1
|
Udaipuria N, Bhattacharya S. Novel Carbohydrate Polymer-Based Systems for Precise Drug Delivery in Colon Cancer: Improving Treatment Effectiveness With Intelligent Biodegradable Materials. Biopolymers 2025; 116:e23632. [PMID: 39340194 DOI: 10.1002/bip.23632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/07/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024]
Abstract
Due to their biocompatibility, biodegradability, and controlled release, carbohydrates polymers are crucial to targeted drug delivery systems, notably for colon cancer treatment. This article examines how carbohydrate polymers like chitosan, pectin, guar gum, alginate, hyaluronic acid, dextran, and chondroitin sulfate are used in improved drug delivery. Modifying these polymers improves drug loading, stability, and release patterns, enhancing chemotherapeutic drugs' therapeutic index. Chitosan nanoparticles are pH-responsive, making them perfect for cancer treatment. Pectin's resistance to gastric enzymes and colonic bacteria makes it a promising colon-specific medication delivery agent. The combination of these polymers with nanotechnology, 3D printing, and AI allows the creation of stimuli-responsive systems that release drugs precisely in response to environmental signals like pH, redox potential, or colon enzymatic activity. The review highlights intelligent delivery system design advances that reduce systemic toxicity, improve treatment efficacy, and improve patient adherence. Carbohydrate polymers will revolutionize colon cancer treatment with personalized and accurate alternatives.
Collapse
Affiliation(s)
- Nikita Udaipuria
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| | - Sankha Bhattacharya
- School of Pharmacy and Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, India
| |
Collapse
|
2
|
Ciobanu LT, Constantinescu-Aruxandei D, Farcasanu IC, Oancea F. Spent Brewer's Yeast Lysis Enables a Best Out of Waste Approach in the Beer Industry. Int J Mol Sci 2024; 25:12655. [PMID: 39684367 DOI: 10.3390/ijms252312655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Yeasts have emerged as an important resource of bioactive compounds, proteins and peptides, polysaccharides and oligosaccharides, vitamin B, and polyphenols. Hundreds of thousands of tons of spent brewer's yeast with great biological value are produced globally by breweries every year. Hence, streamlining the practical application processes of the bioactive compounds recovered could close a loop in an important bioeconomy value-chain. Cell lysis is a crucial step in the recovery of bioactive compounds such as (glyco)proteins, vitamins, and polysaccharides from yeasts. Besides the soluble intracellular content rich in bioactive molecules, which is released by cell lysis, the yeast cell walls β-glucan, chitin, and mannoproteins present properties that make them good candidates for various applications such as functional food ingredients, dietary supplements, or plant biostimulants. This literature study provides an overview of the lysis methods used to valorize spent brewer's yeast. The content of yeast extracts and yeast cell walls resulting from cellular disruption of spent brewer's yeast are discussed in correlation with the biological activities of these fractions and resulting applications. This review highlights the need for a deeper investigation of molecular mechanisms to unleash the potential of spent brewer's yeast extracts and cell walls to become an important source for a variety of bioactive compounds.
Collapse
Affiliation(s)
- Livia Teodora Ciobanu
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Diana Constantinescu-Aruxandei
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
| | - Ileana Cornelia Farcasanu
- Interdisciplinary School of Doctoral Studies ISDS-UB, University of Bucharest, Bd. Mihail Kogalniceanu No. 36-46, 050107 Bucharest, Romania
| | - Florin Oancea
- Bioproducts Group, Bioresources Department, National Institute for Research & Development in Chemistry and Petrochemistry-ICECHIM, Spl. Independentei No. 202, Sector 6, 060021 Bucharest, Romania
- Faculty of Biotechnologies, University of Agronomic Sciences and Veterinary Medicine of Bucharest, Bd. Mărăști No. 59, Sector 1, 011464 Bucharest, Romania
| |
Collapse
|
3
|
Kumar V, Kaushik NK, Singh D, Singh B. Exploring novel potential of mycosynthesized magnetic nanoparticles for phosphatase immobilization and biological activity. Int J Biol Macromol 2024; 280:135740. [PMID: 39304049 DOI: 10.1016/j.ijbiomac.2024.135740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/12/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Among different microbes, fungi are proficient candidates for the extracellular synthesis of iron nanoparticles. For biogenic synthesis of iron nanoparticles, a thermophilic mould Myceliophthora thermophila BJTLRMDU7 was used in this study. Mycogenic magnetic nanoparticles were used for phosphatase immobilization and therapeutic applications such as antimicrobial and antimalarial activity. Firstly, the phosphatase was immobilized on biogenic iron nanoparticles with an efficiency of >56 %. Immobilized enzyme was optimally active at 60 °C and pH 5. Immobilized phosphatase was recycled using external magnetic field up to 4th cycle retaining >50 % activity. The immobilized phosphatase efficiently released inorganic phosphate from different flours such as wheat, maize and gram at 37 °C and 60 °C. There was continuous increase in the release of inorganic phosphorus from all samples with incubation time at 37 °C and slight reduction at 60 °C. These nanoparticles showed the effective antimicrobial activity against Bacillus subtilis, Escherichia coli and Myceliophthora thermophila. Further, the synthesized iron nanoparticles showed antimalarial potential against Plasmodium falciparum. Biogenic nanoparticles did not exhibit hemolytic activity and cytotoxicity. Therefore, biogenic iron nanoparticles could be used as a suitable matrix for immobilization of enzymes and safe therapeutics.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India
| | - Naveen Kumar Kaushik
- Amity Institute of Virology and Immunology, Amity University Uttar Pradesh, Sector-125, Noida 201313, U.P., India
| | - Davender Singh
- Department of Physics, RPS Degree College, Mahendergarh 123029, Haryana, India
| | - Bijender Singh
- Department of Biotechnology, Central University of Haryana, Jant-Pali, Mahendergarh 123031, Haryana, India; Laboratory of Bioprocess Technology, Department of Microbiology, Maharshi Dayanand University, Rohtak 124001, Haryana, India.
| |
Collapse
|
4
|
Kungwani NA, Panda J, Mishra AK, Chavda N, Shukla S, Vikhe K, Sharma G, Mohanta YK, Sharifi-Rad M. Combating bacterial biofilms and related drug resistance: Role of phyto-derived adjuvant and nanomaterials. Microb Pathog 2024; 195:106874. [PMID: 39181190 DOI: 10.1016/j.micpath.2024.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
The emergence of antimicrobial resistance (AMR) in clinical microbes has led to a search for novel antibiotics for combating bacterial infections. The treatment of bacterial infections becomes more challenging with the onset of biofilm formation. AMR is further accelerated by biofilm physiology and differential gene expression in bacteria with an inherent resistance to conventional antibiotics. In the search for innovative strategies to control the spread of AMR in clinical isolates, plant-derived therapeutic metabolites can be repurposed to control biofilm-associated drug resistance. Unlike antibiotics, designed to act on a single cellular process, phytochemicals can simultaneously target multiple cellular components. Furthermore, they can disrupt biofilm formation and inhibit quorum sensing, offering a comprehensive approach to combat bacterial infections. In bacterial biofilms, the first line of AMR is due to biofilms associated with the extracellular matrix, diffusion barriers, quorum sensing, and persister cells. These extracellular barriers can be overcome using phytochemical-based antibiotic adjuvants to increase the efficacy of antibiotic treatment and restrict the spread of AMR. Furthermore, phytochemicals can be used to target bacterial intracellular machinery such as DNA replication, protein synthesis, efflux pumps, and degrading enzymes. In parallel with pristine phytochemicals, phyto-derived nanomaterials have emerged as an effective means of fighting bacterial biofilms. These nanomaterials can be formulated to cross the biofilm barriers and function on cellular targets. This review focuses on the synergistic effects of phytochemicals and phyto-derived nanomaterials in controlling the progression of biofilm-related AMR. IT provides comprehensive insights into recent advancements and the underlying mechanisms of the use of phyto-derived adjuvants and nanomaterials.
Collapse
Affiliation(s)
- Neelam Amit Kungwani
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India.
| | - Jibanjyoti Panda
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | | | - Sudhir Shukla
- Homi Bhabha National Institute, Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, Tamilnadu, 603102, India
| | - Kalyani Vikhe
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Gunjan Sharma
- Department of Plant Biotechnology, Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - Yugal Kishore Mohanta
- Nano-biotechnology and Translational Knowledge Laboratory, Department of Applied Biology, School of Biological Sciences, University of Science and Technology Meghalaya, Techno City, 9th Mile, Baridua, Ri-Bhoi, 793101, Meghalaya, India; Centre for Herbal Pharmacology and Environmental Sustainability, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603103, Tamil Nadu, India.
| | - Majid Sharifi-Rad
- Department of Range and Watershed Management, Faculty of Water and Soil, University of Zabol, Zabol, 98613-35856, Iran.
| |
Collapse
|
5
|
He Q, Liang S, Luo J, Yin X, Sun J, Bai W. Stabilization effect and interaction mechanism of mannoprotein on anthocyanins in mulberry juice. Int J Biol Macromol 2024; 273:133133. [PMID: 38876233 DOI: 10.1016/j.ijbiomac.2024.133133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
This study aimed to investigate the problem of color instability in mulberry juice, examine the effect of mannoprotein (MP) dosage on improving the stability of anthocyanins in mulberry juice, and explore the molecular binding mechanism between them. As the mass ratio of anthocyanins to MP of 1.07 × 10-3: 1-1.65 × 10-3: 1, the retention rates of anthocyanins in mulberry juice and simulated system were significantly improved in the photostability experiment, with the highest increase of 128.89 % and 24.11 %, respectively. In the thermal stability experiment, it increased by 7.96 % and 18.49 %, respectively. The synergistic effect of combining MP with anthocyanins has been demonstrated to greatly enhance their antioxidant capacity, as measured by ABTS, FRAP, and potassium ferricyanide reduction method. Furthermore, MP stabilized more anthocyanins to reach the intestine in simulated in vitro digestion. MP and cyanidin-3-glucoside (C3G) interacted with each other through hydrogen bonding and hydrophobic interactions. Specific amino acid residues involved of MP in binding process were identified as threonine (THR), isoleucine (ILE) and arginine (ARG). The identification of the effective mass concentration ratio range and binding sites of MP and anthocyanins provided valuable insights for the application of MP in mulberry juice.
Collapse
Affiliation(s)
- Qianqian He
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuyan Liang
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jielin Luo
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Xiang Yin
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Jianxia Sun
- School of Chemical Engineering and Light Industry, Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Weibin Bai
- Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
6
|
Tungare K, Gupta J, Bhori M, Garse S, Kadam A, Jha P, Jobby R, Amanullah M, Vijayakumar S. Nanomaterial in controlling biofilms and virulence of microbial pathogens. Microb Pathog 2024; 192:106722. [PMID: 38815775 DOI: 10.1016/j.micpath.2024.106722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The escalating threat of antimicrobial resistance (AMR) poses a grave concern to global public health, exacerbated by the alarming shortage of effective antibiotics in the pipeline. Biofilms, intricate populations of bacteria encased in self-produced matrices, pose a significant challenge to treatment, as they enhance resistance to antibiotics and contribute to the persistence of organisms. Amid these challenges, nanotechnology emerges as a promising domain in the fight against biofilms. Nanomaterials, with their unique properties at the nanoscale, offer innovative antibacterial modalities not present in traditional defensive mechanisms. This comprehensive review focuses on the potential of nanotechnology in combating biofilms, focusing on green-synthesized nanoparticles and their associated anti-biofilm potential. The review encompasses various aspects of nanoparticle-mediated biofilm inhibition, including mechanisms of action. The diverse mechanisms of action of green-synthesized nanoparticles offer valuable insights into their potential applications in addressing AMR and improving treatment outcomes, highlighting novel strategies in the ongoing battle against infectious diseases.
Collapse
Affiliation(s)
- Kanchanlata Tungare
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India.
| | - Juhi Gupta
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Mustansir Bhori
- Inveniolife Technology PVT LTD, Office No.118, Grow More Tower, Plot No.5, Sector 2, Kharghar, Navi Mumbai, Maharashtra, 410210, India
| | - Samiksha Garse
- School of Biotechnology and Bioinformatics, D Y Patil Deemed to be University, Navi Mumbai, Plot no 50, Sector 15, CBD Belapur, 400614, Maharashtra, India
| | - Aayushi Kadam
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada; Anatek Services PVT LTD, 10, Sai Chamber, Near Santacruz Railway Bridge, Sen Nagar, Santacruz East, Mumbai, Maharashtra, 400055, India
| | - Pamela Jha
- Department of Biological Sciences, Sunandan Divatia School of Science, NMIMS Deemed to be University, Mumbai, Maharashtra, India
| | - Renitta Jobby
- Amity Institute of Biotechnology, Amity University, Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India; Amity Centre of Excellence in Astrobiology, Amity University Maharashtra, Mumbai-Pune Expressway, Bhatan, Panvel, Navi Mumbai, Maharashtra, 410206, India
| | - Mohammed Amanullah
- Department of Clinical Biochemistry, College of Medicine, King Khalid University, Abha, Saudi Arabia, 61421
| | - Sekar Vijayakumar
- Center for Global Health Research (CGHR), Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, India; Marine College, Shandong University, Weihai, 264209, PR China
| |
Collapse
|
7
|
Raju M, Parasuraman B, Govindasamy P, Thangavelu P, Duraisamy S. Improved anti-diabetic and anticancer activities of green synthesized CuO nanoparticles derived from Tabernaemontana divaricate leaf extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46498-46512. [PMID: 36905548 DOI: 10.1007/s11356-023-26261-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Copper oxide nanoparticles (CuO NPs) are among the most commonly employed nanoparticle materials owing to their antibacterial qualities, although their primary mechanism of action (MOA) is still not completely understood. CuO NPs are synthesized in this study using leaf extract of Tabernaemontana divaricate (TDCO3), and they are then analyzed using XRD, FT-IR, SEM, and EDX analysis. The zone of inhibition of TDCO3 NPs against both gram-positive (G+) B. subtilis and gram-negative (G-) K. pneumoniae bacteria was 34 mm and 33 mm, respectively. Furthermore, Cu2+/Cu+ ions promote reactive oxygen species and electrostatically bind with the negatively charged teichoic acid in the bacterial cell wall. The anti-inflammatory and anti-diabetics analysis was conducted using standard BSA denaturation and α-amylase inhibition technique with cell inhibition values of 85.66 and 81.18% for TDCO3 NPs. Additionally, the TDCO3 NPs delivered prominent anticancer activity with the lowest IC50 value 18.2 μg/mL in the MTT assay technique against HeLa cancer cells.
Collapse
Affiliation(s)
- Manonmani Raju
- PG and Research Department of Physics, Arignar Anna Government Arts College, Namakkal, Tamil Nadu, 637002, India
| | - Balaji Parasuraman
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Palanisamy Govindasamy
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Pazhanivel Thangavelu
- Smart Materials Laboratory, Department of Physics, Periyar University, Salem, Tamil Nadu, 636011, India
| | - Sasikumar Duraisamy
- PG and Research Department of Physics, Arignar Anna Government Arts College, Namakkal, Tamil Nadu, 637002, India.
| |
Collapse
|
8
|
Zuo F, Wang B, Wang L, He J, Qiu X. UV-Triggered Drug Release from Mesoporous Titanium Nanoparticles Loaded with Berberine Hydrochloride: Enhanced Antibacterial Activity. Molecules 2024; 29:1607. [PMID: 38611885 PMCID: PMC11013668 DOI: 10.3390/molecules29071607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 03/31/2024] [Accepted: 04/02/2024] [Indexed: 04/14/2024] Open
Abstract
Mesoporous titanium nanoparticles (MTN) have always been a concern and are considered to have great potential for overcoming antibiotic-resistant bacteria. In our study, MTN modified with functionalized UV-responsive ethylene imine polymer (PEI) was synthesized. The characterization of all products was performed by different analyses, including SEM, TEM, FT-IR, TGA, XRD, XPS, and N2 adsorption-desorption isotherms. The typical antibacterial drug berberine hydrochloride (BH) was encapsulated in MTN-PEI. The process exhibited a high drug loading capacity (22.71 ± 1.12%) and encapsulation rate (46.56 ± 0.52%) due to its high specific surface area of 238.43 m2/g. Moreover, UV-controlled drug release was achieved by utilizing the photocatalytic performance of MTN. The antibacterial effect of BH@MTN-PEI was investigated, which showed that it could be controlled to release BH and achieve a corresponding antibacterial effect by UV illumination for different lengths of time, with bacterial lethality reaching 37.76% after only 8 min of irradiation. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the nanoparticles have also been studied. The MIC of BH@MTN-PEI was confirmed as 1 mg/mL against Escherichia coli (E. coli), at which the growth of bacteria was completely inhibited during 24 h and the concentration of 5 mg/mL for BH@MTN-PEI was regarded as MBC against E. coli. Although this proof-of-concept study is far from a real-life application, it provides a possible route to the discovery and application of antimicrobial drugs.
Collapse
Affiliation(s)
- Fanjiao Zuo
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Boyao Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Lizhi Wang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| | - Jun He
- Tianjin State Key Laboratory of Modern Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
- Haihe Laboratory of Modern Chinese Medicine, Tianjin 301617, China
| | - Xilong Qiu
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China;
| |
Collapse
|
9
|
Pino-Sandoval DA, Cantú-Cárdenas ME, Rodríguez-González V, Patrón-Soberano OA, Rosas-Castor JM, Murillo-Sierra JC, Hernández-Ramírez A. Solar heterogeneous photo-Fenton for complete inactivation of Escherichia coli and Salmonella typhimurium in secondary-treated wastewater effluent. CHEMOSPHERE 2023; 342:140132. [PMID: 37690560 DOI: 10.1016/j.chemosphere.2023.140132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 08/17/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
In this work, complete elimination of Escherichia coli and Salmonella typhimurium was achieved in 120 min using a heterogeneous photo-Fenton process under sunlight at pH 6.5 in distilled water. A face-centered composite central design 22 with one categoric factor and three replicates at the central point was used to evaluate the effect of iron (III) oxide concentration (0.8-3.4 mg L-1), H2O2 (2-10 mg L-1), and the type of iron oxide phase (maghemite and hematite) on the inactivation of both bacteria. The results showed that the amount of catalyst, H2O2 concentration and their interaction were significant factors (p < 0.05) in the elimination of the microorganisms. Thus, under the best conditions (3.4 mg L-1 of iron (III) oxide and 10 mg L-1 of H2O2) in the experimental ranges, complete inactivation of E. coli and S. typhimurium was achieved (6-log reduction) in 120 min using the photo-Fenton treatment with both iron-oxide phases. Furthermore, the photocatalytic elimination of both bacteria by the photo-Fenton process using hematite and maghemite in secondary-treated wastewater effluent was performed obtaining slower inactivation rates (1.2-5.9 times) than in distilled water due to the matrix effect of the effluent from a wastewater treatment plant. Nevertheless, the process continued to be effective in the effluent, achieving complete bacterial elimination in 150 min using the hematite phase. Additionally, the SEM images of the bacterial cells showed that the heterogeneous photo-Fenton treatment generated permanent and irreversible cell damage, resulting in complete cell death.
Collapse
Affiliation(s)
- Diego A Pino-Sandoval
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico; Universidad Politécnica de Apodaca, Av. Politécnica No. 2331, El Barretal, Apodaca, C. P. 66600, Nuevo León, Mexico
| | - M Elena Cantú-Cárdenas
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico
| | - Vicente Rodríguez-González
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - O Araceli Patrón-Soberano
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica, División de Biología Molecular, División de Materiales Avanzados, Camino a La Presa San José 2055, Lomas 4a. Sección, 78216, San Luis Potosí, S.L.P., Mexico
| | - J Martín Rosas-Castor
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico
| | - J Camilo Murillo-Sierra
- Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Concepción, Chile
| | - Aracely Hernández-Ramírez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Cd. Universitaria, San Nicolás de Los Garza, C.P. 66455, Nuevo León, Mexico.
| |
Collapse
|
10
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
11
|
Palaniyandi T, Baskar G, V B, Viswanathan S, Abdul Wahab MR, Govindaraj MK, Sivaji A, Rajendran BK, Kaliamoorthy S. Biosynthesis of iron nanoparticles using brown algae Spatoglossum asperum and its antioxidant and anticancer activities through in vitro and in silico studies. PARTICULATE SCIENCE AND TECHNOLOGY 2023. [DOI: 10.1080/02726351.2022.2159900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Thirunavukkarasu Palaniyandi
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
- Department of Anatomy, Biomedical Research Unit and Laboratory Animal Centre, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Gomathy Baskar
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Bhagyalakshmi V
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Sandhiya Viswanathan
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Mugip Rahaman Abdul Wahab
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Manoj Kumar Govindaraj
- Department of Biotechnology, Dr. M.G.R Educational and Research Institute, Deemed to be University, Chennai, India
| | - Asha Sivaji
- Department of Biochemistry, DKM College for Women, Vellore, India
| | | | - Senthilkumar Kaliamoorthy
- Department of Electronics and Communication Engineering, Dr. M.G.R Educational and Research Institute, Chennai, India
| |
Collapse
|
12
|
Synthesis, Characterization, and Evaluation of Antimicrobial Efficacy of Reduced Graphene-ZnO-Copper Nanocomplex. Antibiotics (Basel) 2023; 12:antibiotics12020246. [PMID: 36830156 PMCID: PMC9952439 DOI: 10.3390/antibiotics12020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 01/27/2023] Open
Abstract
The prevalence of antibiotic-resistant diseases drives a constant hunt for new substitutes. Metal-containing inorganic nanoparticles have broad-spectrum antimicrobial potential to kill Gram-negative and Gram-positive bacteria. In this investigation, reduced graphene oxide-coated zinc oxide-copper (rGO@ZnO-Cu) nanocomposite was prepared by anchoring Cu over ZnO nanorods followed by coating with graphene oxide (GO) and subsequent reduction of GO to rGO. The synthesized nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, elemental analysis, and elemental mapping. Morphologically, ZnO-Cu showed big, irregular rods, rectangular and spherical-shaped ZnO, and anchored clusters of aggregated Cu particles. The Cu aggregates are spread uniformly throughout the network. Most of the ZnO particles were partially covered with Cu aggregates, while some of the ZnO was fully covered with Cu. In the case of rGO@ZnO-Cu, a few layered rGO sheets were observed on the surface as well as deeply embedded inside the network of ZnO-Cu. The rGO@ZnO-Cu complex exhibited antimicrobial activity against Gram-positive and Gram-negative bacteria; however, it was more effective on Staphylococcus aureus than Escherichia coli. Thus, rGO@ZnO-Cu nanocomposites could be an effective alternative against Gram-positive and Gram-negative bacterial pathogens.
Collapse
|
13
|
Hilo DH, Ismail AH, Al-Garawi ZS. Green Synthesis of Α-Fe2O3 from Ginger Extract Enhanced the Potential Antioxidant Activity Against DPPH. AL-MUSTANSIRIYAH JOURNAL OF SCIENCE 2022. [DOI: 10.23851/mjs.v33i4.1208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Synthesis of nano-oxides in an easy and environmentally friendly way using simple and green materials is one of the hot interests of sustainable chemistry for lots of pharmaceutical and medical applications. Herein, we synthesized α-Fe2O3 nanoparticles (α-Fe2O3 NPs) using ginger extract after that calcination at 400 C° for 4 h. The prepared α-Fe2O3 nanoparticles were examined using ultraviolet-visible reflection spectroscopy (UV-VIS), Fourier Transform Infrared Spectroscopy (FTIR), photoluminescence spectroscopy (PL), X-ray diffraction (XRD), field emission scanning microscopy (FE-SEM), energy-dispersive X-ray (EDX) spectroscopy, and zeta potential. After well characterizations, the potency of the prepared α-Fe2O3 nanoparticles to monitor some scavenging activity was explored against DPPH. Results revealed that PL intensity has one peak in the UV region between (480-490) nm of the spectrum depending on the geometric shape and size of the α-Fe2O3 NPS. The UV-visible spectra showed a peak at 296.0 nm, which represented the α-Fe2O3 NPs. The EDX micrograph confirmed pure oxide and the XRD pattern showed that the α-Fe2O3 NPs had an average crystal size (19.3) nm. SEM images of α-Fe2O3 NPs revealed spherical, rod, and irregular shapes and sizes ranging from (15 to 60) nm. Moreover, the antioxidant activity of α-Fe2O3 NPs against DPPH showed 51.8% free radical scavenging ability at 360 μg/mL, which approved good evidence of the antioxidant activity of α-Fe2O3 NPs.
Collapse
|
14
|
Ajlouni AW, Hamdan EH, Alshalawi RAE, Shaik MR, Khan M, Kuniyil M, Alwarthan A, Ansari MA, Khan M, Alkhathlan HZ, Shaik JP, Adil SF. Green Synthesis of Silver Nanoparticles Using Aerial Part Extract of the Anthemis pseudocotula Boiss. Plant and Their Biological Activity. Molecules 2022; 28:molecules28010246. [PMID: 36615440 PMCID: PMC9822267 DOI: 10.3390/molecules28010246] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/08/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
Green syntheses of metallic nanoparticles using plant extracts as effective sources of reductants and stabilizers have attracted decent popularity due to their non-toxicity, environmental friendliness and rapid nature. The current study demonstrates the ecofriendly, facile and inexpensive synthesis of silver nanoparticles (AP-AgNPs) using the extract of aerial parts of the Anthemis pseudocotula Boiss. plant (AP). Herein, the aerial parts extract of AP performed a twin role of a reducing as well as a stabilizing agent. The green synthesized AP-AgNPs were characterized by several techniques such as XRD, UV-Vis, FT-IR, TEM, SEM and EDX. Furthermore, the antimicrobial and antibiofilm activity of as-prepared AP-AgNPs were examined by a standard two-fold microbroth dilution method and tissue culture plate methods, respectively, against several Gram-negative and Gram-positive bacterial strains and fungal species such as Escherichia coli (E. coli), Staphylococcus aureus (S. aureus), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and Acinetobacter baumannii (MDR-AB), methicillin-resistant S. aureus (MRSA) and Candida albicans (C. albicans) strains. The antimicrobial activity results clearly indicated that the Gram-negative bacteria MDR-PA was most affected by AgNPs as compared to other Gram-negative and Gram-positive bacteria and fungi C. albicans. Whereas, in the case of antibiofilm activity, it has been found that AgNPs at 0.039 mg/mL, inhibit biofilms formation of Gram-negative bacteria i.e., MDR-PA, E. coli, and MDR-AB by 78.98 ± 1.12, 65.77 ± 1.05 and 66.94 ± 1.35%, respectively. On the other hand, at the same dose (i.e., 0.039 mg/mL), AP-AgNPs inhibits biofilm formation of Gram-positive bacteria i.e., MRSA, S. aureus and fungi C. albicans by 67.81 ± 0.99, 54.61 ± 1.11 and 56.22 ± 1.06%, respectively. The present work indicates the efficiency of green synthesized AP-AgNPs as good antimicrobial and antibiofilm agents against selected bacterial and fungal species.
Collapse
Affiliation(s)
- Abdul-Wali Ajlouni
- Physics Department, College of Applied Sciences, Umm Al-Qura University (UQU), Makkah 21955, Saudi Arabia
| | - Eman H. Hamdan
- Quality Assurance Supervisor, Salehiya Medical Company, Riyadh 12242, Saudi Arabia
| | - Rasha Awwadh Eid Alshalawi
- Laboratory Specialist Poison Control and Forensic Chemistry Center in Riyadh, Ministry of Health, Riyadh 13211, Saudi Arabia
| | - Mohammed Rafi Shaik
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Mujeeb Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mufsir Kuniyil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdulrahman Alwarthan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Merajuddin Khan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| | - Hamad Z. Alkhathlan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Jilani P. Shaik
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed Farooq Adil
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
- Correspondence: (M.R.S.); (M.K.); (S.F.A.); Tel.: +966-11-4670439 (S.F.A.)
| |
Collapse
|
15
|
Tabasum H, Bhat BA, Sheikh BA, Mehta VN, Rohit JV. Emerging perspectives of plant-derived nanoparticles as effective antimicrobial agents. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Green Synthesis and Antibacterial Activity of Ag/Fe2O3 Nanocomposite Using Buddleja lindleyana Extract. Bioengineering (Basel) 2022; 9:bioengineering9090452. [PMID: 36134998 PMCID: PMC9495838 DOI: 10.3390/bioengineering9090452] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 09/04/2022] [Accepted: 09/05/2022] [Indexed: 12/11/2022] Open
Abstract
In the study reported in this manuscript, silver/iron oxide nanocomposites (Ag/Fe2O3) were phytosynthesized using the extract of Buddleja lindleyana via a green, economical and eco-friendly strategy. The biosynthesized Ag/Fe2O3 nanocomposites were characterized using UV-Vis spectrophotometry, FTIR, XRD, TEM, DLS and SEM-EDX analyses. The particulates showed a triangular and spherical morphology having sizes between 25 and 174 nm. FTIR studies on the nanoparticles showed functional groups corresponding to organic metabolites, which reduce and stabilize the Ag/Fe2O3 nanocomposite. The antimicrobial efficacy of the phytosynthesized Ag/Fe2O3 against bacterial pathogens was assessed. In addition, Ag/Fe2O3 exhibited broad spectrum activities against B. subtilis, S. aureus, E. coli, and P. aeruginosa with inhibition zones of 23.4 ± 0.75, 22.3 ± 0.57, 20.8 ± 1.6, and 19.5 ± 0.5 mm, respectively. The Ag/Fe2O3 composites obtained showed promising antibacterial action against human bacterial pathogens (S. aureus, E. coli, B. subtilis and P. aeruginosa), making them candidates for medical applications.
Collapse
|
17
|
Synthesis of indole-based oxadiazoles and their interaction with bacterial peptidoglycan and SARS-CoV-2 main protease: In vitro, molecular docking and in silico ADME/Tox study. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [PMCID: PMC8993490 DOI: 10.1016/j.jscs.2022.101474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present study, Indole-based-oxadiazole (1A-17A) compounds were successfully synthesized. The structures of all synthesized compounds were fully characterized by different sophisticated spectroscopic techniques such 1H NMR, 13C NMR, and HREI-MS. Further, the synthesized compounds were explored to investigate their broad-spectrum antibacterial and antibiofilm potential against multidrug resistant Pseudomonas aeruginosa (MDR-PA) and methicillin resistant Staphylococcus aureus (MRSA). The compounds possessed a broad spectrum of antibacterial activity having MIC values of values 1–8 mg/ml against the tested microorganisms. Compound A6 and A7 shows maximum antibacterial activity against MDR-PA, whereas A6, A7 and A11 shows highest activity against MRSA. Furthermore, antibiofilm assay shows that A6, A7 and A11 showed maximum inhibition of biofilm formation and it was found that at 4 mg/ml; A6, A7 and A11 inhibit MRSA biofilm formation by 81.1, 77.5 and 75.9%, respectively; whereas in case of P. aeruginosa; A6 and A7 showed maximum biofilm inhibition and inhibit biofilm formation by 81.5 and 73.7%, respectively. Molecular docking study showed that compounds A6, A7, A8, A10, and A11 had high binding affinity to bacterial peptidoglycan, indicating their potential inhibitory activity against tested bacteria, whereas A6 and A11 were found to be the most effective inhibitors of SARS CoV-2 main protease (3CLpro), with a binding affinity of − 7.78 kcal/mol. Furthermore, SwissADME and pkCSM-pharmacokinetics online tools was applied to calculate the ADME/Tox profile of the synthesized compounds and the toxicity of these chemicals was found to be low. The Lipinski, Veber, Ghose, and Consensus LogP criteria were also used to predict drug-likeness levels of the compounds. Our findings imply that the synthesized compounds could be a useful for the preventing and treating biofilm-related microbial infection as well as SARS-CoV2 infections.
Collapse
|
18
|
Ragunathan V, K C. Sequential microwave-ultrasound-assisted silver nanoparticles synthesis: A swift approach, their antioxidant, antimicrobial, and in-silico studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.117954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Asghar S, Khan IU, Salman S, Khalid SH, Ashfaq R, Vandamme TF. Plant-derived nanotherapeutic systems to counter the overgrowing threat of resistant microbes and biofilms. Adv Drug Deliv Rev 2021; 179:114019. [PMID: 34699940 DOI: 10.1016/j.addr.2021.114019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/03/2021] [Accepted: 10/19/2021] [Indexed: 12/17/2022]
Abstract
Since antiquity, the survival of human civilization has always been threatened by the microbial infections. An alarming surge in the resistant microbial strains against the conventional drugs is quite evident in the preceding years. Furthermore, failure of currently available regimens of antibiotics has been highlighted by the emerging threat of biofilms in the community and hospital settings. Biofilms are complex dynamic composites rich in extracellular polysaccharides and DNA, supporting plethora of symbiotic microbial life forms, that can grow on both living and non-living surfaces. These enforced structures are impervious to the drugs and lead to spread of recurrent and non-treatable infections. There is a strong realization among the scientists and healthcare providers to work out alternative strategies to combat the issue of drug resistance and biofilms. Plants are a traditional but rich source of effective antimicrobials with wider spectrum due to presence of multiple constituents in perfect synergy. Other than the biocompatibility and the safety profile, these phytochemicals have been repeatedly proven to overcome the non-responsiveness of resistant microbes and films via multiple pathways such as blocking the efflux pumps, better penetration across the cell membranes or biofilms, and anti-adhesive properties. However, the unfavorable physicochemical attributes and stability issues of these phytochemicals have hampered their commercialization. These issues of the phytochemicals can be solved by designing suitably constructed nanoscaled structures. Nanosized systems can not only improve the physicochemical features of the encapsulated payloads but can also enhance their pharmacokinetic and therapeutic profile. This review encompasses why and how various types of phytochemicals and their nanosized preparations counter the microbial resistance and the biofouling. We believe that phytochemical in tandem with nanotechnological innovations can be employed to defeat the microbial resistance and biofilms. This review will help in better understanding of the challenges associated with developing such platforms and their future prospects.
Collapse
|
20
|
Batool F, Iqbal MS, Khan SUD, Khan J, Ahmed B, Qadir MI. Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities. Sci Rep 2021; 11:22132. [PMID: 34764312 PMCID: PMC8586337 DOI: 10.1038/s41598-021-01374-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/30/2021] [Indexed: 11/17/2022] Open
Abstract
Nanotechnology is a vast field of science with the most vibrant and conspicuous applications. The green synthesis approach is cost-effective, eco-friendly, and produces the most stable metal-based nanoparticles without the use of toxic chemicals. This study presents the green synthesis of iron nanoparticles (FeNPs). For biosynthesis of FeNPs, Phoenix dactylifera extract was used as a reducing agent and iron sulfate heptahydrate (FeSO4·7H2O) was used as a substrate. FeNPs were characterized by different techniques including UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), and nano zeta-sizer analysis. The antimicrobial activity of FeNPs synthesized by using an aqueous extract of Phoenix dactylifera was evaluated against Escherichia coli, Bacillus subtilis, Micrococcus leutus, and Klebsiella pneumoniae. A notable color change from yellow to black confirmed the synthesis of FeNPs. The sharp peak at 450 nm UV-Visible spectroscopy confirmed the synthesis of FeNPs. FTIR showed the presence of O-H and C=C stretching due to the presence of phenol and alkene functional groups. The average size of FeNPs was 6092 d.nm. The results of antimicrobial activity showed that FeNPs exhibit different potential against different bacterial strains with a maximum 25 ± 0.360 zone of inhibition against Escherichia coli. Thus, green synthesized FeNPs could be used as potential antimicrobial agents.
Collapse
Affiliation(s)
- Faryal Batool
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Shahid Iqbal
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Salah-Ud-Din Khan
- Department of Biochemistry, College of Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11432, Saudi Arabia
| | - Javed Khan
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh, 11673, Saudi Arabia
| | - Bilal Ahmed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Jiangsu Province, Nanjing, People's Republic of China
| | - Muhammad Imran Qadir
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Pakistan.
| |
Collapse
|
21
|
Namasivayam SKR, Rabel AM, Prasana R, Arvind Bharani RS, Nachiyar CV. Gum acacia PEG iron oxide nanocomposite (GA-PEG-IONC) induced pharmacotherapeutic activity on the Las R gene expression of Pseudomonas aeruginosa and HOXB13 expression of prostate cancer (Pc 3) cell line. A green therapeutic approach of molecular mechanism inhibition. Int J Biol Macromol 2021; 190:940-959. [PMID: 34478798 DOI: 10.1016/j.ijbiomac.2021.08.162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 08/15/2021] [Accepted: 08/18/2021] [Indexed: 11/24/2022]
Abstract
Among the diverse nanomaterials, polymer-based nanocomposites are gained more attention due to their high efficacy, target biological activities, biodegradability and biocompatibility-gum acacia (GA) - a polymer obtained from acacia trees-is considering the multifunctional nanocomposite synthesis. Distinctive Physico-chemical and biocompatibility properties of gum acacia are utilised to prepare a highly stable, biologically active, eco-friendly Nanocomposite. In this current investigation, gum acacia - poly ethylene glycol grafted iron oxide nanocomposite (GA-PEG-IONC) was synthesised by in situ green science principles. The synthesised Nanocomposite was evaluated against the molecular mechanism of urinary tract pathogenic bacterial strains and prostate cancer cells (Pc 3). Nanocomposite prepared in this examination exhibited notable structural, functional stability with nanoarchitecture which was affirmed by Fourier transform infrared spectroscopy (FTIR), electron microscopic studies, atomic force microscopy (AFM), vibrating sample magnetometric analysis (VSM) and X-ray diffraction (XRD), Synthesised Nanocomposite brought about notable antibacterial activity against urinary tract pathogenic strains by recording potential inhibitory effect on the expression of Las R gene. Inhibition of Las R gene expression reduced notable effect on biofilm development. Anticancer activity against prostate cancer cells (Pc3) was investigated by measurement of HOXB13 gene expression level. Inhibition of HOXB13 gene expression by the IONC brought about structural, functional changes. HOXB13 gene expression inhibition reveals a remarkable cytotoxic effect by recording decreased cell viability. Morphometric analysis by phase-contrast and DAPI fluorescence staining demonstrates that the Nanocomposite prompted cell morphology anomalies or apoptotic changes. Nanocomposite treatment brought about a good sign of Apoptosis by recording enhanced caspase 3 and 9 activities, DNA fragmentation and elevated reactive oxygen species generation (ROS). Hemocompatibility studies were carried out to determine the biocompatibility of the Nanocomposite. Spectrophotometric estimation of plasma haemoglobin, microscopic examination of whole blood cells shows the Nanocomposite was not inciting any indication of toxicity. These findings infer that IONC synthesised in the present study is the promising contender for a broad scope of biomedical applications, especially as an antibacterial and anticancer agent.
Collapse
Affiliation(s)
- S Karthick Raja Namasivayam
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India.
| | - Arul Maximus Rabel
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - R Prasana
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - R S Arvind Bharani
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| | - C Valli Nachiyar
- CBIRD (Centre of Bioresource Research and Development, C-BIRD), Department of Biotechnology, Sathyabama Institute of Science & Technology, Jeppiaar Nagar, Rajiv Gandhi Salai, Chennai 600 119, Tamil Nadu, India
| |
Collapse
|
22
|
Das P, Ghosh S, Nayak B. Phyto-fabricated Nanoparticles and Their Anti-biofilm Activity: Progress and Current Status. FRONTIERS IN NANOTECHNOLOGY 2021. [DOI: 10.3389/fnano.2021.739286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Biofilm is the self-synthesized, mucus-like extracellular polymeric matrix that acts as a key virulence factor in various pathogenic microorganisms, thereby posing a serious threat to human health. It has been estimated that around 80% of hospital-acquired infections are associated with biofilms which are found to be present on both biotic and abiotic surfaces. Antibiotics, the current mainstream treatment strategy for biofilms are often found to be futile in the eradication of these complex structures, and to date, there is no effective therapeutic strategy established against biofilm infections. In this regard, nanotechnology can provide a potential platform for the alleviation of this problem owing to its unique size-dependent properties. Accordingly, various novel strategies are being developed for the synthesis of different types of nanoparticles. Bio-nanotechnology is a division of nanotechnology which is gaining significant attention due to its ability to synthesize nanoparticles of various compositions and sizes using biotic sources. It utilizes the rich biodiversity of various biological components which are biocompatible for the synthesis of nanoparticles. Additionally, the biogenic nanoparticles are eco-friendly, cost-effective, and relatively less toxic when compared to chemically or physically synthesized alternatives. Biogenic synthesis of nanoparticles is a bottom-top methodology in which the nanoparticles are formed due to the presence of biological components (plant extract and microbial enzymes) which act as stabilizing and reducing agents. These biosynthesized nanoparticles exhibit anti-biofilm activity via various mechanisms such as ROS production, inhibiting quorum sensing, inhibiting EPS production, etc. This review will provide an insight into the application of various biogenic sources for nanoparticle synthesis. Furthermore, we have highlighted the potential of phytosynthesized nanoparticles as a promising antibiofilm agent as well as elucidated their antibacterial and antibiofilm mechanism.
Collapse
|
23
|
Fernandes J, Vaz T, Anvekar TS. Antimicrobial and antioxidant therapy with bioactive plant molecules on Fe3O4 phytohybrid nanoplatforms. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2021. [DOI: 10.1186/s43094-021-00366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Nanobiomedicines have gained increasing attention for their potential to improve efficacy and are emerging as a promising therapeutic paradigm. Magnetic nanoconjugates loaded with bioactive drugs have the advantage of sustained circulation in the bloodstream and significantly reduced toxicity of therapeutic agents in a precise manner. The well-developed surface chemistry of Fe3O4 has led to the development better tools, promoting them as nanoplatforms with potential technological applications in biomedical sciences.
Results
Fe3O4 phytohybrids with Laxmitaru extract as the primary coating and loaded with Eugenol and Ylang-Ylang essential oils were successfully synthesized. The X-ray diffraction technique has revealed the high purity nanoparticle materials, as no additional impurity peaks were observed. Fourier transform infra-red spectra have confirmed the presence of a primary coating of Laxmitaru extract and a secondary layer of essential oil, as additional peaks and broadening are observed in drug-loaded Fe3O4 nanoparticles. Magnetic susceptibility values indicate the material's superparamagnetic nature. Transmission electron microscopy images have ensured that the particles were spherical, monodispersed, and in the range of 4.30 nm to 13.98 nm. Antimicrobial studies show inhibition zones on the microorganisms S. Aureus and E. Coli with enhanced activity. Drug entrapment efficiency studies revealed the encapsulation of drug molecules onto Fe3O4-Laxmitaru composite. Dynamic light scattering studies confirm the increase in hydrodynamic size, indicating the loading of essential oils and the decrease in polydispersity index ensures monodispersed nanoparticles. The antioxidant study showed the essential oils retained their antioxidant activity even after they were conjugated on Fe3O4-Lax composites.
Conclusions
Laxmitaru phytochemical-coated Fe3O4 nanoparticles were successfully conjugated with Eugenol and Ylang-Ylang essential oils. Our results provide a model therapeutic approach for the development of new alternative strategies for enhancing antimicrobial and antioxidant therapy, with potential advantages in the field of nanobiomedicine.
Collapse
|
24
|
Green synthesis of silver nanoparticles (AgNPs) by filamentous algae extract: comprehensive evaluation of antimicrobial and anti-biofilm effects against nosocomial pathogens. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00808-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
25
|
Quan C, Lin H, Xiao H, Zhao J. Inhibitory effect of carboxylated nanodiamond on oral pathogenic bacteria Streptococcus mutans. J Clin Lab Anal 2021; 35:e23872. [PMID: 34407267 PMCID: PMC8373339 DOI: 10.1002/jcla.23872] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Nanodiamonds (NDs) have been demonstrated to have bactericidal activity on several microorganisms and can be used in various kinds of dental materials. NDs are potential candidates for antibacterial dental materials. However, the possible inhibitory effect of NDs on oral pathogenic bacteria is largely unknown. This study was performed to investigate the inhibitory effects of carboxylated nanodiamond (cND) on Streptococcus mutans. METHODS Fourier transform infrared spectroscopy was used to confirm carboxyl groups on the surface of commercial cND. The inhibitory effect of serially diluted cND on S. mutans was evaluated by spectrophotometry and plating methods. Escherichia coli was treated as a positive control in spectrophotometry. Chlorhexidine was used as a positive control in plating methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to confirm the antibacterial activity of cND. RESULTS The results showed that cND exhibited a significant inhibitory effect on S. mutans. For S. mutans, the minimum inhibitory concentration was 4 μg/ml and the minimum bactericidal concentration was 16 μg/ml. SEM and TEM results indicated that cND functioned as an antibacterial agent, likely due to its ability to disrupt the cell membrane of S. mutans. CONCLUSION In conclusion, these findings demonstrated an inhibitory effect of cND on S. mutans and suggest its use as a potential antibacterial dental material.
Collapse
Affiliation(s)
- Chuntian Quan
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Haiyan Lin
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Hui Xiao
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| | - Jianjiang Zhao
- Stomatological HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
26
|
Bangroo A, Malhotra A, Sharma U, Jain A, Kaur A. Biosynthesis of Zinc Oxide Nanoparticles Using Catharanthus roseus Leaves and Their Therapeutic Response in Breast Cancer (MDA-MB-231) Cells. Nutr Cancer 2021; 74:1489-1496. [PMID: 34309470 DOI: 10.1080/01635581.2021.1952622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Zinc oxide nanomaterials are effective in cancer treatments, including the destruction of tumor cells with minimal damage to healthy cells. In the study, the biologically synthesized (Catharanthus roseus) zinc oxide nanomaterials with a broad 18-30 nm range were produced and the toxicity of zinc oxide nanomaterials was checked in vitro in the human breast cancer line MDA-MB-231. Inverse relation of the percentage of viable cells to the concentration of zinc oxide nanomaterials at increasing molar levels was assessed. The cytotoxicity analysis used in the MTT test shows the substantial viable MDA-MB-231-cells despite the increased concentration of exposure to zinc oxide nanomaterials. Reduction in the ratio of viable MDA-MB-231 cells after being exposed to zinc oxide nanomaterials was compared to untreated cancerous cells. The present approach to biosynthesis is quick, inexpensive, eco-friendly, and high-rise stable nanomaterials of zinc oxide with substantial cancer potential. This is the first study that reports molar concentrations as an anticancer agent for breast cancer and potential clinical uses for synthesized zinc oxide nanomaterials.
Collapse
Affiliation(s)
- Apoorva Bangroo
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| | - Akshay Malhotra
- Institute of Experimental Internal Medicine, Otto von Guericke Universität, Magdeburg, Germany
| | - Uttam Sharma
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Aklank Jain
- Department of Zoology, Central University of Punjab, Bathinda, India
| | - Anupreet Kaur
- Department of Biotechnology, University Institute of Engineering & Technology, Panjab University, Chandigarh, India
| |
Collapse
|
27
|
Cho H, Naskar A, Lee S, Kim S, Kim KS. A New Surface Charge Neutralizing Nano-Adjuvant to Potentiate Polymyxins in Killing Mcr-1 Mediated Drug-Resistant Escherichia coli. Pharmaceutics 2021; 13:250. [PMID: 33670388 PMCID: PMC7917812 DOI: 10.3390/pharmaceutics13020250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 01/03/2023] Open
Abstract
Resistance to polymyxins when treating multidrug-resistant (MDR) Gram-negative bacterial infections limit therapeutic options. Here, we report the synthesis of a nickel (Ni) doped Zinc oxide (NZO) combined with black phosphorus (BP) (NZB) nanocomposite and its synergistic action with polymyxin B (PolB) against polymyxin-resistant Escherichia coli harboring mobilized colistin resistance (mcr-1) gene. NZB and PolB combination therapy expressed a specific and strong synergy against Mcr-1 expressing E. coli cells. The underlying mechanism of the synergy is the charge neutralization of the E. coli cell surface by NZB, resulting in a more feasible incorporation of PolB to E. coli. The synergistic concentration of NZB with PolB was proved biocompatible. Thus, the NZB is the first biocompatible nano-adjuvant to polymyxins against polymyxin-resistant E. coli cells, recognizing the physical status of bacteria instead of known adjuvants targeting cellular gene products. Therefore, NZB has the potential to revive polymyxins as leading last-resort antibiotics to combat polymyxin-resistant Gram-negative bacterial infections.
Collapse
Affiliation(s)
- Hyejin Cho
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Atanu Naskar
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Sohee Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| | - Semi Kim
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
| | - Kwang-Sun Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Korea; (H.C.); (A.N.); (S.L.)
| |
Collapse
|
28
|
Ansari MA, Asiri SMM, Alzohairy MA, Alomary MN, Almatroudi A, Khan FA. Biofabricated Fatty Acids-Capped Silver Nanoparticles as Potential Antibacterial, Antifungal, Antibiofilm and Anticancer Agents. Pharmaceuticals (Basel) 2021; 14:139. [PMID: 33572296 PMCID: PMC7915658 DOI: 10.3390/ph14020139] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 12/15/2022] Open
Abstract
The current study demonstrates the synthesis of fatty acids (FAs) capped silver nanoparticles (AgNPs) using aqueous poly-herbal drug Liv52 extract (PLE) as a reducing, dispersing and stabilizing agent. The NPs were characterized by various techniques and used to investigate their potent antibacterial, antibiofilm, antifungal and anticancer activities. GC-MS analysis of PLE shows a total of 37 peaks for a variety of bio-actives compounds. Amongst them, n-hexadecanoic acid (21.95%), linoleic acid (20.45%), oleic acid (18.01%) and stearic acid (13.99%) were found predominately and most likely acted as reducing, stabilizing and encapsulation FAs in LIV-AgNPs formation. FTIR analysis of LIV-AgNPs shows some other functional bio-actives like proteins, sugars and alkenes in the soft PLE corona. The zone of inhibition was 10.0 ± 2.2-18.5 ± 1.0 mm, 10.5 ± 2.5-22.5 ± 1.5 mm and 13.7 ± 1.0-16.5 ± 1.2 against P. aeruginosa, S. aureus and C. albicans, respectively. LIV-AgNPs inhibit biofilm formation in a dose-dependent manner i.e., 54.4% ± 3.1%-10.12% ± 2.3% (S. aureus), 72.7% ± 2.2%-23.3% ± 5.2% (P. aeruginosa) and 85.4% ± 3.3%-25.6% ± 2.2% (C. albicans), and SEM analysis of treated planktonic cells and their biofilm biomass validated the fitness of LIV-AgNPs in future nanoantibiotics. In addition, as prepared FAs rich PLE capped AgNPs have also exhibited significant (p < 0.05 *) antiproliferative activity against cultured HCT-116 cells. Overall, this is a very first demonstration on employment of FAs rich PLE for the synthesis of highly dispersible, stable and uniform sized AgNPs and their antibacterial, antifungal, antibiofilm and anticancer efficacy.
Collapse
Affiliation(s)
- Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Sarah Mousa Maadi Asiri
- Department of Biophysics, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Mohammad A. Alzohairy
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Mohammad N. Alomary
- National Center for Biotechnology, Life Science and Environmental Research Institute, King Abdulaziz City for Science and Technology, P.O. Box 6086, Riyadh 11451, Saudi Arabia;
| | - Ahmad Almatroudi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Qassim University, Qassim 51431, Saudi Arabia;
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia;
| |
Collapse
|