1
|
Wang H, Lu F, Feng X, Zhang Y, Di W, Chen M, Wu R, Rao M, Yin P, Hao Y, Zhai Z. Characterization of a novel antioxidant exopolysaccharide from an intestinal-originated bacteria Bifidobacterium pseudocatenulatum Bi-OTA128. Microbiol Res 2024; 289:127914. [PMID: 39353276 DOI: 10.1016/j.micres.2024.127914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/08/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
Microbial exopolysaccharides (EPSs) have attracted extensive attention for their biological functions in antioxidant activities. In this study, we characterized a novel EPS produced by Bifidobacterium pseudocatenulatum Bi-OTA128 which exhibited the highest antioxidant capacity compared to nine other ropy bacterial strains, achieving 76.50 % and 93.84 % in DPPH· and ABTS·+ scavenging activity, and ferric reducing power of 134.34 μM Fe2+. Complete genomic analysis identified an eps gene cluster involved in the EPS biosynthesis of Bi-OTA128 strain, which might be responsible for its ropy phenotype. The EPS was then isolated and purified by a DEAE-Sepharose Fast Flow column. A single elution part EPS128 was obtained with a recovery rate of 43.5 ± 1.78 % and a total carbohydrate content of 93.6 ± 0.76 %. Structural characterization showed that EPS128 comprised glucose, galactose, and rhamnose (molar ratio 4.0:1.2:1.1), featuring a putative complex backbone structure with four branched chains and an unusual acetyl group at O-2 of terminal rhamnose. Antioxidant assay in vitro indicated that EPS128 exhibited antioxidant potential with 50.52 % DPPH· and 65.40 % ABTS·+ scavenging activities, reaching 54.3 % and 70.44 % of the efficacy of standard Vitamin C at 2.0 mg/L. Furthermore, EPS128 showed protective effects against H2O2-induced oxidative stress in HepG2 cells by reducing cellular reactive oxygen species (ROS) and increasing cell viability. These findings present the first comprehensive report of an antioxidant EPS from B. pseudocatenulatum, highlighting its potential as a natural antioxidant for applications in the food industry and clinical settings.
Collapse
Affiliation(s)
- Hui Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Fangzhou Lu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xin Feng
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yuchen Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wenxuan Di
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Ming Chen
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Ruiyun Wu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Man Rao
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Pengbin Yin
- Department of Orthopedics, Chinese PLA General Hospital, Beijing 100853, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Zhengyuan Zhai
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe, Henan 462300, China.
| |
Collapse
|
2
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
3
|
Ge X, Zhu S, Yang H, Wang X, Li J, Liu S, Xing R, Li P, Li K. Impact of O-acetylation on chitin oligosaccharides modulating inflammatory responses in LPS-induced RAW264.7 cells and mice. Carbohydr Res 2024; 542:109177. [PMID: 38880715 DOI: 10.1016/j.carres.2024.109177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.
Collapse
Affiliation(s)
- Xiangyun Ge
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Siqi Zhu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Haoyue Yang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xin Wang
- Marine Science and Engineering College, Qingdao Agricultural University, Qingdao, 266109, China; Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jingwen Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Song Liu
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Ronge Xing
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Pengcheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Kecheng Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
4
|
Chen Q, Zhang M, Liu Y, Liu W, Peng C, Zheng L. Sulfated Polysaccharides with Anticoagulant Potential: A Review Focusing on Structure-Activity Relationship and Action Mechanism. Chem Biodivers 2024; 21:e202400152. [PMID: 38600639 DOI: 10.1002/cbdv.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Thromboembolism is the culprit of cardiovascular diseases, leading to the highest global mortality rate. Anticoagulation emerges as the primary approach for managing thrombotic conditions. Notably, sulfated polysaccharides exhibit favorable anticoagulant efficacy with reduced side effects. This review focuses on the structure-anticoagulant activity relationship of sulfated polysaccharides and the underlying action mechanisms. It is concluded that chlorosulfonicacid-pyridine method serves as the preferred technique to synthesize sulfated polysaccharides. The anticoagulant activity of sulfated polysaccharides is linked to the substitution site of sulfate groups, degree of substitution, molecular weight, main side chain structure, and glycosidic bond conformation. Moreover, sulfated polysaccharides exert anticoagulant activity via various pathways, including the inhibition of blood coagulation factors, activation of antithrombin III and heparin cofactor II, antiplatelet aggregation, and promotion of the fibrinolytic system.
Collapse
Affiliation(s)
- Qianfeng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Mengjiao Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yue Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Wei Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Cheng Peng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| |
Collapse
|
5
|
Chen N, Jiang T, Xu J, Xi W, Shang E, Xiao P, Duan JA. The relationship between polysaccharide structure and its antioxidant activity needs to be systematically elucidated. Int J Biol Macromol 2024; 270:132391. [PMID: 38761914 DOI: 10.1016/j.ijbiomac.2024.132391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 03/31/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
Polysaccharides have a wide range of applications due to their excellent antioxidant activity. However, the low purity and unclear structure of polysaccharides have led some researchers to be skeptical about the antioxidant activity of polysaccharides. The current reports on the structure-activity relationship of polysaccharides are sporadic, so there is an urgent need to systematically summarize the antioxidant effects of polysaccharides with clear structures and the relationships between the structures to provide a scientific basis for the development and application of polysaccharides. This paper will systematically elucidate the structure-activity relationship of antioxidant polysaccharides, including the molecular weight, monosaccharide composition, glycosidic linkage, degree of branching, advanced conformation and chemical modification. For the first time, the antioxidant activity of polysaccharides is related to their chemical structure through histogram and radar map, and further studies using principal component analysis and cluster analysis. We critically discussed how the source, chemical structure and chemically modified groups of polysaccharides significantly contribute to their antioxidant activity and summarized the current research status and shortcomings of the structure-activity relationship of antioxidant polysaccharides. This review provides a theoretical basis and new perspective for further research on the structure-activity relationship of antioxidant polysaccharides and the development of natural antioxidants.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Xu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wenjie Xi
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Erxin Shang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
6
|
Chen N, Hu M, Jiang T, Xiao P, Duan JA. Insights into the molecular mechanisms, structure-activity relationships and application prospects of polysaccharides by regulating Nrf2-mediated antioxidant response. Carbohydr Polym 2024; 333:122003. [PMID: 38494201 DOI: 10.1016/j.carbpol.2024.122003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/19/2024]
Abstract
The occurrence and development of many diseases are closely related to oxidative stress. In this context, accumulating evidence suggests that Nrf2, as the master switch of cellular antioxidant signaling, plays a central role in controlling the expression of antioxidant genes. The core molecular mechanism of polysaccharides treatment of oxidative stress-induced diseases is to activate Keap1/Nrf2/ARE signaling pathway, promote nuclear translocation of Nrf2, and up-regulate the expression of antioxidant enzymes. However, recent studies have shown that other signaling pathways in which polysaccharides exert antioxidant effects, such as PI3K/Akt/GSK3β, JNK/Nrf2 and NF-κB, have complex crosstalk with Keap1/Nrf2/ARE, may have direct effects on the nuclear translocation of Nrf2. This suggests a new strategy for designing polysaccharides as modulators of Nrf2-dependent pathways to target the antioxidant response. Therefore, in this work, we investigate the crosstalk between Keap1/Nrf2/ARE and other antioxidant signaling pathways of polysaccharides by regulating Nrf2-mediated antioxidant response. For the first time, the structural-activity relationship of polysaccharides, including molecular weight, monosaccharide composition, and glycosidic linkage, is systematically elucidated using principal component analysis and cluster analysis. This review also summarizes the application of antioxidant polysaccharides in food, animal production, cosmetics and biomaterials. The paper has significant reference value for screening antioxidant polysaccharides targeting Nrf2.
Collapse
Affiliation(s)
- Nuo Chen
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Meifen Hu
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Tingyue Jiang
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China
| | - Ping Xiao
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| | - Jin-Ao Duan
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, Nanjing University of Chinese Medicine, Nanjing 210023, PR China.
| |
Collapse
|
7
|
Zhu X, Yang G, Shen Y, Niu L, Peng Y, Chen H, Li H, Yang X. Physicochemical Properties and Biological Activities of Quinoa Polysaccharides. Molecules 2024; 29:1576. [PMID: 38611855 PMCID: PMC11013414 DOI: 10.3390/molecules29071576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 01/15/2024] [Accepted: 01/16/2024] [Indexed: 04/14/2024] Open
Abstract
Quinoa, known as the "golden grain" for its high nutritional value, has polysaccharides as one of its sources of important nutrients. However, the biological functions of quinoa polysaccharides remain understudied. In this study, two crude polysaccharide extracts of quinoa (Q-40 and Q-60) were obtained through sequential precipitation with 40% and 60% ethanol, with purities of 58.29% (HPLC) and 62.15% (HPLC) and a protein content of 8.27% and 9.60%, respectively. Monosaccharide analysis revealed that Q-40 contained glucose (Glc), galacturonic acid (GalA), and arabinose (Ara) in a molar ratio of 0.967:0.027:0.006. Q-60 was composed of xylose (xyl), arabinose (Ara), galactose, and galacturonic acid (GalA) with a molar ratio of 0.889:0.036:0.034:0.020. The average molecular weight of Q-40 ranged from 47,484 to 626,488 Da, while Q-60 showed a range of 10,025 to 47,990 Da. Rheological experiments showed that Q-40 exhibited higher viscosity, while Q-60 demonstrated more elastic properties. Remarkably, Q-60 showed potent antioxidant abilities, with scavenging rates of 98.49% for DPPH and 57.5% for ABTS. Antibacterial experiments using the microdilution method revealed that Q-40 inhibited the growth of methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli), while Q-60 specifically inhibited MRSA. At lower concentrations, both polysaccharides inhibited MDA (MD Anderson Cancer Center) cell proliferation, but at higher concentrations, they promoted proliferation. Similar proliferation-promoting effects were observed in HepG2 cells. The research provides important information in the application of quinoa in the food and functional food industries.
Collapse
Affiliation(s)
- Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Guiyan Yang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China;
| | - Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Liqiong Niu
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haiting Chen
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| | - Xinquan Yang
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (X.Z.); (Y.S.); (L.N.); (Y.P.); (H.C.)
| |
Collapse
|
8
|
Guo Y, Liu F, Zhang J, Chen J, Chen W, Hong Y, Hu J, Liu Q. Research progress on the structure, derivatives, pharmacological activity, and drug carrier capacity of Chinese yam polysaccharides: A review. Int J Biol Macromol 2024; 261:129853. [PMID: 38311141 DOI: 10.1016/j.ijbiomac.2024.129853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/09/2024]
Abstract
Chinese yam is a traditional Chinese medicine that has a long history of medicinal and edible usage in China and is widely utilised in food, medicine, animal husbandry, and other industries. Chinese yam polysaccharides (CYPs) are among the main active components of Chinese yam. In recent decades, CYPs have received considerable attention because of their remarkable biological activities, such as immunomodulatory, antitumour, hypoglycaemic, hypolipidaemic, antioxidative, anti-inflammatory, and bacteriostatic effects. The structure and chemical alterations of polysaccharides are the main factors affecting their biological activities. CYPs are potential drug carriers owing to their excellent biodegradability and biocompatibility. There is a considerable amount of research on CYPs; however, a systematic summary is lacking. This review summarises the structural characteristics, derivative synthesis, biological activities, and their usage as drug carriers, providing a basis for future research, development, and application of CYPs.
Collapse
Affiliation(s)
- Yuanyuan Guo
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Fangrui Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jin Zhang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jing Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Wenxiao Chen
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yongjian Hong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Jinghong Hu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Qian Liu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| |
Collapse
|
9
|
Chen Y, Zhang N, Chen X. Structurally Modified Polysaccharides: Physicochemical Properties, Biological Activities, Structure-Activity Relationship, and Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:3259-3276. [PMID: 38308635 DOI: 10.1021/acs.jafc.3c06433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
Polysaccharides are an important class of biomolecules derived from several sources. However, the inherent structure of polysaccharides prevents them from exhibiting favorable physicochemical properties, which restricts their development in agriculture, industry, food, and biomedicine. This paper systematically summarizes the changes in the primary and advanced structures of modified polysaccharides, and focuses on the effects of various modification methods on the hydrophobicity, rheological properties, emulsifying properties, antioxidant activity, hypoglycemic, and hypolipidemic activities of polysaccharides. Then there is a list the applications of modified polysaccharides in treating heavy metal pollutants, purifying water resources, improving beverage stability and bread quality, and precisely delivering the drug. When summarized and reviewed, the information above can shed further light on the relationship between polysaccharide structure and function. Determining the structure-activity relationship provides a scientific basis for the direction of molecular modifications of polysaccharides.
Collapse
Affiliation(s)
- Yue Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Na Zhang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
| | - Xiaoqiang Chen
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, China
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| |
Collapse
|
10
|
Zhang Y, Zhao M, He J, Chen L, Wang W. In vitro and in vivo immunomodulatory activity of acetylated polysaccharides from Cyclocarya paliurus leaves. Int J Biol Macromol 2024; 259:129174. [PMID: 38181912 DOI: 10.1016/j.ijbiomac.2023.129174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 12/04/2023] [Accepted: 12/29/2023] [Indexed: 01/07/2024]
Abstract
In this study, we aimed to investigate the immunomodulatory effects of polysaccharides from Cyclocarya paliurus leaves after acetylation modification (Ac-CPP0.1) on dendritic cells (DCs) and immunosuppressed mice. In vitro, Ac-CPP0.1 promoted phenotypic and functional maturation of DCs. Specifically, it increased the expression of costimulatory molecules (CD80, CD86, and MHC II) and the secretion of cytokines (TNF-α, IL-6, IL-1β, IL-10, IL-12p70) of DCs. In vivo, Ac-CPP0.1 significantly improved immunosuppression of mice, which was manifested by increased body weight and immune organ index, up-regulated cytokines (IL-4, IL-17, TGF-β3, and TNF-α), and restored short-chain fatty acid (SCFAs) levels of intestinal. The immunoactivation of Ac-CPP0.1 in DCs and in mice is linked to the activation of the TLR4/NF-κB signaling pathway. Furthermore, Ac-CPP0.1 reversed intestinal flora imbalance caused by cyclophosphamide. At the species level, Ac-CPP0.1 increased the abundance of unclassified_Muribaculaceae, unclassified_Desulfovibrio, Bacteroides_acidifaciens and Faecalibaculum_rodentium, decreased the level of Lactobacillus_johnsonii, unclassified_g_Staphylococcus and Staphylococcus_nepalensis. In summary, Ac-CPP0.1 has considerable immunomodulatory potential, which is beneficial to the future utilization and development of Cyclocarya paliurus.
Collapse
Affiliation(s)
- Yang Zhang
- Jiangxi Province Key Laboratory of Animal Nutrition, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meng Zhao
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Jing He
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingli Chen
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenjun Wang
- Key Lab for Agro-product Processing and Quality Control of Nanchang City, College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
11
|
Li J, He J, He H, Wang X, Zhang S, He Y, Zhang J, Yuan C, Wang H, Xu D, Pan C, Yu H, Zou K. Sweet triterpenoid glycoside from Cyclocarya paliurus ameliorates obesity-induced insulin resistance through inhibiting the TLR4/NF-κB/NLRP3 inflammatory pathway. Curr Res Food Sci 2024; 8:100677. [PMID: 38303998 PMCID: PMC10831159 DOI: 10.1016/j.crfs.2024.100677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 11/19/2023] [Accepted: 01/08/2024] [Indexed: 02/03/2024] Open
Abstract
Our prophase studies have manifested that the sweet triterpenoid glycoside from the leaves of Cyclocarya paliurus (CPST) effectively improved the disorders of glucolipid metabolism in vitro and in patients. The current purpose was to further detect its mechanisms involved. The results demonstrated that CPST could ameliorate high-fat diet (HFD)-induced insulin resistance (IR), which was linked to reducing HFD-induced mice's body weight, serum glucose (GLUO), triglyceride (TG), total cholesterol (T-CHO) and low-density lipoprotein cholesterol (LDL-C), lowering the area under the oral glucose tolerance curve and insulin tolerance, elevating the percentage of brown adipose, high-density lipoprotein cholesterol (HDL-C), reducing fat droplets of adipocytes in interscapular brown adipose tissue (iBAT) and cross-sectional area of adipocytes. Further studies manifested that CPST obviously downregulated TLR4, MyD88, NLRP3, ASC, caspase-1, cleased-caspase-1, IL-18, IL-1β, TXNIP, and GSDMD protein expressions and p-NF-кB/NF-кB ratio in iBAT. These aforementioned findings demonstrated that CPST ameliorated HFD induced IR by regulating TLR4/NF-κB/NLRP3 signaling pathway, which in turn enhancing insulin sensitivity and glucose metabolism.
Collapse
Affiliation(s)
- Jie Li
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Junyu He
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Haibo He
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Xiao Wang
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Shuran Zhang
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| | - Yumin He
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - Jihong Zhang
- Traditional Chinese Medicine Hospital of China Three Gorges University & Hubei Clinical Research Center for Functional Digestive Diseases of Traditional Chinese Medicine, Yichang, Hubei, 443001, China
| | - Chengfu Yuan
- Basic Medical College of China Three Gorges University, Yichang, Hubei, 443002, China
| | - HongWu Wang
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College, Hua Zhong University of Science and Technology, Wuhan, 430030, China
| | - Daoxiang Xu
- Seventh People's Hospital of Wenzhou, Wenzhou, Zhejiang, 325005, China
| | - Chaowang Pan
- Medical College of Ezhou Vocational University, Ezhou, Hubei, 436000, China
| | - Huifan Yu
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Kun Zou
- Hubei Key Laboratory of Natural Products Research and Development & Yichang Key Laboratory of Development and Utilization of Health Products with Drug and Food Homology, China Three Gorges University, Yichang, Hubei, 443002, China
| |
Collapse
|
12
|
Wang H, Yuan M, Li G, Tao Y, Wang X, Ke S, Zhuang M, Wang A, Zhou Z. Chemical characterization, antioxidant and immunomodulatory activities of acetylated polysaccharides from Cyperus esculentus. Food Chem 2023; 427:136734. [PMID: 37418805 DOI: 10.1016/j.foodchem.2023.136734] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/09/2023]
Abstract
This research was designed to characterize the structure of Cyperus esculentus polysaccharide (CEP) and its acetylated one (ACEP), and then investigated the effects of acetylation on the changes in physicochemical properties, thermal stability, antioxidant and immunomodulatory activities. Results showed that CEP and ACEP were heteropolysaccharides consisting of glucose, mannose, arabinose and xylose. The main chain of CEP included α-1,4-Glcp residues with the branching points at the O-6 position of the α-1,6-Manp residues. Acetyl groups were substituted at the O-2 and O-6 positions of some glucose residues. Meanwhile, the acetylation remarkably improved the polysaccharides thermal stability, and the ACEP exhibited a greater antioxidant activity. Furthermore, CEP and ACEP were proved to protect RAW 264.7 cells against LPS-induced inflammation by improving cellular morphology and decreasing reactive oxygen species secretion. This study may highlight a new approach for developing a high value-added ingredient from C. esculentus for functional food industry.
Collapse
Affiliation(s)
- Huifang Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Meiyu Yuan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Gaoheng Li
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuxin Tao
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xuanyu Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sheng Ke
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Min Zhuang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Anqi Wang
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhongkai Zhou
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; College of Food Science, Shihezi University, Shihezi 832003, China; ARC Functional Grains Centre, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
13
|
Liu L, Lan H, Wang Y, Zhao L, Liu X, Hu Z, Wang K. Acetylation at the O-6 position of t-Glc improved immunoactivity of α-1,6-glucan from longan by additionally activating Dectin-1 and CD14 receptors. Carbohydr Polym 2023; 320:121199. [PMID: 37659806 DOI: 10.1016/j.carbpol.2023.121199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 09/04/2023]
Abstract
Acetylation is an important approach to improve the bioactivity of polysaccharides; however, the mechanisms have not been fully understood. As a key component of longan for exerting health promoting function, longan polysaccharide was hypothesized may achieve elevated immunoregulatory activity after acetylation. A bioactive longan polysaccharide (LP) composed of (1 → 6)-α-d-glucan (84.1 %) and with an average Mw of 9.68 × 104 kDa was acetylated to different degree of substitutions (DS) in this study. Key structural changes responsible for improvement in immunoregulatory activity were identified, and underlying mechanisms were investigated. Acetylated LP (Ac-LP) with DS 0.37, 0.78 and 0.92 were obtained. Structural characterization identified the substitution of acetyl groups occurs at O-6 positions of t-Glc non-selectively, while the backbone structure was not apparently changed. This resulted in increased expression of cytokines (IL-10, IL-6 and TNF-α) and ROS production in RAW264.7 macrophages, indicating improved immune activity which is positively related to the DS of Ac-LP. This is attribute to additional cellular receptors for Ac-LP (CD14 and Dectin-1) apart from receptors for LP (TLR4 and Ca2+ receptors), as well as the relative higher protein expression of TLR4-MyD88 signaling pathways. These results would provide guidance for the utilization of acetylated polysaccharides with improved immunoactivity.
Collapse
Affiliation(s)
- Lin Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Haibo Lan
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; College of Bioengineering, Sichuan University of Science and Engineering, Yibin 64400, China
| | - Yao Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Lei Zhao
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China
| | - Zhuoyan Hu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| | - Kai Wang
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, 483 Wushan Road, Guangzhou 510642, China.
| |
Collapse
|
14
|
Shen Y, Peng Y, Zhu X, Li H, Zhang L, Kong F, Wang J, Yu D. The phytochemicals and health benefits of Cyclocarya paliurus (Batalin) Iljinskaja. Front Nutr 2023; 10:1158158. [PMID: 37090775 PMCID: PMC10115952 DOI: 10.3389/fnut.2023.1158158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/10/2023] [Indexed: 04/08/2023] Open
Abstract
Cyclocarya paliurus (C. paliurus), a nutritional and nutraceutical resource for human and animal diets, has been constantly explored. The available biological components of C. paliurus were triterpenoids, polysaccharides, and flavonoids. Recent studies in phytochemical-phytochemistry; pharmacological-pharmacology has shown that C. paliurus performed medicinal value, such as antihypertensive, antioxidant, anticancer, antimicrobial, anti-inflammatory and immunological activities. Furthermore, C. paliurus and its extracts added to drinks would help to prevent and mitigate chronic diseases. This review provides an overview of the nutritional composition and functional applications of C. paliurus, summarizing the research progress on the extraction methods, structural characteristics, and biological activities. Therefore, it may be a promising candidate for developing functional ingredients in traditional Chinese medicine. However, a more profound understanding of its active compounds and active mechanisms through which they perform biological activities is required. As a result, the plant needs further investigation in vitro and in vivo.
Collapse
Affiliation(s)
- Yingbin Shen
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Yao Peng
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xucheng Zhu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haimei Li
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liwen Zhang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Fanlei Kong
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Jia Wang
- School of Life Sciences, Guangzhou University, Guangzhou, China
- *Correspondence: Jia Wang,
| | - Di Yu
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
- Di Yu,
| |
Collapse
|
15
|
Zhu M, Wu X, Sun J, Zhou Z, Kang M, Hu Y, Teng L. N-desulfated and reacetylated modification of heparin modulates macrophage polarization. Int J Biol Macromol 2023; 229:354-362. [PMID: 36565832 DOI: 10.1016/j.ijbiomac.2022.12.213] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/29/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022]
Abstract
Heparin as a widely used anticoagulant drug has potent anti-inflammatory effects, which have been rarely reported to be involved in macrophage polarization. Furthermore, the effects of structural modifications of heparin on the plasticity of macrophage functions have not been clearly understood. In this study, the N-desulfated reacetylated derivative of heparin (NDeSAcH) was prepared and its immunoregulatory effects of macrophage polarization were evaluated. The findings indicated that NDeSAcH could effectively promote the release of more nitric oxide (NO), interleukin (IL)-6 and tumor necrosis factor-α (TNF-α) in RAW264.7 cells than heparin. Moreover, the production of NO, IL-6 and TNF-α was significantly inhibited by NDeSAcH in LPS-induced RAW264.7 cells, while the secretion of transforming growth factor-β (TGF-β) was suppressed in M2 macrophages. The N-desulfated and reacetylated group of heparin was proved to have two-side adjusting effects on the polarization of macrophages. This study suggested that NDeSAcH might be a promising candidate for modulating macrophage polarization and treating inflammation-related diseases.
Collapse
Affiliation(s)
- Min Zhu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Xiaotao Wu
- School of Life Sciences and Heath Engineering, Jiangnan University, Wuxi 214122, China
| | - Jun Sun
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Zhou Zhou
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Mingzhu Kang
- School of Life Sciences and Heath Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiwei Hu
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China
| | - Liping Teng
- Wuxi School of Medicine, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
16
|
Jin M, Zhang W, Zhang X, Huang Q, Chen H, Ye M. Characterization, chemical modification and bioactivities of a polysaccharide from Stropharia rugosoannulata. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
17
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
18
|
Luo JH, Li J, Shen ZC, Lin XF, Chen AQ, Wang YF, Gong ES, Liu D, Zou Q, Wang XY. Advances in health-promoting effects of natural polysaccharides: Regulation on Nrf2 antioxidant pathway. Front Nutr 2023; 10:1102146. [PMID: 36875839 PMCID: PMC9978827 DOI: 10.3389/fnut.2023.1102146] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/30/2023] [Indexed: 02/18/2023] Open
Abstract
Natural polysaccharides (NPs) possess numerous health-promoting effects, such as liver protection, kidney protection, lung protection, neuroprotection, cardioprotection, gastrointestinal protection, anti-oxidation, anti-diabetic, and anti-aging. Nuclear factor erythroid 2-related factor 2 (Nrf2) antioxidant pathway is an important endogenous antioxidant pathway, which plays crucial roles in maintaining human health as its protection against oxidative stress. Accumulating evidence suggested that Nrf2 antioxidant pathway might be one of key regulatory targets for the health-promoting effects of NPs. However, the information concerning regulation of NPs on Nrf2 antioxidant pathway is scattered, and NPs show different regulatory behaviors in their different health-promoting processes. Therefore, in this article, structural features of NPs having regulation on Nrf2 antioxidant pathway are overviewed. Moreover, regulatory effects of NPs on this pathway for health-promoting effects are summarized. Furthermore, structure-activity relationship of NPs for health-promoting effects by regulating the pathway is preliminarily discussed. Otherwise, the prospects on future work for regulation of NPs on this pathway are proposed. This review is beneficial to well-understanding of underlying mechanisms for health-promoting effects of NPs from the view angle of Nrf2 antioxidant pathway, and provides a theoretical basis for the development and utilization of NPs in promoting human health.
Collapse
Affiliation(s)
- Jiang-Hong Luo
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Jing Li
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Zi-Chun Shen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Xiao-Fan Lin
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Ao-Qiu Chen
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Yi-Fei Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China
| | - Er-Sheng Gong
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Dan Liu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang, College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou, China
| | - Qi Zou
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China
| | - Xiao-Yin Wang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, China.,Key Laboratory of Environment and Health of Ganzhou, Gannan Medical University, Ganzhou, China.,State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
19
|
Zhang H, Zhao T, Wu Y, Xie F, Xiong Z, Song Z, Ai L, Wang G. Acetylation modification improved the physicochemical properties of xyloglucan from tamarind seeds. Int J Biol Macromol 2022; 223:193-201. [PMID: 36356863 DOI: 10.1016/j.ijbiomac.2022.11.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/22/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
Acetylation modification was conducted to improve the water-solubility and solution properties of xyloglucan from tamarind seeds (TSX). Three acetylated TSX with different degree of substitution (DS) were successfully prepared, and their structure and molecular parameters were investigated by FT-IR, NMR, and high-performance size exclusion chromatography (HPSEC). Further, the effects of acetylation on the thermal stability, solubility, and rheological properties of TSX were studied. Results showed that acetyl groups were mainly substituted at the O-6 position of terminal galactose with DS of 0.2, 0.47, and 0.36 for AC-2, AC-5, and AC-10, respectively. HPSEC analysis indicated that molecular weight of acetylated derivatives decreased slightly, and the solution conformation became more flexible as the DS increase. By comparing with TSX, the thermal stability, water-solubility, solution transmittance, and ζ-potential of acetylated TSX were significantly improved as the DS increase. In addition, rheological studies demonstrated that acetylation reduced the shear viscosity, but high DS of acetylation could induce the weak gelling property of TSX. In conclusion, acetylation modification could be applied to improve the physicochemical properties of TSX and promote its further application in food and pharmaceutical industries.
Collapse
Affiliation(s)
- Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Taolei Zhao
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yan Wu
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Fan Xie
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
20
|
Wang X, Wang Z, Shen M, Yi C, Yu Q, Chen X, Xie J, Xie M. Acetylated polysaccharides: Synthesis, physicochemical properties, bioactivities, and food applications. Crit Rev Food Sci Nutr 2022; 64:4849-4864. [PMID: 36382653 DOI: 10.1080/10408398.2022.2146046] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Polysaccharides are biomacromolecular widely applied in the food industry, as gelling agents, thickeners and health supplements. As hydrophobic groups, acetyls provide amphiphilicity to polysaccharides with numerous hydroxyl groups, which greatly expand the presence of polysaccharides in organic organisms and various chemical environments. Acetylation could result in diverseness and promotion of the structure of polysaccharides, which improve the physicochemical properties and biological activities. High efficient and environmentally friendly access to acetylated derivatives of different polysaccharides is being explored. This review discusses and summarizes acetylated polysaccharides in terms of synthetic methods, physicochemical properties and biological activities and emphasizes the structure-effect relationships introduced by acetyl groups to reveal the potential mechanism of acetylated polysaccharides. Acetyls with different contents and substitution sites could change the molecular weight, monosaccharide composition and spatial architecture of polysaccharides, resulting in differences among properties such as water solubility, emulsification and crystallinity. Coupled with acetyls, polysaccharides have increased antioxidant, immunomodulatory, antitumor, and pro-prebiotic capacities. In addition, their possible applications have also been discussed in green food materials, bioactive ingredient carriers and functional food products, indicating that acetylated polysaccharides hold a clear vision in food health and industrial development.
Collapse
Affiliation(s)
- Xin Wang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Zhijun Wang
- Food Quality and Design Group, Wageningen University and Research, Wageningen, The Netherlands
| | - Mingyue Shen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Chen Yi
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Xianxiang Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Mingyong Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
22
|
The Barrier-Enhancing Function of Soluble Yam (Dioscorea opposita Thunb.) Polysaccharides in Rat Intestinal Epithelial Cells, as Affected by the Covalent Se Conjugation. Nutrients 2022; 14:nu14193950. [PMID: 36235602 PMCID: PMC9571917 DOI: 10.3390/nu14193950] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/18/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022] Open
Abstract
The non-starch yam polysaccharides (YP) are the bioactive substances of edible yam, while Se is an essential nutrient for the human body. Whether a covalent conjugation of Se to YP might cause bioactivity change for the resultant selenylated YP in the intestine is still insufficiently studied, including the critical intestinal barrier function. In this study, two selenylated YP products, namely, YPSe-I and YPSe-II, with corresponding Se contents of 795 and 1480 mg/kg, were obtained by the reaction of YP and Na2SeO3 in the presence of HNO3 and then assessed for their bioactivities to a cell model (i.e., rat intestinal epithelial IEC-6 cells). The results showed that YP, YPSe-I, and YPSe-II at 5–80 μg/mL dosages could promote cell growth with treatment times of 12–24 h. The three samples also could improve barrier integrity via increasing cell monolayer resistance and anti-bacterial activity against E. coli or by reducing paracellular permeability and bacterial translocation. Additionally, the three samples enhanced F-actin distribution and promoted the expression of the three tight junction proteins, namely, zonula occluden-1, occludin, and claudin-1. Meanwhile, the expression levels of ROCK and RhoA, two critical proteins in the ROCK/RhoA singling pathway, were down-regulated by these samples. Collectively, YPSe-I and, especially, YPSe-II were more potent than YP in enhancing the assessed bioactivities. It is thus concluded that this chemical selenylation of YP brought about enhanced activity in the cells to promote barrier integrity, while a higher selenylation extent of the selenylated YP induced much activity enhancement. Collectively, the results highlighted the important role of the non-metal nutrient Se in the modified polysaccharides.
Collapse
|
23
|
Duan Y, Hu Z, Jin L, Zong T, Huang Y, Sun J, Zhou W, Li G. Isolation, characterization and anticomplementary activity of polysaccharides from the rhizomes of Belamcanda chinensis (L.) DC. Chem Biodivers 2022; 19:e202200525. [PMID: 35841390 DOI: 10.1002/cbdv.202200525] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/13/2022] [Indexed: 11/10/2022]
Abstract
The polysaccharides from the rhizomes of Belamcanda chinensis (L.) DC. (BCPs) were obtained by optimal water extraction (extraction temperature 84℃, liquid to solid ratio 42 mL/g and extraction time 100 min), the extraction yield of BCPs was 23.01 ± 0.27% (n=3). Furthermore, two novel polysaccharides (BCP-A1 and BCP-B1) were purified by column chromatography. The BCP-A1 (6.0820×104 kDa) was composed of β -D-Manp-(1→, β -D-Glcp-(1→, →4)-α-D-Galp-(1→ and →3,4)- β-D-Galp-(1→, and BCP-B1 (2.2744×104 kDa) was composed of →5)-α-L-Araf -(1→, β -D-Manp-(1→, β-D-Glcp-(1→, →4)-α-D-Glcp, →4)-α-D-Galp-(1→, →4)-α-D-Galp A-(1→ and →3,4)-β-D-Galp-(1→. In anticomplementary experiments, BCP-A1 (CH50: 0.009 ± 0.003 mg/mL; AP50: 0.015 ± 0.003 mg/mL) and BCP-B1 (CH50: 0.004 ± 0.001 mg/mL; AP50: 0.028 ± 0.005 mg/mL) exhibited potent anticomplementary activity, and acted on C2-, C4- and Factor B components. Our study provides a foundation for BCP-A1 and BCP-B1 as potential complement inhibitors to treat diseases involving with excessive activation of the complement system.
Collapse
Affiliation(s)
- Yuanqi Duan
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Zhengyu Hu
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Long Jin
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Tieqiang Zong
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Yanyan Huang
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Jinfeng Sun
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Wei Zhou
- Yanbian University, Pharmacy, 977 Gongyuan Road, Yanji, CHINA
| | - Gao Li
- Yanbian University, Pharmacy, 977 Gongyuan Road, 133002, Yanji, CHINA
| |
Collapse
|
24
|
Yang Y, Tan W, Zhang J, Guo Z, Jiang A, Li Q. Novel coumarin-functionalized inulin derivatives: Chemical modification and antioxidant activity assessment. Carbohydr Res 2022; 518:108597. [DOI: 10.1016/j.carres.2022.108597] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/11/2022] [Accepted: 05/17/2022] [Indexed: 12/20/2022]
|
25
|
Chen Z, Jian Y, Wu Q, Wu J, Sheng W, Jiang S, Shehla N, Aman S, Wang W. Cyclocarya paliurus (Batalin) Iljinskaja: Botany, Ethnopharmacology, phytochemistry and pharmacology. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114912. [PMID: 34906638 DOI: 10.1016/j.jep.2021.114912] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/30/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cyclocarya paliurus (Batalin) Iljinskaja (C. paliurus) also known as Sweet tea tree, Money tree, Money willow, green money plum, mountain willow and shanhua tree, is a native rare monocotyledonous plant in Southern China. It possesses numerous traditional benefits, including clearing heat, detoxification, producing saliva, slake thirst, anti-inflammatory, insecticidal, dispelling wind and relieving itching. It is also effective in preventing and treating diabetes, hypertension, hyperlipidemia, dizziness and swelling and pain, as well as reducing cholesterol, and modulating the functions of the immune system. The stem, leaves and bark of this plant are all medicinal parts, but the leaves have the highest research value. AIM OF THE STUDY This article summarized the plant's botanical description, distribution, ethnopharmacology, phytochemical profiles and pharmacological for the first time, to provide possible directions for future development and research in brief. MATERIAL AND METHODS The literature for this current manuscript was obtained from reports published from 1992 to May 2021 in diverse databases such as the China Knowledge Resource Integrated databases (CNKI), SciFinder, Google Scholar, Baidu Scholar, Elsevier and Pub-Med. The domestic and foreign references published about C. paliurus over recent years were collected, analyzed and summarized. RESULTS The botanical characteristics of the fruits of C. paliurus are unique in having a central nutlet surrounded by a circular wing to distinguish the living genera of Juglandaceae. In traditional medicine, C. paliurus leaves are used by the local people of Southern China to make tea to prevent diabetes. More than 210 compounds have been isolated from C. paliurus. Among them, the characteristic 3,4-seco-dammaranes accounted for the most. Other compounds include dammarane tetracyclic triterpenoids, various pentacyclic triterpenoids, flavonoids, isosclerones, phenolic derivatives and polysaccharides. The plant extracts and compounds have been reported to exert various pharmacological activities, such as anti-hyperglycemic, anti-hyperlipidemic, anti-cancer, cytotoxic, anti-oxidative, anti-inflammatory, hepatoprotective, and anti-microbial activities. CONCLUSIONS Comprehensive literature analysis shows that C. paliurus extract and its compounds have a variety of biological activities for the treatment of various diseases. The current modern pharmacology research is mostly related to the records of ethnic pharmacology, mainly in vitro research, relatively few in vivo research. Therefore, future studies should focus on this aspect. In addition, we also would like to recommend further research should concentrate on toxicity studies and quality control of C. paliurus to fill the study gap, as well as to provide theoretical support for the further development of the potential functions and clinical applications of the plant.
Collapse
Affiliation(s)
- Zhuliang Chen
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Yuqing Jian
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Qian Wu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Jia Wu
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Wenbing Sheng
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Sai Jiang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Nuzhat Shehla
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Shumaila Aman
- Dow College of Pharmacy, Faculty of Pharmaceutical Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.
| |
Collapse
|
26
|
Xiang XW, Wang R, Chen H, Chen YF, Shen GX, Liu SL, Sun PL, Chen L. Structural characterization of a novel marine polysaccharide from mussel and its antioxidant activity in RAW264.7 cells induced by H2O2. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
27
|
Xie L, Huang Z, Qin L, Yu Q, Chen Y, Zhu H, Xie J. Effects of sulfation and carboxymethylation on Cyclocarya paliurus polysaccharides: Physicochemical properties, antitumor activities and protection against cellular oxidative stress. Int J Biol Macromol 2022; 204:103-115. [PMID: 35144010 DOI: 10.1016/j.ijbiomac.2022.01.192] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 12/23/2022]
Abstract
The Cyclocarya paliurus polysaccharide (CP) was chemically modified to produce sulfated derivatives (S-CP) and carboxymethylated derivatives (CM-CP). Subsequently, the antioxidant activity, cytoprotective effect and antitumor activity of these derivatives were investigated to establish the relationship between their structure and functional activity. The results found that chemical modifications resulted in remarkable variations in the chemical compositions and apparent structures of CP. S-CP with the highest amount of glucose had the strongest antioxidant capacity to scavenge DPPH• and HO•, but CM-CP was lower than CP in terms of HO• scavenging. More importantly, S-CP and CM-CP more effectively protected RAW264.7 from H2O2-induced damage compared to CP by reducing the secretion of lactate dehydrogenase (LDH), intracellular reactive oxygen species (ROS) and malondialdehyde (MDA), enhancing phagocytosis and superoxide dismutase (SOD) levels, and suppressing abnormal apoptosis. Further experiments showed that the anti-apoptotic effect of S-CP and CM-CP was in intimate association with down-regulation of Caspase-9/3 activities and alleviation of cell cycle arrest in the S phase. In addition, S-CP and CM-CP decreased the cell viability of tumor cells. These findings suggest that the type of functional group plays important roles in the biological function of the derivatives and provide a theoretical basis for the development of novel natural anti-oxidants or low-toxicity anti-tumor drugs.
Collapse
Affiliation(s)
- Liuming Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Zhibing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China; Sino-German Joint Research Institute, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Li Qin
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Qiang Yu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Yi Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Haibing Zhu
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China
| | - Jianhua Xie
- State Key Laboratory of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang 330047, China.
| |
Collapse
|
28
|
Han Y, Zhao M, Ouyang K, Chen S, Zhang Y, Liu X, An Q, Zhao Z, Wang W. Sulfated modification, structures, antioxidant activities and mechanism of Cyclocarya paliurus polysaccharides protecting dendritic cells against oxidant stress. INDUSTRIAL CROPS AND PRODUCTS 2021. [DOI: 10.1016/j.indcrop.2021.113353] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|