic from both the experimental and molecular docking results. Finally, the physicochemical, pharmacokinetic and toxicological properties of Ps18 and 153 have been evaluated by using in silico absorption, distribution, metabolism, excretion and toxicity analysis prediction.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Salma Mortada
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Walid Guerrab
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Mohcine Missioui
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Najoua Salhi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Hanae Naceiri Mrabti
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
- The Higher Institute of Nursing Professions and Health Techniques (ISPITS), Casablanca, Morocco
| | - Lamiaa Rouass
- UPR D'anatomie et Cytologie Pathologiques, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Souad Benkirane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Mamad Hassane
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Azlarab Masrar
- Laboratoire Central D'hématologie, CHU Ibn Sina Rabat, Rabat, Morocco
| | - Hicham Mezzour
- Laboratoire de Biologie de Larache (LBL), Larache, Morocco
| | - My El Abbes Faouzi
- Laboratory of Pharmacology and Toxicology, Biopharmaceutical and Toxicological Analysis Research Team, Faculty of Medicine and Pharmacy, Mohammed V University, Rabat, Morocco
| | - Youssef Ramli
- Laboratory of Medicinal Chemistry, Drug Sciences Research Center, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
- Mohammed VI Center for Research and Innovation (CM6), Rabat, Morocco
| |
Collapse
|
4
|
Ichale R, Kanhed AM, Vora A. Coumarin linked thiazole derivatives as potential α-glucosidase inhibitors to treat diabetes mellitus. Mol Divers 2024; 28:1239-1247. [PMID: 37118160 DOI: 10.1007/s11030-023-10652-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/14/2023] [Indexed: 04/30/2023]
Abstract
Diabetes is a leading cause of kidney failure, blindness, heart attacks and lower limb amputation. Prevalence of diabetes is rising globally. α-glucosidase is validated target for controlling hyperglycemia because of its role in catalysing hydrolysis of carbohydrates to glucose in GIT. In an attempt to find novel safe and effective α-glucosidase inhibitors, coumarin linked thiazole was identified as potential scaffold on the basis of its interactions with the active site of α-glucosidase studied in silico. A series of coumarin linked thiazole derivatives were synthesized and analyzed for α-glucosidase inhibitory potential in an in-vitro assay. The synthesized molecules showed potent inhibition of α-glucosidase with IC50 values ranging from 0.14 to 9.38 μM. The most potent compound 2-[(4-bromophenyl) amino)-N-(4- (2-oxo-2H-chromen-3-yl) thiazol-2-yl] acetamide was further docked with α-glucosidase and molecular dynamics studies were carried out for 100 ns which suggested the stability of protein and ligand in the protein active site over the simulation period and role of hydrophobic interactions slightly more than the electrostatic/polar interactions in ligand- receptor stability. In summary, our results demonstrate efficacy of coumarin-linked thiazole as potential leads for further optimization and development.
Collapse
Affiliation(s)
- Rushikesh Ichale
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM's NMIMS University, Vile Parle, Mumbai, 400056, India
| | - Ashish M Kanhed
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM's NMIMS University, Vile Parle, Mumbai, 400056, India.
| | - Amisha Vora
- Shobhaben Pratapbhai Patel - School of Pharmacy & Technology Management, SVKM's NMIMS University, Vile Parle, Mumbai, 400056, India.
| |
Collapse
|
5
|
Ullah S, Ullah A, Waqas M, Halim SA, Pasha AR, Shafiq Z, Mali SN, Jawarkar RD, Khan A, Khalid A, Abdalla AN, Kashtoh H, Al-Harrasi A. Structural, dynamic behaviour, in-vitro and computational investigations of Schiff's bases of 1,3-diphenyl urea derivatives against SARS-CoV-2 spike protein. Sci Rep 2024; 14:12588. [PMID: 38822113 PMCID: PMC11143201 DOI: 10.1038/s41598-024-63345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/28/2024] [Indexed: 06/02/2024] Open
Abstract
The COVID-19 has had a significant influence on people's lives across the world. The viral genome has undergone numerous unanticipated changes that have given rise to new varieties, raising alarm on a global scale. Bioactive phytochemicals derived from nature and synthetic sources possess lot of potential as pathogenic virus inhibitors. The goal of the recent study is to report new inhibitors of Schiff bases of 1,3-dipheny urea derivatives against SARS COV-2 spike protein through in-vitro and in-silico approach. Total 14 compounds were evaluated, surprisingly, all the compounds showed strong inhibition with inhibitory values between 79.60% and 96.00% inhibition. Here, compounds 3a (96.00%), 3d (89.60%), 3e (84.30%), 3f (86.20%), 3g (88.30%), 3h (86.80%), 3k (82.10%), 3l (90.10%), 3m (93.49%), 3n (85.64%), and 3o (81.79%) exhibited high inhibitory potential against SARS COV-2 spike protein. While 3c also showed significant inhibitory potential with 79.60% inhibition. The molecular docking of these compounds revealed excellent fitting of molecules in the spike protein receptor binding domain (RBD) with good interactions with the key residues of RBD and docking scores ranging from - 4.73 to - 5.60 kcal/mol. Furthermore, molecular dynamics simulation for 150 ns indicated a strong stability of a complex 3a:6MOJ. These findings obtained from the in-vitro and in-silico study reflect higher potency of the Schiff bases of 1,3-diphenyl urea derivatives. Furthermore, also highlight their medicinal importance for the treatment of SARS COV-2 infection. Therefore, these small molecules could be a possible drug candidate.
Collapse
Affiliation(s)
- Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Atta Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Muhammad Waqas
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Anam Rubbab Pasha
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.
| | - Suraj N Mali
- School of Pharmacy, D.Y. Patil University (Deemed to be University), Sector 7, Nerul, Navi Mumbai, 400706, India
| | - Rahul D Jawarkar
- Department of Medicinal Chemistry and Drug Discovery, Dr. Rajendra Gode Institute of Pharmacy, University Mardi Road, Amravati, 444603, India
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Center, Jazan University, P.O. Box: 114, 45142, Jazan, Saudi Arabia
| | - Ashraf N Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Hamdy Kashtoh
- Department of Biotechnology, Yeungnam University, Gyeongsan, 38541, Gyeongbuk, Republic of Korea.
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| |
Collapse
|
6
|
Taj S, Ashfaq UA, Ahmad M, Noor H, Ikram A, Ahmed R, Tariq M, Masoud MS, Hasan A. The antihyperglycemic potential of pyrazolobenzothiazine 1, 1-dioxide novel derivative in mice using integrated molecular pharmacological approach. Sci Rep 2024; 14:7746. [PMID: 38565861 PMCID: PMC10987501 DOI: 10.1038/s41598-023-49932-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/13/2023] [Indexed: 04/04/2024] Open
Abstract
Diabetes Mellitus is a metabolic disease characterized by elevated blood sugar levels caused by inadequate insulin production, which subsequently leads to hyperglycemia. This study was aimed to investigate the antidiabetic potential of pyrazolobenzothiazine derivatives in silico, in vitro, and in vivo. Molecular docking of pyrazolobenzothiazine derivatives was performed against α-glucosidase and α-amylase and compounds were selected based on docking score, bonding interactions and low root mean square deviation (RMSD). Enzyme inhibition assay against α-glucosidase and α-amylase was performed in vitro using p-nitrophenyl-α-D-glucopyranoside (PNPG) and starch substrate. Synthetic compound pyrazolobenzothiazine (S1) exhibited minimal conformational changes during the 100 ns MD simulation run. S1 also revealed effective IC50 values for α-glucosidase (3.91 µM) and α-amylase (8.89 µM) and an enzyme kinetic study showed low ki (- 0.186 µM, - 1.267 µM) and ki' (- 0.691 µM, - 1.78 µM) values with the competitive type of inhibition for both enzymes α-glucosidase and α-amylase, respectively. Moreover, studies were conducted to check the effect of the synthetic compound in a mouse model. A low necrosis rate was observed in the liver, kidney, and pancreas through histology analysis performed on mice. Compound S1 also exhibited a good biochemical profile with lower sugar level (110-115 mg/dL), increased insulin level (25-30 μM/L), and low level of cholesterol (85 mg/dL) and creatinine (0.6 mg/dL) in blood. The treated mice group also exhibited a low % of glycated haemoglobin (3%). This study concludes that S1 is a new antidiabetic-agent that helps lower blood glucose levels and minimizes the complications associated with type-II diabetes.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Hasnat Noor
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Ayesha Ikram
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan
| | - Rashid Ahmed
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, New Mirpur City, 10250, Pakistan
| | - Muhammad Tariq
- Department of Biotechnology, Faculty of Natural and Applied Sciences, Mirpur University of Science and Technology, New Mirpur City, 10250, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, 2713, Doha, Qatar.
- Biomedical Research Center (BRC), Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
7
|
Liu H, Huang P, Wang X, Ma Y, Tong J, Li J, Ding H. Apigenin analogs as α-glucosidase inhibitors with antidiabetic activity. Bioorg Chem 2024; 143:107059. [PMID: 38154388 DOI: 10.1016/j.bioorg.2023.107059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/14/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
This study investigated the inhibitory potential of a series of synthesized compounds (L1-L27) on α-glucosidase. Among them, compound L22 showed significant inhibitory effect. Through enzymatic kinetics studies, we demonstrated that L22 acts via a non-competitive inhibition mode with a Ki value of 2.61 μM, highlighting its high affinity for the enzyme. Molecular docking studies revealed the formation of hydrogen bonds between L22 and α-glucosidase and diverse interactions with neighboring amino acid residues. Furthermore, molecular dynamics simulations confirmed the stability of the L22-α-glucosidase complex. In a mouse model of type 2 diabetes, treatment with L22 significantly lowered fasting blood glucose levels, and reduced insulin resistance, suggesting its potential as a therapeutic agent for type 2 diabetes. Furthermore, L22 showed a protective effect against oxidative stress in the liver and alleviated liver and pancreatic abnormalities. These results provide valuable insights into the mechanism of action of L22 and its potential applications to treat type 2 diabetes, and improve liver health.
Collapse
Affiliation(s)
- Honghui Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Puxin Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Xingchen Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Yufang Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China
| | - Jing Tong
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China.
| | - Jing Li
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan 430074, PR China.
| | - Hong Ding
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University School of Pharmaceutical Sciences, Wuhan University Hubei 430072, PR China.
| |
Collapse
|
8
|
Mehra A. Targeting Diabetes with Azole-derived Medicinal Agents. Med Chem 2024; 20:855-875. [PMID: 38840402 DOI: 10.2174/0115734064289990240524055002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/13/2024] [Accepted: 03/26/2024] [Indexed: 06/07/2024]
Abstract
Azoles have long been regarded as an ideal scaffold for the development of numerous innovative therapeutic agents as well as other incredibly adaptable and beneficial chemicals with prospective uses in a variety of fields, including materials, energetics (explosophores), and catalysis (azole organocatalytic arbitration). Azoles exhibit promising pharmacological activities, including antimicrobial, antidiabetic, antiviral, antidepressant, antihistaminic, antitumor, antioxidant, antiallergic, antihelmintic, and antihypertensive activity. According to a database analysis of U.S. FDAapproved medications, 59% of specific medications are connected to small molecules that have heterocycles having nitrogen atoms. The azole moiety has impressive electron abundance. Azoles promptly attach to various receptors as well as enzymes in the physiological environment via distinct specialized interactions, contributing to their anti-diabetic potential. This review encompasses the recent research progress on potent azole-derived antidiabetic agents that can be used as an alternative for the management of type-2 diabetes.
Collapse
Affiliation(s)
- Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara (Punjab) 144411, India
| |
Collapse
|
9
|
Omotayo IA, Banjo S, Emmanuel OT, Felix LD, Kolawole OA, Dele OA, Olasegun AI, Dasola AM, Ayobami OO. Molecular properties and In silico bioactivity evaluation of (4-fluorophenyl)[5)-3-phen-(4-nitrophenyl yl-4,5-dihydro-1 H-pyrazol-1-yl]methanone derivatives: DFT and molecular docking approaches. J Taibah Univ Med Sci 2023; 18:1386-1405. [PMID: 37324403 PMCID: PMC10267600 DOI: 10.1016/j.jtumed.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/27/2023] [Accepted: 05/11/2023] [Indexed: 06/17/2023] Open
Abstract
Objectives Molecular structures, spectroscopic properties, charge distributions, frontier orbital energies, nonlinear optical (NLO) properties and molecular docking simulations were analyzed to examine the bio-usefulness of a series of (4-fluorophenyl)[5-(4-nitrophenyl)-3-phenyl-4,5-dihydro-1H-pyrazol-1-yl]methanone derivatives. Methods The compounds were studied through computational methods. Equilibrium optimization of the compounds was performed at the B3LYP/6-31G(d,p) level of theory, and geometric parameters, frequency vibration, UV-vis spectroscopy and reactivity properties were predicted on the basis of density functional theory (DFT) calculations. Results The energy gap (ΔEg), electron donating/accepting power (ω-/ω+) and electron density response toward electrophiles/nucleophiles calculated for M1 and M2 revealed the importance of substituent positioning on compound chemical behavior. In addition, ω-/ω+ and ΔEn/ΔEe indicated that M6 is more electrophilic because of the presence of two NO2 groups, which enhanced its NLO properties. The hyperpolarizability (β0) of the compounds ranged from 5.21 × 10-30 to 7.26 × 10-30 esu and was greater than that of urea; thus, M1-M6 were considered possible candidates for NLO applications. Docking simulation was also performed on the studied compounds and targets (PDB ID: 5ADH and 1RO6), and the calculated binding affinity and non-bonding interactions are reported. Conclusion The calculated ω- and ω+ indicated the electrophilic nature of the compounds; M6, a compound with two NO2 groups, showed enhanced effects. Molecular electrostatic potential (MEP) analysis indicated that amide and nitro groups on the compounds were centers of electrophilic attacks. The magnitude of the molecular hyperpolarizability suggested that the entire compound had good NLO properties and therefore could be explored as a candidate NLO material. The docking results indicated that these compounds have excellent antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Ibrahim A. Omotayo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Semire Banjo
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Oladuji T. Emmanuel
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
| | - Latona D. Felix
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | | | - Owonikoko A. Dele
- Department of Chemistry, Emmanuel Alayande College of Education, Nigeria
| | | | - Adeoye M. Dasola
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | - Odunola O. Ayobami
- Computational Chemistry Laboratory, Department of Pure and Applied Chemistry, Ladoke Akintola University of Technology, Ogbomoso, Nigeria
- Department of Chemistry, Faculty of Natural and Applied Sciences, Hallmark University, Ijebu-Itele, Nigeria
| |
Collapse
|
10
|
Firdaus JU, Siddiqui N, Alam O, Manaithiya A, Chandra K. Identification of novel pyrazole containing ɑ-glucosidase inhibitors: insight into pharmacophore, 3D-QSAR, virtual screening, and molecular dynamics study. J Biomol Struct Dyn 2023; 41:9398-9423. [PMID: 36376021 DOI: 10.1080/07391102.2022.2141893] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022]
Abstract
Pharmacophore modelling, 3 D QSAR modelling, virtual screening, and molecular dynamics study, all-in-one combination were employed successfully design and develop an alpha-glucosidase inhibitor. To explain the structural prerequisites of biologically active components, 3 D-QSAR models were generated using the selected best hypothesis (AARRR) for compounds 55 included in the model C. The selection of 3 D-QSAR models showed that the Gaussian steric characteristic is crucial to alpha glucosidase's inhibitory potential. The alpha-glucosidase inhibitory potency of the compound is enhanced by other components, including Gaussian hydrophobic groups, Gaussian hydrogen bond acceptor or donor groups, Gaussian electrostatic characteristics, and a Gaussian steric feature. An identification of structure-activity relationships can be obtained from the developed 3 D-QSAR, C model, with R2 = 0.77 and SD = 0.02 for training set, and Q2 = 0.66, RMSE 0.02, and Pearson R = 0.81 for testing set, corresponding to elevated predictive ability. Additionally, docking and MM/GBSA experiments on 1146023 showed that it interacts with critical amino acids in the binding site when coupled with acarbose. Further, five compounds that display a high affinity for alpha-glucosidase were found, and these compounds may serve as potent leads for alpha-glucosidase inhibitor development. Biological activity will be tested for these compounds in the future.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jannat Ul Firdaus
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
11
|
Kumar H, Dhameja M, Kurella S, Uma A, Gupta P. Synthesis of 1,2,3-triazole-1,3,4-thiadiazole hybrids as novel α-glucosidase inhibitors by in situ azidation/click assembly. Arch Pharm (Weinheim) 2023:e2300145. [PMID: 37236165 DOI: 10.1002/ardp.202300145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/01/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023]
Abstract
α-Glucosidase inhibition is widely used in the oral management of diabetes mellitus (DM), a disease characterized by high blood sugar levels (hyperglycemia) and abnormal carbohydrate metabolism. In this respect, a series of 1,2,3-triazole-1,3,4-thiadiazole hybrids 7a-j were synthesized, inspired by a copper-catalyzed one-pot azidation/click assembly approach. All the synthesized hybrids were screened for inhibition of the α-glucosidase enzyme, displaying IC50 values ranging from 63.35 ± 0.72 to 613.57 ± 1.98 μM, as compared to acarbose (reference) with IC50 of 844.81 ± 0.53 μM. The hybrids 7h and 7e with 3-nitro and 4-methoxy substituents at the phenyl ring of the thiadiazole moiety were the best active hybrids of this series with IC50 values of 63.35 ± 0.72 μM, and 67.61 ± 0.64 μM, respectively. Enzyme kinetics analysis of these compounds revealed a mixed mode of inhibition. Moreover, molecular docking studies were also performed to gain insights into the structure-activity-relationships of the potent compounds and their corresponding analogs.
Collapse
Affiliation(s)
- Hariom Kumar
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Manoj Dhameja
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| | - Sirisha Kurella
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Adepally Uma
- Institute of Science and Technology, Jawaharlal Nehru Technological University, Kukatpally, Hyderabad, Telangana, India
| | - Preeti Gupta
- Department of Chemistry, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
12
|
Dhameja M, Kumar H, Kurella S, Singh R, Uma A, Gupta P. Inhibition of α-glucosidase enzyme by 'click'-inspired pharmacophore framework 1,3,4-thiadiazole-1,2,3-triazole hybrids. Future Med Chem 2023; 15:345-363. [PMID: 36942781 DOI: 10.4155/fmc-2022-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023] Open
Abstract
Aim: α-Glucosidase inhibitors are important oral antidiabetic drugs that are used alone or in combination therapy. Materials & methods: In this regard, 1,3,4-thiadiazoles-1,2,3-triazoles were designed, synthesized and evaluated for α-glucosidase enzyme inhibition. Results: The applied synthesis protocol involved a 'click' reaction between a novel alkyne derived from a 1,3,4-thiadiazole derivative and phenylacetamide azides. The hybrid (9n) bearing 2-methyl and 4-nitro substituents was the best inhibitor with an IC50 value of 31.91 μM (acarbose IC50 = 844.81 μM). The blind molecular docking study of the best derivative (9n) showed that it interacted with the allosteric site's amino acid residues of α-glucosidase. Conclusion: 'Click'-inspired potential α-glucosidase inhibitors (1,3,4-thiadiazole-1,2,3-triazole hybrids) were identified and structure-activity relationship and kinetic and molecular docking studies accomplished.
Collapse
Affiliation(s)
- Manoj Dhameja
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Hariom Kumar
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| | - Sirisha Kurella
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Ravindra Singh
- Department of Chemistry, Maharani Shri Jaya Government Post-Graduate College, Bharatpur, Rajasthan, 321001, India
| | - Adepally Uma
- Institute of Science & Technology, Jawaharlal Nehru Technical University, Kukatpally, Hyderabad, Telangana, 500085, India
| | - Preeti Gupta
- Department of Chemistry, School of Physical & Decision Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow, Uttar Pradesh, 226025, India
| |
Collapse
|
13
|
Mushtaq A, Azam U, Mehreen S, Naseer MM. Synthetic α-glucosidase inhibitors as promising anti-diabetic agents: Recent developments and future challenges. Eur J Med Chem 2023; 249:115119. [PMID: 36680985 DOI: 10.1016/j.ejmech.2023.115119] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/19/2023]
Abstract
Diabetes mellitus is one of the biggest challenges for the scientific community in the 21st century. It is a well-recognized multifactorial health problem contributes significantly to high mortality rates by causing serious health complications mainly related to cardiovascular diseases, kidney damage and neuropathy. The inhibition of α-glucosidase (enzyme that catalyses starch hydrolysis in the intestine) is an effective therapeutic approach for controlling hyperglycemia associated with type-2 diabetes. However, the presently approved drugs/inhibitors such as acarbose, miglitol and voglibose have several undesirable gastrointestinal side effects impeding their applications. Therefore, search for novel and more effective inhibitors with reduced side effects and less cost remains a fascinating area of research. In this context, a large variety of α-glucosidase inhibitors have been identified in recent years that demands attention from drug development community. This review is therefore an effort to summarize and highlight the promising α-glucosidase inhibitors especially those which are primarily based on aromatic heterocyclic scaffolds such as coumarin, imidazole, isatin, pyrimidine, quinazoline, triazine, thiazole etc, having improved safety and pharmacological profiles.
Collapse
Affiliation(s)
- Alia Mushtaq
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Uzma Azam
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Saba Mehreen
- Department of Chemistry, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | |
Collapse
|
14
|
Fan M, Yang W, Peng Z, He Y, Wang G. Chromone-based benzohydrazide derivatives as potential α-glucosidase inhibitor: Synthesis, biological evaluation and molecular docking study. Bioorg Chem 2023; 131:106276. [PMID: 36434950 DOI: 10.1016/j.bioorg.2022.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/02/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
In order to find new α-glucosidase inhibitors with high efficiency and low toxicity, novel chromone-based benzohydrazide derivatives 6a-6s were synthesized and characterized through 1H NMR, 13C NMR, and HRMS. All the new synthesized compounds were tested for inhibitory activities against α-glucosidase. Compounds 6a-6s with IC50 values ranging from 4.51 ± 0.09 to 27.21 ± 0.83 μM, showed a potential α-glucosidase inhibitory activity as compared to the positive control (acarbose: IC50 = 790.40 ± 0.91 μM). Compound 6i exhibited the highest α-glucosidase inhibitory activity with an IC50 value of 4.51 ± 0.09 μM. Theinteractionbetween α-glucosidase and 6i was further confirmed by enzyme kinetic, fluorescence quenching, circular dichroism, and molecular docking study. In vivo experiment showed that 6i could suppress the rise of blood glucose levels after sucrose loading. The cytotoxicity result indicated that 6i exhibited low cytotoxicity in vitro.
Collapse
Affiliation(s)
- Meiyan Fan
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Wei Yang
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China; Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Zhiyun Peng
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Yan He
- Clinical Trails Center, The Affiliated Hospital of Guizhou Medical University, Guiyang, China.
| | - Guangcheng Wang
- Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China.
| |
Collapse
|
15
|
Pasha AR, Khan A, Ullah S, Halim SA, Hussain J, Khalid M, Naseer MM, El-Kott AF, Negm S, Al-Harrasi A, Shafiq Z. Synthesis of new diphenyl urea-clubbed imine analogs and its Implications in diabetic management through in vitro and in silico approaches. Sci Rep 2023; 13:1877. [PMID: 36725861 PMCID: PMC9892044 DOI: 10.1038/s41598-023-28828-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/25/2023] [Indexed: 02/03/2023] Open
Abstract
Type II diabetes mellitus (T2DM) is a global health issue with high rate of prevalence. The inhibition of α-glucosidase enzyme has prime importance in the management of T2DM. This study was established to synthesize Schiff bases of 1,3-dipheny urea (3a-y) and to investigate their in vitro anti-diabetic capability via inhibiting α-glucosidase, a key player in the catabolism of carbohydrates. The structures of all compounds were confirmed through various techniques including, Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance (NMR) and mass-spectrometry (MS) methods. Interestingly all these compounds displayed potent inhibition IC50 values in range of 2.14-115 µM as compared to acarbose used as control. Additionally, all the compounds were docked at the active site of α-glucosidase to predict their mode of binding. The docking results indicates that Glu277 and Asn350 play important role in the stabilization of these compounds in the active site of enzyme. These molecules showed excellent predicted pharmacokinetics, physicochemical and drug-likeness profile. The anti-diabetic potential of these molecules signifies their medical importance and provide insights into prospective therapeutic options for the treatment of T2DM.
Collapse
Affiliation(s)
- Anam Rubbab Pasha
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan.,Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Saeed Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.,International Center for Chemical and Biological Sciences, H. E. J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman
| | - Javid Hussain
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa-616, Nizwa, Oman
| | - Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan.,Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University, 61421, Abha, Saudi Arabia.,Department of Zoology, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Sally Negm
- Department of Life Sciences, College of Science and Art Mahyel Aseer, King Khalid University, 62529, Abha, Saudi Arabia.,Unit of Food Bacteriology, Central Laboratory of Food Hygiene, Ministry of Health, Branch in Zagazig, Zagazig, 44511, Egypt
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat-ul-Mouz 616, Nizwa, Sultanate of Oman.
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan. .,Department of Pharmaceutical and Medicinal Chemistry, An der Immenburg 4, 53121, Bonn, Germany.
| |
Collapse
|
16
|
Firdaus JU, Siddiqui N, Alam O, Manaithiya A, Chandra K. Pyrazole scaffold-based derivatives: A glimpse of α-glucosidase inhibitory activity, SAR, and route of synthesis. Arch Pharm (Weinheim) 2023; 356:e2200421. [PMID: 36617511 DOI: 10.1002/ardp.202200421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 01/10/2023]
Abstract
The α-glucosidase is a validated target to develop drugs for treating type 2 diabetes mellitus. The existing α-glucosidase inhibitors have certain shortcomings related to side effects and route of synthesis. Accordingly, it is inevitable to develop new chemical templates as α-glucosidase inhibitors. Pyrazole derivatives have a special place in medicinal chemistry because of various biological activities. Recently, pyrazole-based heterocyclic compounds have emerged as a promising scaffold to develop α-glucosidase inhibitors. This study focuses on the recently reported pyrazole-based α-glucosidase inhibitors, including their biological activity (in vivo, in vitro, and in silico), structure-activity relationship, and ways of synthesis. The literature revealed the development of several promising pyrazole-based α-glucosidase inhibitors and new synthetic routes for their preparation. The encouraging α-glucosidase inhibitory results of the pyrazole-based heterocyclic compounds make them an attractive target for further research. The authors also foresee the arrival of the pyrazole-based α-glucosidase inhibitors in clinical practice.
Collapse
Affiliation(s)
- Jannat Ul Firdaus
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Nadeem Siddiqui
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ajay Manaithiya
- Medicinal Chemistry and Molecular Modelling Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Kailash Chandra
- Department of Biochemistry, Hamdard Institute of Medical Sciences and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
17
|
Wu M, Liu M, Wang F, Cai J, Luo Q, Li S, Zhu J, Tang Z, Fang Z, Wang C, Chen H. The inhibition mechanism of polyphenols from Phyllanthus emblica Linn. fruit on acetylcholinesterase: A interaction, kinetic, spectroscopic, and molecular simulation study. Food Res Int 2022; 158:111497. [DOI: 10.1016/j.foodres.2022.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/20/2022] [Accepted: 06/08/2022] [Indexed: 11/04/2022]
|
18
|
Askarzadeh M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Sajjadi-Jazi SM, Larijani B, Hamedifar H, Mahdavi M. Design, synthesis, in vitro α-glucosidase inhibition, docking, and molecular dynamics of new phthalimide-benzenesulfonamide hybrids for targeting type 2 diabetes. Sci Rep 2022; 12:10569. [PMID: 35732907 PMCID: PMC9217978 DOI: 10.1038/s41598-022-14896-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
In the present work, a new series of 14 novel phthalimide-benzenesulfonamide derivatives 4a-n were synthesized, and their inhibitory activity against yeast α-glucosidase was screened. The obtained results indicated that most of the newly synthesized compounds showed prominent inhibitory activity against α-glucosidase. Among them, 4-phenylpiperazin derivative 4m exhibited the strongest inhibition with the IC50 value of 52.2 ± 0.1 µM. Enzyme kinetic study of compound 4m proved that its inhibition mode was competitive and Ki value of this compound was calculated to be 52.7 µM. In silico induced fit docking and molecular dynamics studies were performed to further investigate the interaction, orientation, and conformation of the target compounds over the active site of α-glucosidase. Obtained date of these studies demonstrated that our new compounds interacted as well with the α-glucosidase active site with the acceptable binding energies. Furthermore, in silico druglikeness/ADME/Toxicity studies of compound 4m were performed and predicted that this compound is druglikeness and has good ADME and toxicity profiles.
Collapse
Affiliation(s)
- Mohammad Askarzadeh
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy, Iran University of Medical Sciences, Tehran, Iran
| | - Mehdi Adib
- School of Chemistry, College of Science, University of Tehran, PO Box 14155-6455, Tehran, Iran.
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sayed Mahmoud Sajjadi-Jazi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Cell Therapy and Regenerative Medicine Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
19
|
Gashghaee M, Azizian H, Adib M, Mohammadi-Khanaposhtani M, Mojtabavi S, Faramarzi MA, Rezaei Y, Biglar M, Larijani B, Rastegar H, Mahdavi M. Synthesis, molecular dynamic, and in silico study of new ethyl 4-arylpyrimido[1,2-b]indazole-2-carboxylate: Potential inhibitors of α-glucosidase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
20
|
Structure-Based Drug Design of Novel Piperazine Containing Hydrazone Derivatives as Potent Alzheimer Inhibitors: Molecular Docking and Drug Kinetics Evaluation. BRAIN DISORDERS 2022. [DOI: 10.1016/j.dscb.2022.100041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Taj S, Ahmad M, Ashfaq UA. Exploring of novel 4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide derivative as a dual inhibitor of α-glucosidase and α-amylase: Molecular docking, biochemical, enzyme kinetic and in-vivo mouse model study. Int J Biol Macromol 2022; 207:507-521. [PMID: 35276296 DOI: 10.1016/j.ijbiomac.2022.03.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 02/10/2022] [Accepted: 03/05/2022] [Indexed: 12/23/2022]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that leads to hyperglycemia due to improper insulin secretion. The study aims to investigate the anti-diabetic potential of benzothiazine derivatives. Molecular docking and Molecular Dynamics simulation study revealed that Compound S6 (4-hydroxy-2H-benzo[e][1,2]thiazine-3-carbohydrazide 1,1-dioxide) and S7 (4-Hydroxy-2-methyl-2H-1,2-benzothiazine-3-carbohydrazide 1,1-dioxide) had less conformational changes during MD simulation analysis at 100 ns. Compound S6 and S7 showed potent activity with IC50 values of 5.93 μM, 6.91 μM and 75.17, 29.10 μM for α-glucosidase and α-amylase respectively and competitive type of inhibition was observed during enzyme kinetic study with a low value of Ki and Ki' for α-glucosidase and α-amylase, respectively. S6 has the lowest Ki (0.0736) and Ki' (-0.0982) for α-glucosidase. Furthermore, in vivo studies were carried out to distinguish the effects of the drug on the body. Histology analysis on mice model showed that compound S6 has a low necrosis rate in the liver, kidney, and pancreas compared to S7. Biochemical results of S6 revealed lower sugar level (112 mg/dL), increase insulin secretion (23, 25 μM/L), and low level of cholesterol (80, 85 mg/dL) and creatinine (1.6, 1.4 mg/dL). The results conclude that compound S6 is a new anti-diabetic agent that minimizes hyperglycemia complications.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
22
|
Taj S, Ahmad M, Alshammari A, Alghamdi A, Ali Ashfaq U. Exploring the therapeutic potential of benzothiazine-pyrazole hybrid molecules against alpha-glucosidase: Pharmacological and molecular modelling based approach. Saudi J Biol Sci 2022; 29:1416-1421. [PMID: 35280565 PMCID: PMC8913548 DOI: 10.1016/j.sjbs.2021.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 11/14/2022] Open
Abstract
Diabetes mellitus (DM) is a metabolic disorder and a significant health problem all over the world. The current study elucidates the inhibitory potentials of the benzothiazine-pyrazole hybrid series against the α-Glucosidase enzyme. The molecular docking was employed to determine the binding affinity of synthetic compounds (ligands) with α-Glucosidase enzyme (receptor) active sites via the molecular operating environment (MOE). The molecular docking analysis revealed the best inhibitory interaction between certain synthetic compounds and the enzyme's active sites (α-Glucosidase). These compounds were further examined for drug-like properties, which necessarily validate the use of the compound as a drug. Then selected compounds were subjected to in vitro analysis to find the inhibitory potential with minimal dose. All compounds were docked into the active sites with the best binding pose and low rmsd values. The anti-diabetic analysis revealed that compound ST3 is more active against α-Glucosidase with IC50 values 5.8 µM as compared to acarbose which is 58.8 µM. The present study exhibited compound 2c has a high proficiency in lowering blood glucose levels compared to acarbose. This study strengthened the scope of designing/synthesizing these benzothiazine-pyrazole hybrid molecules as anti-diabetic drug molecules in the pharmaceutical industry.
Collapse
Affiliation(s)
- Saman Taj
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| | - Matloob Ahmad
- Department of Chemistry, Government College University, Faisalabad, Pakistan
| | - Abdulrahman Alshammari
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alghamdi
- Department of Pathology and Laboratory Medicine, Riyadh Security Forces Hospital, Ministry of Interior, Kingdom of Saudi Arabia
| | - Usman Ali Ashfaq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Pakistan
| |
Collapse
|
23
|
One-pot multi-component synthesis of novel chromeno[4,3-b]pyrrol-3-yl derivatives as alpha-glucosidase inhibitors. Mol Divers 2021; 26:2393-2405. [PMID: 34697701 PMCID: PMC8544188 DOI: 10.1007/s11030-021-10337-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/06/2021] [Indexed: 12/23/2022]
Abstract
A green and efficient one-pot multi-component protocol was developed for the synthesis of some novel dihydrochromeno[4,3-b]pyrrol-3-yl derivatives through the reaction of arylglyoxals, malono derivatives, and different 4-amino coumarins in ethanol at reflux condition. In this method, all products were obtained in good to excellent yield. Next, all synthesized derivatives were evaluated for their α-glucosidase inhibitory activity. Most of the compounds displayed potent inhibitory activities with IC50 values in the range of 48.65 ± 0.01–733.83 ± 0.10 μM compared to the standard inhibitor acarbose (IC50 = 750.90 ± 0.14 μM). The kinetic study of compound 5e as the most potent derivative (IC50 = 48.65 ± 0.01 μM) showed a competitive mechanism with a Ki value of 42.6 µM. Moreover, docking studies revealed that dihydrochromeno[4,3-b]pyrrol-3-yl effectively interacted with important residues in the active site of α-glucosidase.
Collapse
|
24
|
Azimi F, Azizian H, Najafi M, Khodarahmi G, Saghaei L, Hassanzadeh M, Ghasemi JB, Faramarzi MA, Larijani B, Hassanzadeh F, Mahdavi M. Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor. Sci Rep 2021; 11:20776. [PMID: 34675367 PMCID: PMC8531348 DOI: 10.1038/s41598-021-99899-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/24/2021] [Indexed: 12/20/2022] Open
Abstract
In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2-164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.
Collapse
Affiliation(s)
- Fateme Azimi
- Bioinformatics Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, 81746-73461, Isfahan, Iran
| | - Homa Azizian
- Department of Medicinal Chemistry, School of Pharmacy-International Campus, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Najafi
- Department of Chemistry, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Ghadamali Khodarahmi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Lotfollah Saghaei
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Motahareh Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran
| | - Jahan B Ghasemi
- School of Chemistry, University College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, P.O. Box 14155-6451, Tehran, 1417614411, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Hezar Jerib, 817416-73461, Isfahan, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
25
|
Hassanzadeh M, Hassanzadeh F, Khodarahmi GA, Rostami M, Azimi F, Nadri H, Homayouni Moghadam F. Design, synthesis, and bio-evaluation of new isoindoline-1,3-dione derivatives as possible inhibitors of acetylcholinesterase. Res Pharm Sci 2021; 16:482-492. [PMID: 34522196 PMCID: PMC8407153 DOI: 10.4103/1735-5362.323915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/25/2021] [Accepted: 08/07/2021] [Indexed: 01/02/2023] Open
Abstract
Background and purpose: Alzheimer’s disease is considered one of the lead causes of elderly death around the world. A significant decrease in acetylcholine level in the brain is common in most patients with Alzheimer’s disease, therefore acetylcholinesterase (AChE) inhibitors such as donepezil and rivastigmine are widely used for patients with limited therapeutic results and major side effects. Experimental approach: A series of isoindoline-1,3-dione -N-benzyl pyridinium hybrids were designed, synthesized and evaluated as anti-Alzheimer agents with cholinesterase inhibitory activities. The structure of the compounds were confirmed by various methods of analysis such as HNMR, CNMR, and FT-IR. Molecular modeling studies were also performed to identify the possible interactions between neprilysin and synthesized compounds. Findings/Results: The biological screening results indicated that all synthesized compounds displayed potent inhibitory activity with IC50 values ranging from 2.1 to 7.4 μM. Among synthesized compounds, para-fluoro substituted compounds 7a and 7f exhibited the highest inhibitory potency against AChE (IC50 = 2.1 μM). Molecular modeling studies indicated that the most potent compounds were able to interact with both catalytic and peripheral active sites of the enzyme. Also, some of the most potent compounds (7a, 7c, and 7f) demonstrated a neuroprotective effect against H2O2-induced cell death in PC12 neurons. Conclusion and implications: The synthesized compounds demonstrated moderate to good AChE inhibitory effect with results higher than rivastigmine.
Collapse
Affiliation(s)
- Motahareh Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Ghadam Ali Khodarahmi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Mahbobe Rostami
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Fateme Azimi
- Department of Medicinal Chemistry and Isfahan Pharmaceutical Science Research Center, School of Pharmacy and Pharmaceutical Science, Isfahan University of Medical Science, Isfahan, I.R. Iran
| | - Hamid Nadri
- Department of Medicinal Chemistry, Faculty of Pharmacy, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Farshad Homayouni Moghadam
- Department of Animal Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, I.R. Iran
| |
Collapse
|
26
|
Nasli Esfahani A, Iraji A, Alamir A, Moradi S, Asgari MS, Hosseini S, Mojtabavi S, Nasli-Esfahani E, Faramarzi MA, Bandarian F, Larijani B, Hamedifar H, Hajimiri MH, Mahdavi M. Design and synthesis of phenoxymethybenzoimidazole incorporating different aryl thiazole-triazole acetamide derivatives as α-glycosidase inhibitors. Mol Divers 2021; 26:1995-2009. [PMID: 34515954 PMCID: PMC8436581 DOI: 10.1007/s11030-021-10310-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
A novel series of phenoxymethybenzoimidazole derivatives (9a-n) were rationally designed, synthesized, and evaluated for their α-glycosidase inhibitory activity. All tested compounds displayed promising α-glycosidase inhibitory potential with IC50 values in the range of 6.31 to 49.89 μM compared to standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Enzyme kinetic studies on 9c, 9g, and 9m as the most potent compounds revealed that these compounds were uncompetitive inhibitors into α-glycosidase. Docking studies confirmed the important role of benzoimidazole and triazole rings of the synthesized compounds to fit properly into the α-glycosidase active site. This study showed that this scaffold can be considered as a highly potent α-glycosidase inhibitor.
Collapse
Affiliation(s)
- Anita Nasli Esfahani
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Aida Iraji
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.,Central Research Laboratory, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Alamir
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | - Shahram Moradi
- Department of Chemistry Tehran North Branch, Islamic Azad University, Tehran, Iran
| | | | - Samanesadat Hosseini
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Somayeh Mojtabavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ensieh Nasli-Esfahani
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Faramarzi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bandarian
- Diabetes Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Hamedifar
- CinnaGen Medical Biotechnology Research Center, Alborz University of Medical Sciences, Karaj, Iran
| | - Mir Hamed Hajimiri
- Nano Alvand Company, Tehran University of Medical Sciences, Avicenna Tech Park, 1439955991, Tehran, Iran.
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
27
|
Tahir T, Shahzad MI, Tabassum R, Rafiq M, Ashfaq M, Hassan M, Kotwica-Mojzych K, Mojzych M. Diaryl azo derivatives as anti-diabetic and antimicrobial agents: synthesis, in vitro, kinetic and docking studies. J Enzyme Inhib Med Chem 2021; 36:1509-1520. [PMID: 34238110 PMCID: PMC8274517 DOI: 10.1080/14756366.2021.1929949] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In the present study, a series of azo derivatives (TR-1 to TR-9) have been synthesised via the diazo-coupling approach between substituted aromatic amines with phenol or naphthol derivatives. The compounds were evaluated for their therapeutic applications against alpha-glucosidase (anti-diabetic) and pathogenic bacterial strains E. coli (gram-negative), S. aureus (gram-positive), S. aureus (gram-positive) drug-resistant strain, P. aeruginosa (gram-negative), P. aeruginosa (gram-negative) drug-resistant strain and P. vulgaris (gram-negative). The IC50 (µg/mL) of TR-1 was found to be most effective (15.70 ± 1.3 µg/mL) compared to the reference drug acarbose (21.59 ± 1.5 µg/mL), hence, it was further selected for the kinetic studies in order to illustrate the mechanism of inhibition. The enzyme inhibitory kinetics and mode of binding for the most active inhibitor (TR-1) was performed which showed that the compound is a non-competitive inhibitor and effectively inhibits the target enzyme by binding to its binuclear active site reversibly.
Collapse
Affiliation(s)
- Tehreem Tahir
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mirza Imran Shahzad
- Institute of Biochemistry, Biotechnology and Bioinformatics, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Rukhsana Tabassum
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rafiq
- Department of Physiology and Biochemistry, Faculty of Bio-Sciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Muhammad Ashfaq
- Department of Chemistry, Faculty of Science, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Mubashir Hassan
- Institute of Molecular Biology & Biotechnology, The University of Lahore (Defense Road Campus), Lahore, Pakistan
| | - Katarzyna Kotwica-Mojzych
- Department of Histology, Embryology and Cytophysiology, Medical University of Lublin, Lublin, Poland
| | - Mariusz Mojzych
- Department of Chemistry, Siedlce University of Natural Sciences and Humanities, Siedlce, Poland
| |
Collapse
|
28
|
Das S, Akbar S, Ahmed B, Dewangan RP, Iqubal MK, Iqubal A, Chawla P, Pottoo FH, Joseph A. Recent Advancement of Pyrazole Scaffold Based Neuroprotective Agents: A Review. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 21:940-951. [PMID: 34080970 DOI: 10.2174/1871527320666210602152308] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
As a source of therapeutic agents, heterocyclic nitrogen-containing compounds and their derivatives are still interesting and essential. Pyrazole, a five-member heteroaromatic ring with two nitrogen atoms, has a major impact on chemical industries as well as pharmaceutical industries. Due to its wide range of biological activities against various diseases, it has been identified as a biologically important heterocyclic scaffold. The treatment of neurological disorders has always been a difficult task. Therefore, identifying therapeutically effective molecules for neurological conditions remains an open challenge in biomedical research and development. For developing novel entities as neuroprotective agents, recently, pyrazole scaffold has attracted medicinal chemists worldwide. The major focus of research in this area is to discover novel molecules as neuroprotective agents with minimal adverse effects and better effectiveness in improving the neurological condition. This review mainly covers recent developments in the neuropharmacological role of pyrazole incorporated compounds, including their structural-activity relationship (SAR), which also further includes IC50 values (in mM as well as in μM), recent patents, and a brief history as neuroprotective agents.
Collapse
Affiliation(s)
- Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| | - Saleem Akbar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Bahar Ahmed
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Rikeshwar Prasad Dewangan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, Delhi-110062, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Moga, Punjab-142001, India
| | - Faheem Hyder Pottoo
- Department of Pharmacology, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, 2835 King Faisal Road, Dammam 31441. Saudi Arabia
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka-576104, India
| |
Collapse
|
29
|
Mirzazadeh R, Asgari MS, Barzegari E, Pedrood K, Mohammadi-Khanaposhtani M, Sherafati M, Larijani B, Rastegar H, Rahmani H, Mahdavi M, Taslimi P, Üç EM, Gulçin İ. New quinoxalin-1,3,4-oxadiazole derivatives: Synthesis, characterization, in vitro biological evaluations, and molecular modeling studies. Arch Pharm (Weinheim) 2021; 354:e2000471. [PMID: 33999440 DOI: 10.1002/ardp.202000471] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 12/14/2022]
Abstract
A new series of quinoxalin-1,3,4-oxadiazole (10a-l) derivatives was synthesized and evaluated against some metabolic enzymes including human carbonic anhydrase (hCA) isoenzymes I and II (carbonic anhydrases I and II), cholinesterase (acetylcholinesterase and butyrylcholinesterase), and α-glucosidase. Obtained data revealed that all the synthesized compounds were more potent as compared with the used standard inhibitors against studied target enzymes. Among the synthesized compounds, 4-fluoro derivative (10f) against hCA I, 4-chloro derivative (10i) against hCA II, 3-fluoro derivative (10e) against acetylcholinesterase and butyrylcholinesterase, and 3-bromo derivative (10k) against α-glucosidase were the most potent compounds with inhibitory activity around 1.8- to 7.37-fold better than standard inhibitors. Furthermore, docking studies of these compounds were performed at the active site of their target enzymes.
Collapse
Affiliation(s)
| | - Mohammad S Asgari
- Department of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keyvan Pedrood
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Mohammadi-Khanaposhtani
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Maedeh Sherafati
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Bagher Larijani
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Rastegar
- Cosmetic Products Research Center, Iranian Food and Drug Administration, MOHE, Tehran, Iran
| | - Hojjat Rahmani
- Department of Health Management and Economics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Parham Taslimi
- Department of Biotechnology, Faculty of Science, Bartin University, Bartin, Turkey
| | - Eda M Üç
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| | - İlhami Gulçin
- Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
| |
Collapse
|
30
|
Rocha S, Lucas M, Silva VLM, Gomes PMO, Silva AMS, Araújo AN, Aniceto N, Guedes RC, Corvo ML, Fernandes E, Freitas M. Pyrazoles as novel protein tyrosine phosphatase 1B (PTP1B) inhibitors: An in vitro and in silico study. Int J Biol Macromol 2021; 181:1171-1182. [PMID: 33857515 DOI: 10.1016/j.ijbiomac.2021.04.061] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 01/08/2023]
Abstract
Type 2 diabetes mellitus (DM) is a complex chronic disorder and a major global health problem. Insulin resistance is the primary detectable abnormality and the main characteristic feature in individuals with type 2 DM. Protein tyrosine phosphatase 1B (PTP1B) is a key negative regulator of the insulin signaling pathway, which dephosphorylates insulin receptor and insulin receptor substrates, suppressing the insulin signaling cascade. Therefore, the inhibition of PTP1B has become a potential strategy in the management of type 2 DM. In this study, a library of 22 pyrazoles was evaluated here for the first time against human PTP1B activity, using a microanalysis screening system. The results showed that 5-(2-hydroxyphenyl)-3-{2-[3-(4-nitrophenyl)-1,2,3,4-tetrahydronaphthyl]}-1-phenylpyrazole 20 and 3-(2-hydroxyphenyl)-5-{2-[3-(4-methoxyphenyl)]naphthyl}pyrazole 22 excelled as the most potent inhibitors of PTP1B, through noncompetitive inhibition mechanism. These findings suggest that the presence of additional benzene rings as functional groups in the pyrazole moiety increases the ability of pyrazoles to inhibit PTP1B. The most active compounds showed selectivity over the homologous T-cell protein tyrosine phosphatase (TCPTP). Molecular docking analyses were performed and revealed a particular contact signature involving residues like TYR46, ASP48, PHE182, TYR46, ALA217 and ILE219. This study represents a significant beginning for the design of novel PTP1B inhibitors.
Collapse
Affiliation(s)
- Sónia Rocha
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Mariana Lucas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Vera L M Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Pedro M O Gomes
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Artur M S Silva
- LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Alberto N Araújo
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Natália Aniceto
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Rita C Guedes
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - M Luísa Corvo
- Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| | - Eduarda Fernandes
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Marisa Freitas
- LAQV-REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
31
|
Chaudhry F, Shahid W, Al-Rashida M, Ashraf M, Ali Munawar M, Ain Khan M. Synthesis of imidazole-pyrazole conjugates bearing aryl spacer and exploring their enzyme inhibition potentials. Bioorg Chem 2021; 108:104686. [PMID: 33581666 DOI: 10.1016/j.bioorg.2021.104686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/10/2021] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Developing improved enzyme inhibitors is an effective therapy to counter various diseases. Aiming to build up biologically active templates, a new series of bis-diazoles conjugated with an aryl linker was designed and prepared through a convenient synthetic approach. Synthesized derivatives 6(a-m), having different substitutions at the 2nd position of the imidazole nucleus, depict the scope of present study. These compounds were characterized through spectroscopic methods and further examined for their in vitro enzyme inhibitory potentials against two selected enzymes: α-glucosidase and lipoxygenase (LOX). Overall, this series was found to be effective against α-glucosidase and moderately active against LOX enzyme. Compound 6k was the most potent α-glucosidase inhibitor with IC50 = 54.25 ± 0.67 µM as compared to reference drug acarbose (IC50 = 375.82 ± 1.76 µM). The docked conformation revealed the involvement of substituent's heteroatoms with amino acid residue Gly280 through hydrogen bonding. The most active LOX inhibitor was 6a with IC50 = 41.75 ± 0.04 µM as compared to standard baicalein (IC50 = 22.4 ± 1.3 µM). Docking model of 6a suggested the strong interaction of imidazole's nitrogen with iron atom of the active pocket of enzyme. Other features like lipophilicity, bulkiness of compounds, pi-pi interactions and/or pi-alkyl interactions also affected the inhibiting potentials of all prepared scaffolds.
Collapse
Affiliation(s)
- Faryal Chaudhry
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan; Department of Chemistry, Kinnaird College for Women Lahore, 93-Jail Road, Lahore 54000, Pakistan.
| | - Wardah Shahid
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Mariya Al-Rashida
- Department of Chemistry, Forman Christian College (A Chartered University), Ferozepur Road, Lahore 54600, Pakistan
| | - Muhammad Ashraf
- Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Munawar Ali Munawar
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan.
| | - Misbahul Ain Khan
- Institute of the Chemistry, Quaid-e-Azam Campus, University of the Punjab, Lahore 54590, Pakistan; Department of Chemistry, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|