1
|
Ebrahimnia M, Rabbani S, Mahboubi A, Kamalinejad M, Haeri A. Preparation, antioxidant, antibacterial, and in vivo evaluation of pomegranate flower extract nanofibers based on thiolated chitosan and thiolated gelatin for treating aphthous stomatitis. Carbohydr Polym 2025; 351:122971. [PMID: 39778986 DOI: 10.1016/j.carbpol.2024.122971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 01/11/2025]
Abstract
Recurrent aphthous stomatitis (RAS) is a common condition that manifests as ulcerative lesions in the oral mucosa. In this study, bilayer, mucoadhesive nanofibers loaded with pomegranate flower extract (PFE) were prepared using thiolated gelatin (TGel) and thiolated chitosan (TCS) as the active layer and drug-free polycaprolactone (PCL) as the backing layer. Gelatin (Gel) and chitosan (CS) were successfully thiolated (proven by Ellman's assay, solubility, 1H NMR, FTIR, Raman spectroscopy, and XRD) and electrospun into active nanofibrous layers with a diameter of 356.9 nm. The in vitro release assay showed extended release of PFE, reaching about 57 % drug release in 48 h, fitted to the Korsmeyer-Peppas kinetics. FTIR, Raman spectroscopy, and XRD also showed the characteristic peaks of the nanofibers and their components. The nanofibers also exhibited significant hydrophilicity (contact angle of 47-49°), mucoadhesion (432.7 Pa), antioxidant capabilities (93.3 ± 0.2 %), and antibacterial effects against Staphylococcus aureus and Pseudomonas aeruginosa. Furthermore, PFE-loaded thiolated nanofibers significantly accelerated wound healing and epithelial tissue regeneration in vivo, reducing the ulcer area from 187 ± 19 mm on the 1st day to 68 ± 6 on the 7th day. Overall, bilayer PFE-loaded nanofibers based on TCS and TGel showed promising potential for treating RAS.
Collapse
Affiliation(s)
- Maryam Ebrahimnia
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shahram Rabbani
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Mahboubi
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Kamalinejad
- Department of Pharmacognosy, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Gümüş NE. Nanofiber Applications From Hijiki Macroalgae: Antibacterial and Cytotoxicity Properties in Biocompatible Polymers. Biopolymers 2025; 116:e23650. [PMID: 39708373 DOI: 10.1002/bip.23650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/24/2024] [Accepted: 12/10/2024] [Indexed: 12/23/2024]
Abstract
One of the current biotechnological applications is nanofiber applications made from algae using the electrospinning technique. Nanofibers containing poly-caprolactone (PCL) extracted from the brown seaweed Hijiki (Sargassum fusiforme) were prepared using electrospinning technique. Water extraction was performed to preserve the integrity of Hijiki components, ensuring their efficacy in subsequent electrospinning and characterization. The morphology and chemical composition of the nanofibers were characterized using field emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), and Fourier transform infrared spectroscopy (FT-IR) analyses. Hijiki was found to combine well with electrospun biocompatible polymers and effectively provide the common properties of these materials. The cytotoxicity of algae-doped PCL nanofibers was examined in vitro using liver cancer and liver healthy cell lines (HepG2 and The-2). Among hepatic tumor cell lines, the HepG2 cell line has been preferred due to its wide range of scientific applications. Although the nanofibers caused a 28% decrease in liver cancer cell lines viability (HepG2), the decrease in healthy liver cell viability (The-2) was 12%. Algae-doped PCL nanofiber applied to bacteria showed antibacterial effect. Based on the findings, Hijiki macroalgae nanofibers show great promise for tissue regeneration and band-aid applications in the medical industry.
Collapse
Affiliation(s)
- Numan Emre Gümüş
- Department of Environmental Protection Technology, Kazım Karabekir Vocational School, Karamanoğlu Mehmetbey University, Karaman, Turkey
| |
Collapse
|
3
|
Ahmetoglu U, Gungor M, Kilic A. Alginate/gelatin blend fibers for functional high-performance air filtration applications. Int J Biol Macromol 2024; 294:139389. [PMID: 39746426 DOI: 10.1016/j.ijbiomac.2024.139389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits. Nowadays not only particle and odour capture performance but also ensuring a high energy efficiency and flame retardant properties in air filters is of utmost importance for automotive and HVAC filters. In this study, for the production of biodegradable and flame retardant air filters with a high quality factor, free standing gelatin/sodium alginate blend fibers were successfully produced via centrifugal spinning. The water-soluble mats were stabilized by physical methods using both thermal and ionic crosslinking. The CGCA (Crosslinked-Gelatin/Calcium Alginate) mat exhibited exceptional filtration performance for PM0.3 particles, achieving a 94.2 % efficiency rating at a pressure drop of 135 Pa. Moreover, blending of biopolymers and subsequent calcination provided V0 level flame retardancy according to UL94 standard. The preliminary biodegradation studies showed that proposed nanofibrous filters were completely degraded in soil in 7 days.
Collapse
Affiliation(s)
- Ubey Ahmetoglu
- Department of Nanoscience and Nanoengineering, Istanbul Technical University, Istanbul, Turkey
| | - Melike Gungor
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ali Kilic
- Department of Textile Engineering, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
4
|
Bahtiyar C, Cakir NT, Kahveci MU, Acik G, Altinkok C. Fabrication of gallic acid containing poly(vinyl alcohol)/chitosan electrospun nanofibers with antioxidant and drug delivery properties. Int J Biol Macromol 2024; 281:136055. [PMID: 39443172 DOI: 10.1016/j.ijbiomac.2024.136055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 09/11/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Chitosan-based nanofibers with excellent properties are attractive materials for specific industrial applications of contemporary interest. This work aims to fabricate functional nanofibers based on poly(vinyl alcohol)/chitosan (CS) with an antioxidant and model drug molecule, gallic acid (GA), by electrospinning, followed by cross-linking through glutaraldehyde (PVA-CS-GAs). PVA-CS-GAs were electrospun at two different concentrations by the adjustment of the CS feeding ratio. The detailed characteristics of the as-prepared electrospun nanofibers were elucidated by Fourier Transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), water contact angle (WCA) measurements, thermogravimetric and differential scanning calorimetry (TGA and DSC) analyses. SEM images indicated that the average fiber diameter distribution was in the range of 90-110 nm. The results show that morphology, mean diameter, wettability, and thermal characteristics of the composite nanofibers were affected by the CS feeding ratio. Although the increase in the amount of polar -OH groups with the addition of GA caused an improvement in the hydrophilicity and thermal stability of the electrospun nanofibers, it also caused a decrease in the thermal transition temperatures. Furthermore, antioxidant tests based on DPPH radical scavenging ability and in vitro release studies demonstrated that the cross-linked PVA-CS-GA composite nanofibers have good antioxidant activity and a pH-dependent drug release rate, indicating their potential for implementation in wound healing and drug delivery applications.
Collapse
Affiliation(s)
- Celal Bahtiyar
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Neslihan Turhan Cakir
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Muhammet U Kahveci
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye
| | - Gokhan Acik
- Arda Vocational School, Department of Chemistry and Chemical Processing Technology, Trakya University, 22100 Edirne, Türkiye.
| | - Cagatay Altinkok
- Faculty of Science and Letters, Department of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Türkiye.
| |
Collapse
|
5
|
Sharifi M, Bahrami SH. Review on application of herbal extracts in biomacromolecules-based nanofibers as wound dressings and skin tissue engineering. Int J Biol Macromol 2024; 277:133666. [PMID: 38971295 DOI: 10.1016/j.ijbiomac.2024.133666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
The skin, which covers an area of 2 square meters of an adult human, accounts for about 15 % of the total body weight and is the body's largest organ. It protects internal organs from external physical, chemical, and biological attacks, prevents excess water loss from the body, and plays a role in thermoregulation. The skin is constantly exposed to various damages so that wounds can be acute or chronic. Although wound healing includes hemostasis, inflammatory, proliferation, and remodeling, chronic wounds face different treatment problems due to the prolonged inflammatory phase. Herbal extracts such as Nigella Sativa, curcumin, chamomile, neem, nettle, etc., with varying properties, including antibacterial, antioxidant, anti-inflammatory, antifungal, and anticancer, are used for wound healing. Due to their instability, herbal extracts are loaded in wound dressings to facilitate skin wounds. To promote skin wounds, skin tissue engineering was developed using polymers, bioactive molecules, and biomaterials in wound dressing. Conventional wound dressings, such as bandages, gauzes, and films, can't efficiently respond to wound healing. Adhesion to the wounds can worsen the wound conditions, increase inflammation, and cause pain while removing the scars. Ideal wound dressings have good biocompatibility, moisture retention, appropriate mechanical properties, and non-adherent and proper exudate management. Therefore, by electrospinning for wound healing applications, natural and synthesis polymers are utilized to fabricate nanofibers with high porosity, high surface area, and suitable mechanical and physical properties. This review explains the application of different herbal extracts with different chemical structures in nanofibrous webs used for wound care.
Collapse
Affiliation(s)
- Mohaddeseh Sharifi
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - S Hajir Bahrami
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
6
|
Elshahawy MF, Mohamed RD, Ali AEH, Raafat AI, Ahmed NA. Electron beam irradiation developed cinnamon oil- (polyvinyl alcohol/gum tragacanth)/graphene oxide dressing hydrogels: Antimicrobial and healing assessments. Int J Biol Macromol 2024; 277:134384. [PMID: 39098683 DOI: 10.1016/j.ijbiomac.2024.134384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
This study aimed to develop hydrogel dressings for wound healing composed of gum tragacanth (TG) and polyvinyl alcohol (PVA) loaded with Graphene oxide (GO) and Cinnamon oil (CMO) using electron beam irradiation. The impact of the preparation conditions and the incorporation of GO and CMO on the characteristic properties of the prepared CMO-(PVA/TG)-GO wound dressings was evaluated. The healing-related characteristics were assessed, including fluid absorption and retention, water vapor transmission rate (WVTR), hemolytic assay, and antimicrobial potential. Wound healing efficacy was evaluated using a scratch wound healing assay. FTIR analysis verified the chemical structure, whereas scanning electron microscopy demonstrated an appropriate porosity structure necessary for optimal wound healing. The gel content increases with the initial total polymer concentration and the irradiation dose increases. Higher GO and CMO content improve the gel content and decreases swelling. WVTR decreases with the rise in CMO content. In vitro, cytotoxicity and hemolytic potency assessments confirmed their biocompatibility. The incorporation of GO and CMO enhances the antimicrobial activity and wound-healing capability. Based on the above findings, CMO-(PVA/TG)-GO dressings show promising potential as candidates for wound care.
Collapse
Affiliation(s)
- Mai F Elshahawy
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt.
| | - Randa D Mohamed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amr El-Hag Ali
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Amany I Raafat
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| | - Nehad A Ahmed
- Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA), Cairo, Egypt
| |
Collapse
|
7
|
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. Recent Applications of Chitosan and Its Derivatives in Antibacterial, Anticancer, Wound Healing, and Tissue Engineering Fields. Polymers (Basel) 2024; 16:1351. [PMID: 38794545 PMCID: PMC11125164 DOI: 10.3390/polym16101351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Chitosan, a versatile biopolymer derived from chitin, has garnered significant attention in various biomedical applications due to its unique properties, such as biocompatibility, biodegradability, and mucoadhesiveness. This review provides an overview of the diverse applications of chitosan and its derivatives in the antibacterial, anticancer, wound healing, and tissue engineering fields. In antibacterial applications, chitosan exhibits potent antimicrobial properties by disrupting microbial membranes and DNA, making it a promising natural preservative and agent against bacterial infections. Its role in cancer therapy involves the development of chitosan-based nanocarriers for targeted drug delivery, enhancing therapeutic efficacy while minimising side effects. Chitosan also plays a crucial role in wound healing by promoting cell proliferation, angiogenesis, and regulating inflammatory responses. Additionally, chitosan serves as a multifunctional scaffold in tissue engineering, facilitating the regeneration of diverse tissues such as cartilage, bone, and neural tissue by promoting cell adhesion and proliferation. The extensive range of applications for chitosan in pharmaceutical and biomedical sciences is not only highlighted by the comprehensive scope of this review, but it also establishes it as a fundamental component for forthcoming research in biomedicine.
Collapse
Affiliation(s)
- Saeid Mezail Mawazi
- School of Pharmacy, Management and Science University, Shah Alam 40100, Selangor, Malaysia;
| | - Mohit Kumar
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University (MRSPTU), Bathinda 151001, Punjab, India;
| | - Noraini Ahmad
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Yi Ge
- School of Pharmacy, Queen’s University Belfast, Belfast BT9 7BL, UK
| | - Syed Mahmood
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
8
|
Hu X, He Y, Tong Y, Sun N, Ma G, Liu H, Kou N. Fabrication and characterization of a multi-functional GBR membrane of gelatin-chitosan for osteogenesis and angiogenesis. Int J Biol Macromol 2024; 266:130978. [PMID: 38508565 DOI: 10.1016/j.ijbiomac.2024.130978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 03/01/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
Guided bone regeneration (GBR) membranes are widely used to treat bone defects. In this study, sequential electrospinning and electrospraying techniques were used to prepare a dual-layer GBR membrane composed of gelatin (Gel) and chitosan (CS) containing simvastatin (Sim)-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres (Sim@PLGA/Gel-CS). As a GBR membrane, Sim@PLGA/Gel-CS could act as a barrier to prevent soft tissue from occupying regions of bone tissue. Furthermore, compared with traditional GBR membranes, Sim@PLGA/Gel-CS played an active role on stimulating osteogenesis and angiogenesis. Determination of the physical, chemical, and biological properties of Sim@PLGA/Gel-CS membranes revealed uniform sizes of the nanofibers and microspheres and appropriate morphologies. Fourier-transform infrared spectroscopy was used to characterize the interactions between Sim@PLGA/Gel-CS molecules and the increase in the number of amide groups in crosslinked membranes. The thermal stability and tensile strength of the membranes increased after N-(3-dimethylaminopropyl)-N9- ethylcarbodiimide/N-hydroxysuccinimide crosslinking. The increased fiber density of the barrier layer decreased fibroblast migration compared with that in the osteogenic layer. Osteogenic function was indicated by the increased alkaline phosphatase activity, calcium deposition, and neovascularization. In conclusion, the multifunctional effects of Sim@PLGA/Gel-CS on the barrier and bone microenvironment were achieved via its dual-layer structure and simvastatin coating. Sim@PLGA/Gel-CS has potential applications in bone tissue regeneration.
Collapse
Affiliation(s)
- Xiaofei Hu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yuzhu He
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Yunmeng Tong
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China
| | - Na Sun
- School of Materials Science and Engineering, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Dalian, China
| | - Guowu Ma
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Huiying Liu
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| | - Ni Kou
- School of Stomatology, Dalian Medical University, Lvshun South Road, Dalian, China; Academician Laboratory of Immune and Oral Development & Regeneration, Dalian Medical University, Lvshun South Road, Dalian, China.
| |
Collapse
|
9
|
Takallu S, Mirzaei E, Zakeri Bazmandeh A, Ghaderi Jafarbeigloo HR, Khorshidi H. Addressing Antimicrobial Properties in Guided Tissue/Bone Regeneration Membrane: Enhancing Effectiveness in Periodontitis Treatment. ACS Infect Dis 2024; 10:779-807. [PMID: 38300991 DOI: 10.1021/acsinfecdis.3c00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Guided tissue regeneration (GTR) and guided bone regeneration (GBR) are the two surgical techniques generally used for periodontitis disease treatment. These techniques are based on a barrier membrane to direct the growth of new bone and gingival tissue at sites with insufficient volumes or dimensions of bone or gingiva for proper function, esthetics, or prosthetic restoration. Numerous studies have highlighted biocompatibility, space-creation, cell-blocking, bioactivity, and proper handling as essential characteristics of a membrane's performance. Given that bacterial infection is the primary cause of periodontitis, we strongly believe that addressing the antimicrobial properties of these membranes is of utmost importance. Indeed, the absence of effective inhibition of periodontal pathogens has been recognized as a primary factor contributing to the failure of GTR/GBR membranes. Therefore, we suggest considering antimicrobial properties as one of the key factors in the design of GTR/GBR membranes. Antibiotics are potent medications frequently administered systemically to combat microbes and mitigate bacterial infections. Nevertheless, the excessive use of antibiotics has resulted in a surge in bacterial resistance. To overcome this challenge, alternative antibacterial substances have been developed. In this review, we explore the utilization of alternative substances with antimicrobial properties for topical application in membranes. The use of antibacterial nanoparticles, phytochemical compounds, and antimicrobial peptides in this context was investigated. By carefully selecting and integrating antimicrobial agents into GTR/GBR membranes, we can significantly enhance their effectiveness in combating periodontitis. These antibacterial substances not only act as barriers against pathogenic bacteria but also promote the process of periodontal healing.
Collapse
Affiliation(s)
- Sara Takallu
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Esmaeil Mirzaei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Abbas Zakeri Bazmandeh
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz 7133654361, Iran
| | - Hamid Reza Ghaderi Jafarbeigloo
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, University of Medical Sciences, Fasa 7461686688, Iran
- Student Research Center committee, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Hooman Khorshidi
- Department of Periodontology, School of Dentistry, Shiraz University of Medical Sciences, Shiraz 7195615878, Iran
| |
Collapse
|
10
|
Liu Y, Xia X, Li X, Wang F, Huang Y, Zhu B, Feng X, Wang Y. Design and characterization of edible chitooligosaccharide/fish skin gelatin nanofiber-based hydrogel with antibacterial and antioxidant characteristics. Int J Biol Macromol 2024; 262:130033. [PMID: 38342261 DOI: 10.1016/j.ijbiomac.2024.130033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 02/04/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Antibacterial and active packaging materials have gained significant research attention in response to the growing interest in food packaging. In this investigation, we developed hydrogel packaging materials with antibacterial and antioxidant properties by incorporating chitooligosaccharide (COS) and fish skin gelatin (FSG) nanofiber membranes, which readily absorbed water and exhibited swelling characteristics. The nanofiber membranes were fabricated by electrospinning technology, embedding COS within FSG, and subsequently crosslinked through the Maillard reaction facilitated by the addition of glucose. The behavior of conductivity, viscosity, and surface tension in the spinning solutions was analyzed to understand their variation patterns. Scanning electron microscopy (SEM) results revealed that the crosslinked COS/FSG nanofiber membranes possessed a uniform yet disordered fiber structure, with the diameter of the nanofibers increasing as the COS content increased. Remarkably, when the COS content reached 25 %, the COS/FSG nanofiber membranes (CF-C-25) exhibited a suitable fiber diameter of 437.16 ± 63.20 nm. Furthermore, the thermal crosslinking process involving glucose supplementation enhanced the hydrophobicity of CF-C-25. Upon hydration, the CF-H-25 hydrogel displayed a distinctive porous structure, exhibiting a remarkable swelling rate of 954 %. Notably, the inclusion of COS significantly augmented the antibacterial and antioxidant properties of the hydrogel-based nanofiber membranes. CF-H-25 demonstrated an impressive growth inhibition of 90.56 ± 5.91 % against E. coli, coupled with excellent antioxidant capabilities. In continuation, we performed a comprehensive analysis of the total colony count, pH, TVB-N, and TBA of crucian carp. The CF-H-25 hydrogel proved highly effective in extending the shelf life of crucian carp by 2-4 days, suggesting its potential application as an edible membrane for aquatic product packaging.
Collapse
Affiliation(s)
- Yanjing Liu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiaodong Xia
- State Key Laboratory of Marine Food Processing and Safety Control, National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xiyue Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Fuming Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Yaping Huang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Botian Zhu
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Xuyang Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China
| | - Ying Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034 China.
| |
Collapse
|
11
|
Ke Q, Ma K, Zhang Y, Meng Q, Huang X, Kou X. Antibacterial aroma compounds as property modifiers for electrospun biopolymer nanofibers of proteins and polysaccharides: A review. Int J Biol Macromol 2023; 253:126563. [PMID: 37657584 DOI: 10.1016/j.ijbiomac.2023.126563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/27/2023] [Accepted: 08/19/2023] [Indexed: 09/03/2023]
Abstract
Electrospinning is one of the most promising techniques for producing biopolymer nanofibers for various applications. Proteins and polysaccharides, among other biopolymers, are attractive substrates for electrospinning due to their favorable biocompatibility and biodegradability. However, there are still challenges to improve the mechanical properties, water sensitivity and biological activity of biopolymer nanofibers. Therefore, these strategies such as polymer blending, application of cross-linking agents, the addition of nanoparticles and bioactive components, and modification of biopolymer have been developed to enhance the properties of biopolymer nanofibers. Among them, antibacterial aroma compounds (AACs) from essential oils are widely used as bioactive components and property modifiers in various biopolymer nanofibers to enhance the functionality, hydrophobicity, thermal properties, and mechanical properties of nanofibers, which depends on the electrospun strategy of AACs. This review summarizes the recently reported antimicrobial activities and applications of AACs, and compares the effects of four electrospinning strategies for encapsulating AACs on the properties and applications of nanofibers. The authors focus on the correlation of the main characteristics of these biopolymer electrospun nanofibers with the encapsulation strategy of AACs in the nanofibers. Moreover, this review also particularly emphasizes the impact of the characteristics of these nanofibers on their application field of antimicrobial materials.
Collapse
Affiliation(s)
- Qinfei Ke
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China
| | - Kangning Ma
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Yunchong Zhang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Qingran Meng
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xin Huang
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Xingran Kou
- Collaborative Innovation Center of Fragrance Flavour and Cosmetics, School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China.
| |
Collapse
|
12
|
Alqhtani AH, Qaid MM, Al-Mufarrej SI, Al-Garadi MA, Ali ABA. Serum biochemistry indices, leukogram, carcass variables and intestinal measurements of Eimeria tenella-infected or non-infected broilers treated with dietary Cinnamomum verum bark. JOURNAL OF APPLIED ANIMAL RESEARCH 2023. [DOI: 10.1080/09712119.2022.2150630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Abdulmohsen H. Alqhtani
- Department of Animal Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed M. Qaid
- Department of Animal Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Saud I. Al-Mufarrej
- Department of Animal Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Maged A. Al-Garadi
- Department of Animal Production, Faculty of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed B. A. Ali
- Department of Animal and Veterinary Science, Clemson University, Clemson, SC, USA
| |
Collapse
|
13
|
Ghadimi T, Naderi Gharahgheshlagh S, Latifi N, Hivechi A, Hosseinpour Sarmadi V, Farokh Forghani S, Amini N, B Milan P, Latifi F, Hamidi M, Larijani G, Haramshahi SMA, Abdollahi M, Ghadimi F, Nezari S. The Effect of Rainbow Trout (Oncorhynchus mykiss) Collagen Incorporated with Exo-Polysaccharides Derived from Rhodotorula mucilaginosa sp. on Burn Healing. Macromol Biosci 2023; 23:e2300033. [PMID: 37120148 DOI: 10.1002/mabi.202300033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/01/2023]
Abstract
Burn is one of the physically debilitating injuries that can be potentially fatal; therefore, providing appropriate coverage in order to reduce possible mortality risk and accelerate wound healing is mandatory. In this study, collagen/exo-polysaccharide (Col/EPS 1-3%) scaffolds are synthesized from rainbow trout (Oncorhynchus mykiss) skins incorporated with Rhodotorula mucilaginosa sp. GUMS16, respectively, for promoting Grade 3 burn wound healing. Physicochemical characterizations and, consequently, biological properties of the Col/EPS scaffolds are tested. The results show that the presence of EPS does not affect the minimum porosity dimensions, while raising the EPS amount significantly reduces the maximum porosity dimensions. Thermogravimetric analysis (TGA), FTIR, and tensile property results confirm the successful incorporation of the EPS into Col scaffolds. Furthermore,the biological results show that the increasing EPS does not affect Col biodegradability and cell viability, and the use of Col/EPS 1% on rat models displays a faster healing rate. Finally, histopathological examination reveals that the Col/EPS 1% treatment accelerates wound healing, through greater re-epithelialization and dermal remodeling, more abundant fibroblast cells and Col accumulation. These findings suggest that Col/EPS 1% promotes dermal wound healing via antioxidant and anti-inflammatory activities, which can be a potential medical process in the treatment of burn wounds.
Collapse
Affiliation(s)
- Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Noorahmad Latifi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Ahmad Hivechi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
- Martin-Luther-University Halle-Wittenberg, Institute of Pharmacy, 6099, Halle (Saale), Germany
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Vahid Hosseinpour Sarmadi
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Shahid Motahari Hospital, Shahid Yasemi Street, Valiasr Street, Tehran, 1996714353, Iran
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Naser Amini
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Peiman B Milan
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Fatemeh Latifi
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, 1983969411, Iran
| | - Masoud Hamidi
- Faculty of Paramedicine, Department of Medical Biotechnology, Guilan University of Medical Sciences, Rasht, 4188794755, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Seyed Mohammad Amin Haramshahi
- Faculty of Advanced Technologies in Medicine, Institutes of Regenerative Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1996714353, Iran
| | - Motahareh Abdollahi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Fatemeh Ghadimi
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| | - Saeed Nezari
- Department of Plastic and Reconstructive Surgery, School of Medicine, Iran University of Medical Sciences, Hazrat-e Fatemeh Hospital, 21th Alley, Seyed Jamaloddin Asad Abadi Street, Tehran, 1433933111, Iran
| |
Collapse
|
14
|
Zhang W, Ezati P, Khan A, Assadpour E, Rhim JW, Jafari SM. Encapsulation and delivery systems of cinnamon essential oil for food preservation applications. Adv Colloid Interface Sci 2023; 318:102965. [PMID: 37480830 DOI: 10.1016/j.cis.2023.102965] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 07/03/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Food safety threats and deterioration due to the invasion of microorganisms has led to economic losses and food-borne diseases in the food industry; so, development of natural food preservatives is urgently needed when considering the safety of chemically synthesized preservatives. Because of its outstanding antioxidant and antibacterial properties, cinnamon essential oil (CEO) is considered a promising natural preservative. However, CEO's low solubility and easy degradability limits its application in food products. Therefore, some encapsulation and delivery systems have been developed to improve CEO efficiency in food preservation applications. This work discusses the chemical and techno-functional properties of CEO, including its key components and antioxidant/antibacterial properties, and summarizes recent developments on encapsulation and delivery systems for CEO in food preservation applications. Since CEO is currently added to most biopolymeric films/coatings (BFCs) for food preservation, most studies have shown that encapsulation systems can improve the food preservation performance of BFCs containing CEOs. It has been confirmed that various delivery systems could improve the stability and controlled-release properties of CEO, thereby enhancing its ability to extend the shelf life of foods. These encapsulation techniques include spray drying, emulsion systems, complex coacervation (nanoprecipitation), ionic gelation, liposomes, inclusion complexation (cyclodextrins, silica), and electrospinning.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Parya Ezati
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ajahar Khan
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Jong-Whan Rhim
- Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
15
|
Pinto MF, Quevedo BV, Asami J, Komatsu D, Hausen MDA, Duek EADR. Electrospun Membrane Based on Poly(L-co-D,L lactic acid) and Natural Rubber Containing Copaiba Oil Designed as a Dressing with Antimicrobial Properties. Antibiotics (Basel) 2023; 12:antibiotics12050898. [PMID: 37237801 DOI: 10.3390/antibiotics12050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Drug delivery systems of natural antimicrobial compounds, such as copaiba oil (CO), have become relevant in the scientific community due to the recent prevalence of the public health complications related to antibiotic resistance. Electrospun devices act as an efficient drug delivery system for these bioactive compounds, reducing systemic side effects and increasing the effectiveness of the treatment. In this way, the present study aimed to evaluate the synergistic and antimicrobial effect of the direct incorporation of different concentrations of CO in a poly(L-co-D,L lactic acid) and natural rubber (NR) electrospun membrane. It was observed that CO showed bacteriostatic and antibacterial effects against S. aureus in antibiogram assays. The prevention of biofilm formation was confirmed via scanning electron microscopy. The test with crystal violet demonstrated strong bacteria inhibition in membranes with 75% CO. A decrease in hydrophilicity, observed in the swelling test, presented that the addition of CO promotes a safe environment for the recovery of injured tissue while acting as an antimicrobial agent. In this way, the study showed strong bacteriostatic effects of the CO incorporation in combination with electrospun membranes, a suitable feature desired in wound dressings in order to promote a physical barrier with prophylactic antimicrobial properties to avoid infections during tissue healing.
Collapse
Affiliation(s)
- Marcelo Formigoni Pinto
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
| | - Bruna V Quevedo
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Jessica Asami
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Daniel Komatsu
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
| | - Moema de Alencar Hausen
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| | - Eliana Aparecida de Rezende Duek
- Mechanical Engineering Faculty (FEM), State University of Campinas (UNICAMP), Campinas 13083-860, São Paulo, Brazil
- Post-Graduation Program in Materials Sciences (PPGCM), Federal University of São Carlos (UFSCar), Sorocaba 18052-780, São Paulo, Brazil
- Laboratory of Biomaterials, Faculty of Medical Sciences and Health (FCMS), Pontifical Catholic University of São Paulo (PUC-SP), Sorocaba 18030-070, São Paulo, Brazil
- Post-Graduation Program of Biomaterials and Regenerative Medicine, Surgery Department, FCMS, PUC-São Paulo, Sorocaba 18030-070, São Paulo, Brazil
| |
Collapse
|
16
|
Electrospun gelatin/chitosan nanofibers containing curcumin for multifunctional food packaging. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Kim Y, Zharkinbekov Z, Raziyeva K, Tabyldiyeva L, Berikova K, Zhumagul D, Temirkhanova K, Saparov A. Chitosan-Based Biomaterials for Tissue Regeneration. Pharmaceutics 2023; 15:pharmaceutics15030807. [PMID: 36986668 PMCID: PMC10055885 DOI: 10.3390/pharmaceutics15030807] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Chitosan is a chitin-derived biopolymer that has shown great potential for tissue regeneration and controlled drug delivery. It has numerous qualities that make it attractive for biomedical applications such as biocompatibility, low toxicity, broad-spectrum antimicrobial activity, and many others. Importantly, chitosan can be fabricated into a variety of structures including nanoparticles, scaffolds, hydrogels, and membranes, which can be tailored to deliver a desirable outcome. Composite chitosan-based biomaterials have been demonstrated to stimulate in vivo regeneration and the repair of various tissues and organs, including but not limited to, bone, cartilage, dental, skin, nerve, cardiac, and other tissues. Specifically, de novo tissue formation, resident stem cell differentiation, and extracellular matrix reconstruction were observed in multiple preclinical models of different tissue injuries upon treatment with chitosan-based formulations. Moreover, chitosan structures have been proven to be efficient carriers for medications, genes, and bioactive compounds since they can maintain the sustained release of these therapeutics. In this review, we discuss the most recently published applications of chitosan-based biomaterials for different tissue and organ regeneration as well as the delivery of various therapeutics.
Collapse
|
18
|
Zhu J, Chen X, Huang T, Tian D, Gao R. Characterization and antioxidant properties of chitosan/ethyl-vanillin edible films produced via Schiff-base reaction. Food Sci Biotechnol 2023; 32:157-167. [PMID: 36647524 PMCID: PMC9839923 DOI: 10.1007/s10068-022-01178-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 01/19/2023] Open
Abstract
In this paper, chitosan/ethyl-vanillin (CS-EV) Schiff-base edible films with CS and EV at different concentrations and ratios were successfully prepared. The optical barrier properties, water contact angle, mechanical performance, water vapor transmission, antioxidant properties, thermal properties, and morphological structure of the films were compared. The results suggested that the tensile strength (TS) attained a maximum value of 64.63 MPa at a concentration of 4% EV. Moreover, water diffusion was prevented through the compact structure of the CS-EV edible film. Additionally, the two sides of the CS-EV film show different textures due to their different hydrophilicity/hydrophobicity. In particular, the films of CS possessed superior thermal stability, while those of CS-EV exhibited higher antioxidant activity.
Collapse
Affiliation(s)
- Jianfei Zhu
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| | - Xiaomei Chen
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Tingting Huang
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Dongling Tian
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
| | - Ruiping Gao
- School of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067 China
- Chongqing Engineering Research Center for Processing, Storage & Transportation of Characterized Agro–Products, Chongqing, 400067 China
| |
Collapse
|
19
|
de Souza MF, da Silva HN, Rodrigues JFB, Macêdo MDM, de Sousa WJB, Barbosa RC, Fook MVL. Chitosan/Gelatin Scaffolds Loaded with Jatropha mollissima Extract as Potential Skin Tissue Engineering Materials. Polymers (Basel) 2023; 15:polym15030603. [PMID: 36771903 PMCID: PMC9921636 DOI: 10.3390/polym15030603] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
This work aimed to develop chitosan/gelatin scaffolds loaded with ethanolic extract of Jatropha mollissima (EEJM) to evaluate the influence of its content on the properties of these structures. The scaffolds were prepared by freeze-drying, with different EEJM contents (0-10% (w/w)) and crosslinked with genipin (0.5% (w/w)). The EEJM were characterized through High Performance Liquid Chromatography coupled to a Diode Array Detector (HPLC-DAD), and the determination of three secondary metabolites contents was accomplished. The physical, chemical and biological properties of the scaffolds were investigated. From the HPLC-DAD, six main substances were evidenced, and from the quantification of the total concentration, the condensed tannins were the highest (431.68 ± 33.43 mg·g-1). Spectroscopy showed good mixing between the scaffolds' components. Adding and increasing the EEJM content did not significantly influence the properties of swelling and porosity, but did affect the biodegradation and average pore size. The enzymatic biodegradation test showed a maximum weight loss of 42.89 within 28 days and reinforced the efficiency of genipin in crosslinking chitosan-based materials. The addition of the extract promoted the average pore sizes at a range of 138.44-227.67 µm, which is compatible with those reported for skin regeneration. All of the scaffolds proved to be biocompatible for L929 cells, supporting their potential application as skin tissue engineering materials.
Collapse
Affiliation(s)
- Matheus Ferreira de Souza
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Henrique Nunes da Silva
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - José Filipe Bacalhau Rodrigues
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Maria Dennise Medeiros Macêdo
- Postgraduate Program in Materials Science and Engineering, Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | | | - Rossemberg Cardoso Barbosa
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
| | - Marcus Vinícius Lia Fook
- Department of Materials Engineering, Federal University of Campina Grande, Campina Grande 58429-900, PB, Brazil
- Correspondence: ; Tel.: +55-(83)-2101-1841
| |
Collapse
|
20
|
Liu H, Bai Y, Huang C, Wang Y, Ji Y, Du Y, Xu L, Yu DG, Bligh SWA. Recent Progress of Electrospun Herbal Medicine Nanofibers. Biomolecules 2023; 13:184. [PMID: 36671570 PMCID: PMC9855805 DOI: 10.3390/biom13010184] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 01/18/2023] Open
Abstract
Herbal medicine has a long history of medical efficacy with low toxicity, side effects and good biocompatibility. However, the bioavailability of the extract of raw herbs and bioactive compounds is poor because of their low water solubility. In order to overcome the solubility issues, electrospinning technology can offer a delivery alternative to resolve them. The electrospun fibers have the advantages of high specific surface area, high porosity, excellent mechanical strength and flexible structures. At the same time, various natural and synthetic polymer-bound fibers can mimic extracellular matrix applications in different medical fields. In this paper, the development of electrospinning technology and polymers used for incorporating herbal medicine into electrospun nanofibers are reviewed. Finally, the recent progress of the applications of these herbal medicine nanofibers in biomedical (drug delivery, wound dressing, tissue engineering) and food fields along with their future prospects is discussed.
Collapse
Affiliation(s)
- Hang Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yubin Bai
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chang Huang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ying Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuexin Ji
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yutong Du
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Lin Xu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Sim Wan Annie Bligh
- School of Health Sciences, Caritas Institute of Higher Education, Hong Kong 999077, China
| |
Collapse
|
21
|
Triple-layer composite nanofiber pad with directional liquid absorption and controlled-release chlorine dioxide for postharvest preservation. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
22
|
Nemattalab M, Rohani M, Evazalipour M, Hesari Z. Formulation of Cinnamon (Cinnamomum verum) oil loaded solid lipid nanoparticles and evaluation of its antibacterial activity against Multi-drug Resistant Escherichia coli. BMC Complement Med Ther 2022; 22:289. [PMID: 36352402 PMCID: PMC9647953 DOI: 10.1186/s12906-022-03775-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/11/2022] [Accepted: 10/17/2022] [Indexed: 11/11/2022] Open
Abstract
Today, the increment in microbial resistance has guided the researches focus into new antimicrobial compounds or transmission systems. Escherichia coli (E. coli) is an opportunistic pathogen, producing a biofilm responsible for a wide range of nosocomial infections which are often difficult to eradicate with available antibiotics. On the other hand, Cinnamomum verum (cinnamon oil) (CO) is widely used as a natural antibacterial agent and Solid lipid nanoparticles (SLNs) are promising carriers for antibacterial compounds due to their lipophilic nature and ease of transmission through the bacterial cell wall. In this study, nanoparticles containing cinnamon oil (CO-SLN) were prepared by dual emulsion method and evaluated in terms of particle size, shape, entrapment efficiency (EE), transmission electron microscopy (TEM), oil release kinetics, and cell compatibility. The antibacterial activity of CO-SLN and CO against 10 drug-resistant E. coli strains was investigated. The anti-biofilm activity of CO-SLN on the selected pathogen was also investigated. Nanoparticles with an average size of 337.6 nm, and zeta potential of -26.6 mV were fabricated and their round shape was confirmed by TEM images. The antibacterial effects of CO-SLN and CO were reported with MIC Value of 60–75 µg/mL and 155–165 µg/mL and MBC value of 220–235 µg/ml and 540–560 µg/ml, respectively. On the other hand, CO-SLN with 1/2 MIC concentration had the greatest inhibition of biofilm formation in 24 h of incubation (55.25%). The data presented indicate that the MIC of CO-SLN has significantly reduced and it seems that SLN has facilitated and promoted CO transmission through the cell membrane.
Collapse
|
23
|
Muiz LJ, Juwono AL, Krisnandi YK. A review: Silver–zinc oxide nanoparticles – organoclay-reinforced chitosan bionanocomposites for food packaging. OPEN CHEM 2022. [DOI: 10.1515/chem-2022-0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Abstract
Research on bionanocomposites has been developed, while its application as food packaging is still being explored. They are usually made from natural polymers such as cellulose acetate, chitosan (CS), and polyvinyl alcohol. Bionanocomposite materials can replace traditional non-biodegradable plastic packaging materials, enabling them to use new, high-performance, lightweight, and environmentally friendly composite materials. However, this natural polymer has a weakness in mechanical properties. Therefore, a composite system is needed that will improve the properties of the biodegradable food packaging. The aim of this mini-review is to demonstrate recent progress in the synthesis, modification, characterization, and application of bionanocomposites reported by previous researchers. The focus is on the preparation and characterization of CS-based bionanocomposites. The mechanical properties of CS-based food packaging can be improved by adding reinforcement from inorganic materials such as organoclay. Meanwhile, the anti-bacterial properties of CS-based food packaging can be improved by adding nanoparticles such as Ag and ZnO.
Collapse
Affiliation(s)
- Lisna Junaeni Muiz
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Ariadne Lakshmidevi Juwono
- Department of Physics, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
| | - Yuni Krisyuningsih Krisnandi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia , Depok , 16424 , Indonesia
- Department of Chemistry, Solid Inorganic Framework Laboratory, Faculty of Mathematics and Natural Science, Universitas Indonesia , Depok , 16424 , Indonesia
| |
Collapse
|
24
|
Güneş Çimen C, Dündar MA, Demirel Kars M, Avcı A. Enhancement of PCL/PLA Electrospun Nanocomposite Fibers Comprising Silver Nanoparticles Encapsulated with Thymus Vulgaris L. Molecules for Antibacterial and Anticancer Activities. ACS Biomater Sci Eng 2022; 8:3717-3732. [PMID: 35948432 DOI: 10.1021/acsbiomaterials.2c00611] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silver nanoparticles (AgNPs) have been recognized for their outstanding antibacterial activities, which are required for antibacterial coating materials in therapeutic applications. A bacterial-resistant electrospun nanofibrous mat made of polycaprolactone (PCL) in combination with polylactide acid (PLA) containing silver nanoparticles encapsulated with Thymus vulgaris L. (thyme) extract (eAgNPs) was fabricated in order to assess the potential of applicability in biomedical applications such as cancer treatment, wound healing, or surgical sutures. In the current study, PCL and PLA used as the basis polymers were blended with biosynthesized eAgNPs, pure AgNPs, and thyme extract (TE) to observe the effects of additives in terms of antibacterial and anticancer activity and morphologic, thermal, mechanical, biocompatibility, and biodegradability properties. The biological characteristics of fabricated electrospun nanofibrous mats were evaluated in vitro. Physicochemical characteristics of the nanofibrous mats were examined by UV-vis spectrophotometry, scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), Fourier-transform infrared spectroscopy (FTIR), mechanical tensile testing, X-ray diffraction (XRD), thermogravimetric examination (TGA), and water contact angles (WCAs). The results showed that a biodegradable nanofiber scaffold with a mean fiber diameter of 280 nm is morphologically homogeneous and highly hydrophobic, has higher tensile strength than PCL/PLA nanocomposite fiber, and is resistant to Escherichia coli and Staphylococcus aureus. The cytotoxic and anticancer properties of nanomaterials were defined using L929 and SK-MEL-30 cells. The developed material inhibited cell proliferation and led to apoptosis of cell lines. It can be suggested that the use of Thymus vulgaris L. extract-encapsulated silver nanoparticle-doped PCL/PLA nanofibers produced by the electrospinning method has the potential for cancer therapy in skin tumor cell lines.
Collapse
Affiliation(s)
- Cansu Güneş Çimen
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Mehmet Akif Dündar
- Department of Otorhinolaryngology, Necmettin Erbakan University School of Medicine, Konya 42080, Turkey
| | - Meltem Demirel Kars
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| | - Ahmet Avcı
- Department of Biomedical Engineering, Faculty of Engineering, Necmettin Erbakan University, Konya 42090, Turkey
| |
Collapse
|
25
|
Salim MH, Kassab Z, Abdellaoui Y, García-Cruz A, Soumare A, Ablouh EH, El Achaby M. Exploration of multifunctional properties of garlic skin derived cellulose nanocrystals and extracts incorporated chitosan biocomposite films for active packaging application. Int J Biol Macromol 2022; 210:639-653. [PMID: 35513099 DOI: 10.1016/j.ijbiomac.2022.04.220] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/24/2022] [Accepted: 04/28/2022] [Indexed: 11/29/2022]
Abstract
For many years, garlic has been used as a condiment in food and traditional medicine. However, the garlic skin, which accounts for 25% of the garlic bulk, is considered agricultural waste. In this study, cellulose nanocrystals (CNCs) and garlic extract (GE) from garlic skin were isolated and used as fillers to manufacture biocomposite films. The films were characterized in terms of UV barrier, thermal, mechanical, biodegradability, and antimicrobial activity. The chitosan-containing films and CNCs have significantly improved the films' tensile strength, Young's modulus, and elongation but decreased the film transparency compared to chitosan films. The combination of the CNCs and GE, on the other hand, slightly reduced the mechanical properties. The addition of CNCs slightly decreased the film transparency, while the addition of GE significantly improved the UV barrier properties. Thermal studies revealed that the incorporation of CNC and GE had minimal effect on the thermal stability of the chitosan films. The degradability rate of the chitosan composite films was found to be higher than that of the neat chitosan films. The antimicrobial properties of films were studied against Escherichia coli, Streptomyces griseorubens, Streptomyces alboviridis, and Staphylococcus aureus, observing that their growth was considerably inhibited by the addition of GE in composite films. Films incorporating both CNCs and GE from garlic skin hold more promise for active food packaging applications due to a combination of enhanced physical characteristics and antibacterial activity.
Collapse
Affiliation(s)
- Mohamed Hamid Salim
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Zineb Kassab
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| | - Youness Abdellaoui
- Faculty of Engineering, Environmental Engineering Department, Autonomous University of Yucatan, Yucatán, Mexico
| | - Ariel García-Cruz
- Autonomous University of Durango, Campus Saltillo. Boulevard Fundadores No. 8812, Misión Santa Lucía, Colonia Misión Cerritos, zc: 25016 Saltillo, Coahuila, Mexico
| | - Abdoulaye Soumare
- AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Benguerir 43150, Morocco
| | - El-Houssaine Ablouh
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco
| | - Mounir El Achaby
- Materials Science, Energy and Nano-engineering (MSN) Department, Mohammed VI Polytechnic University (UM6P), Lot 660 - Hay Moulay Rachid, 43150 Ben Guerir, Morocco.
| |
Collapse
|
26
|
Romo-Rico J, Krishna SM, Bazaka K, Golledge J, Jacob MV. Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomater 2022; 147:34-49. [PMID: 35649506 DOI: 10.1016/j.actbio.2022.05.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 11/01/2022]
Abstract
There is a global epidemic of non-healing wounds. Chronic inflammation, overexpression of pro-inflammatory cytokines, oxidative stress and bacterial infection are implicated in delayed wound healing. Natural extracts are a rich source of bioactive molecules called plant secondary metabolites (PSMs) that include terpenes and phenols. These molecules may facilitate wound healing through their antioxidant, anti-inflammatory, and antibacterial activity. After briefly outlining the process of wound healing and how it is compromised in chronic wounds, this review focuses on investigating how PSMs-based polymers may improve wound healing. Best methods for incorporating PSMs into wound dressings are reviewed and critically compared. The exiting body of literature strongly suggests that PSMs-based polymers incorporated into wound dressings could have clinical value in aiding wound healing. STATEMENT OF SIGNIFICANCE: Chronic wounds develop by the persistence of inflammation, oxidative stress and infection. Chronic wounds affect the worldwide population, by reducing quality of life of patients with significant cost to healthcare systems. To help chronic wounds to heal and overcome this burden, materials with anti-inflammatory, antioxidant and antibacterial properties are required. Plant secondary metabolites (PSMs) are volatile materials that have all these properties. PSMs-based polymers can be fabricated by polymerization techniques. The present review provides an overview of the state-of-the-art of the wound healing mechanisms of PSMs. Current developments in the field of PSMs-based polymers are reviewed and their potential use as wound dressings is also covered.
Collapse
|
27
|
Gelatin/Chitosan Films Incorporated with Curcumin Based on Photodynamic Inactivation Technology for Antibacterial Food Packaging. Polymers (Basel) 2022; 14:polym14081600. [PMID: 35458350 PMCID: PMC9032248 DOI: 10.3390/polym14081600] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/09/2022] [Accepted: 04/11/2022] [Indexed: 12/22/2022] Open
Abstract
Photodynamic inactivation (PDI) is a new type of non-thermal sterilization technology that combines visible light with photosensitizers to generate a bioactive effect against foodborne pathogenic bacteria. In the present investigation, gelatin (GEL)/chitosan (CS)-based functional films with PDI potency were prepared by incorporating curcumin (Cur) as a photosensitizer. The properties of GEL/CS/Cur (0.025, 0.05, 0.1, 0.2 mmol/L) films were investigated by evaluating the surface morphology, chemical structure, light transmittance, and mechanical properties, as well as the photochemical and thermal stability. The results showed a strong interaction and good compatibility between the molecules present in the GEL/CS/Cur films. The addition of Cur improved different film characteristics, including thickness, mechanical properties, and solubility. More importantly, when Cur was present at a concentration of 0.1 mM, the curcumin-mediated PDI inactivated >4.5 Log CFU/mL (>99.99%) of Listeria monocytogenes, Escherichia coli, and Shewanella putrefaciens after 70 min (15.96 J/cm2) of irradiation with blue LED (455 ± 5) nm. Moreover, Listeria monocytogenes and Shewanella putrefaciens were completely inactivated after 70 min of light exposure when the Cur concentration was 0.2 mM. In contrast, the highest inactivation effect was observed in Vibrio parahaemolyticus. This study showed that the inclusion of Cur in the biopolymer-based film transport system in combination with photodynamic activation represents a promising option for the preparation of food packaging films.
Collapse
|
28
|
Hussein MAM, Gunduz O, Sahin A, Grinholc M, El-Sherbiny IM, Megahed M. Dual Spinneret Electrospun Polyurethane/PVA-Gelatin Nanofibrous Scaffolds Containing Cinnamon Essential Oil and Nanoceria for Chronic Diabetic Wound Healing: Preparation, Physicochemical Characterization and In-Vitro Evaluation. Molecules 2022; 27:2146. [PMID: 35408546 PMCID: PMC9000402 DOI: 10.3390/molecules27072146] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 03/22/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
In this study, a dual spinneret electrospinning technique was applied to fabricate a series of polyurethane (PU) and polyvinyl alcohol-gelatin (PVA/Gel) nanofibrous scaffolds. The study aims to enhance the properties of PU/PVA-Gel NFs loaded with a low dose of nanoceria through the incorporation of cinnamon essential oil (CEO). The as-prepared nCeO2 were embedded into the PVA/Gel nanofibrous layer, where the cinnamon essential oil (CEO) was incorporated into the PU nanofibrous layer. The morphology, thermal stability, mechanical properties, and chemical composition of the produced NF mats were investigated by STEM, DSC, and FTIR. The obtained results showed improvement in the mechanical, and thermal stability of the dual-fiber scaffolds by adding CEO along with nanoceria. The cytotoxicity evaluation revealed that the incorporation of CEO to PU/PVA-Gel loaded with a low dose of nanoceria could enhance the cell population compared to using pure PU/PVA-Gel NFs. Moreover, the presence of CEO could inhibit the growth rate of S. aureus more than E. coli. To our knowledge, this is the first time such nanofibrous membranes composed of PU and PVA-Gel have been produced. The first time was to load the nanofibrous membranes with both CEO and nCeO2. The obtained results indicate that the proposed PU/PVA-Gel NFs represent promising platforms with CEO and nCeO2 for effectively managing diabetic wounds.
Collapse
Affiliation(s)
- Mohamed Ahmed Mohamady Hussein
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
- Department of Pharmacology, Medical Research Division, National Research Center, Dokki, Cairo 12622, Egypt
| | - Oguzhan Gunduz
- Center for Nanotechnology & Biomaterials Application and Research (NBUAM), Marmara University, Istanbul 34722, Turkey;
- Department of Metallurgical and Materials Engineering, Faculty of Technology, Marmara University, Istanbul 34722, Turkey
| | - Ali Sahin
- Department of Biochemistry, School of Medicine, Marmara University, Istanbul 34854, Turkey;
- Genetic and Metabolic Diseases Research and Investigation Center (GEMHAM), Marmara University, Istanbul 34854, Turkey
| | - Mariusz Grinholc
- Laboratory of Molecular Diagnostics, Department of Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk, 80307 Gdansk, Poland;
| | - Ibrahim Mohamed El-Sherbiny
- Nanomedicine Laboratory, Center for Materials Science (CMS), Zewail City of Science and Technology, 6th of October, Giza 12578, Egypt
| | - Mosaad Megahed
- Clinic of Dermatology, University Hospital of RWTH Aachen, 52074 Aachen, Germany;
| |
Collapse
|
29
|
Hyaluronic acid/lactose-modified chitosan electrospun wound dressings – Crosslinking and stability criticalities. Carbohydr Polym 2022; 288:119375. [DOI: 10.1016/j.carbpol.2022.119375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/09/2022] [Accepted: 03/16/2022] [Indexed: 12/19/2022]
|
30
|
Li T, Sun M, Wu S. State-of-the-Art Review of Electrospun Gelatin-Based Nanofiber Dressings for Wound Healing Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:784. [PMID: 35269272 PMCID: PMC8911957 DOI: 10.3390/nano12050784] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023]
Abstract
Electrospun nanofiber materials have been considered as advanced dressing candidates in the perspective of wound healing and skin regeneration, originated from their high porosity and permeability to air and moisture, effective barrier performance of external pathogens, and fantastic extracellular matrix (ECM) fibril mimicking property. Gelatin is one of the most important natural biomaterials for the design and construction of electrospun nanofiber-based dressings, due to its excellent biocompatibility and biodegradability, and great exudate-absorbing capacity. Various crosslinking approaches including physical, chemical, and biological methods have been introduced to improve the mechanical stability of electrospun gelatin-based nanofiber mats. Some innovative electrospinning strategies, including blend electrospinning, emulsion electrospinning, and coaxial electrospinning, have been explored to improve the mechanical, physicochemical, and biological properties of gelatin-based nanofiber mats. Moreover, numerous bioactive components and therapeutic agents have been utilized to impart the electrospun gelatin-based nanofiber dressing materials with multiple functions, such as antimicrobial, anti-inflammation, antioxidation, hemostatic, and vascularization, as well as other healing-promoting capacities. Noticeably, electrospun gelatin-based nanofiber mats integrated with specific functions have been fabricated to treat some hard-healing wound types containing burn and diabetic wounds. This work provides a detailed review of electrospun gelatin-based nanofiber dressing materials without or with therapeutic agents for wound healing and skin regeneration applications.
Collapse
Affiliation(s)
| | | | - Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao 266071, China; (T.L.); (M.S.)
| |
Collapse
|
31
|
Valachová K, El Meligy MA, Šoltés L. Hyaluronic acid and chitosan-based electrospun wound dressings: Problems and solutions. Int J Biol Macromol 2022; 206:74-91. [PMID: 35218807 DOI: 10.1016/j.ijbiomac.2022.02.117] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/16/2022] [Accepted: 02/18/2022] [Indexed: 11/05/2022]
Abstract
To date, available review papers related to the electrospinning of biopolymers including polysaccharides for wound healing were focused on summarizing the process conditions for two candidates, namely chitosan and hyaluronic acid. However, most reviews lack the discussion of problems of hyaluronan and chitosan electrospun nanofibers for wound dressing applications. For this reason, it is required to update information by providing a comprehensive overview of all factors which may play a role in the electrospinning of hyaluronic acid and chitosan for applications of wound dressings. This review summarizes the fabricated chitosan and hyaluronic acid electrospun nanofibers as wound dressings in the last years, including methods of preparations of nanofibers and challenges for the electrospinning of both pure chitosan and hyaluronic acid and strategies how to overcome the existing difficulties. Moreover, in this review the biological roles and mechanisms of chitosan and hyaluronic acid in the wound healing process are explained including the advantages of nanofibers for ideal wound management using the common solvents, copolymers enhancing spinning process, and the most biologically active incorporated substances thereby providing drug delivery in wound healing.
Collapse
Affiliation(s)
- Katarína Valachová
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia.
| | - Mahmoud Atya El Meligy
- Department of Chemistry, Polymer Research Group, Faculty of Science, University of Tanta, Tanta 31527, Egypt
| | - Ladislav Šoltés
- Centre of Experimental Medicine of Slovak Academy of Sciences, Dúbravská cesta 9, 84104 Bratislava, Slovakia
| |
Collapse
|
32
|
Parın FN, Parın U. Spirulina Biomass‐Loaded Thermoplastic Polyurethane/Polycaprolacton (TPU/PCL) Nanofibrous Mats: Fabrication, Characterization, and Antibacterial Activity as Potential Wound Healing. ChemistrySelect 2022. [DOI: 10.1002/slct.202104148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Fatma Nur Parın
- Polymer Materials Engineering Department Faculty of Engineering and Natural Sciences Bursa Technical University Sinan Campus Yıldırım Bursa 16310 Turkey
| | - Uğur Parın
- Microbiology Department Faculty of Veterinary Science Aydın Adnan Menderes University Işıklı Campus Efeler Aydın 09010 Turkey
| |
Collapse
|
33
|
Wang N, Liu Z, Yang J, Song Y, Yang J. Investigation of antibacterial activity of one-dimensional electrospun Walnut green husk extract-PVP nanofibers. IRANIAN POLYMER JOURNAL 2022. [DOI: 10.1007/s13726-022-01037-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Mahmood K, Kamilah H, Alias AK, Ariffin F, Mohammadi Nafchi A. Functionalization of electrospun fish gelatin mats with bioactive agents: Comparative effect on morphology, thermo-mechanical, antioxidant, antimicrobial properties, and bread shelf stability. Food Sci Nutr 2022; 10:584-596. [PMID: 35154694 PMCID: PMC8825724 DOI: 10.1002/fsn3.2676] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/11/2021] [Accepted: 11/17/2021] [Indexed: 01/20/2023] Open
Abstract
In the current study, fish gelatin-based nanofiber mats were embedded with different bioactive agents (BAs) such as cinnamaldehyde (CEO), limonene (LEO), and eugenol (EEO) at 1, 3, and 5% via electrospinning, and their effects on the morphological, structural, mechanical, thermal, antioxidant, antimicrobial, and bread packaging properties of the mats were evaluated. The gelatin mats presented different physicochemical properties due to the inherent differences in the chemical structure of the added BAs and their interaction with the gelatin chains. The conductivity, surface tension, and viscosity of gelatin dopes changed with the presence of the BAs, yet the electrospun nanofibers showed defect-free uniform morphology as confirmed by electron microscopy, with no significant change in the chemical structure of gelatin. The melting temperature of gelatin mats remained in the range of 187-197°C. The mats presented lower tensile strength and elongation at break by the addition of BAs compared with the pristine gelatin mat. The highest radical scavenging (90%) was yielded by mats with EEO, while mats with CEO depicted better antibacterial activity with an inhibition zone of 18.83 mm. However, a dose-dependent increase in the antifungal properties was noticed for all the mats. The mats retained almost 50% of BAs after 60 days of storage at 45% relative humidity. Electrospun gelatin mats inhibited the aerobic bacteria (81%) and yeast and molds (61%) in preservative-free bread after 10 days of storage.
Collapse
Affiliation(s)
- Kaiser Mahmood
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Hanisah Kamilah
- Department of Crop Science, Faculty of Agriculture and ForestryUniversiti Putra MalaysiaBintulu Sarawak CampusBintuluMalaysia
- Halal Products Research InstituteUniversiti Putra MalaysiaSerdangMalaysia
| | - Abd Karim Alias
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Fazilah Ariffin
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
| | - Abdorreza Mohammadi Nafchi
- Food Technology DivisionSchool of Industrial TechnologyUniversiti Sains MalaysiaPenangMalaysia
- Department of Food Science and Technology, Damghan BranchIslamic Azad UniversityDamghanIran
| |
Collapse
|
35
|
Ashraf SS, Parivar K, Hayati Roodbari N, Mashayekhan S, Amini N. Fabrication and characterization of biaxially electrospun collagen/alginate nanofibers, improved with Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides for wound healing applications. Int J Biol Macromol 2022; 196:194-203. [PMID: 34852259 DOI: 10.1016/j.ijbiomac.2021.11.132] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/26/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022]
Abstract
Fabrication of scaffolds with enhanced mechanical properties and desirable cellular compatibility is critical for numerous tissue engineering applications. This study was aimed at fabrication and characterization of a nanofiber skin substitute composed of collagen (Col)/sodium alginate (SA)/ polyethylene oxide (PEO)/Rhodotorula mucilaginosa sp. GUMS16 produced exopolysaccharides (EPS) were prepared using the biaxial electrospinning technique. This study used collagen extracted from the bovine tendon as a natural scaffold, sodium alginate as an absorber of excess wound fluids, and GUMS16 produced exopolysaccharides as an antioxidant. Collagen was characterized using FTIR and EDS analyses. The cross-linked nanofibers were characterized by SEM, FTIR, tensile, contact-angle, swelling test, MTT, and cell attachment techniques. The average diameter of Col nanofiber was 910 ± 89 nm. The Col and Col-SA/PEO non-woven mats' water contact angle measurement was 41.6o and 56.4o, Col/EPS1%, Col/EPS2%, Col-SA/PEO + EPS1%, and Col-SA/PEO + EPS2% were 61.4o, 58.3o, 38.5o, and 50.6o, respectively. Cell viability of more than 100% was shown in Col-SA/PEO + EPS nanofibers. Also, SEM images of cells on nanofiber scaffolds demonstrated that all nanofibers incorporated with GUMS16-produced EPS have good cell growth and proliferation. The acquired results expressed that the GUMS16-produced EPS can be considered a novel biomacromolecule in electrospun fibers that increase cell viability and proliferation.
Collapse
Affiliation(s)
- Seyedeh Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kazem Parivar
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Nasim Hayati Roodbari
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shohre Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Institude of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Scienses, Tehran, Iran.
| |
Collapse
|
36
|
Agarwal T, Tan SA, Onesto V, Law JX, Agrawal G, Pal S, Lim WL, Sharifi E, Moghaddam FD, Maiti TK. Engineered herbal scaffolds for tissue repair and regeneration: Recent trends and technologies. BIOMEDICAL ENGINEERING ADVANCES 2021. [DOI: 10.1016/j.bea.2021.100015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
37
|
Rahmani P, Shojaei A. A review on the features, performance and potential applications of hydrogel-based wearable strain/pressure sensors. Adv Colloid Interface Sci 2021; 298:102553. [PMID: 34768136 DOI: 10.1016/j.cis.2021.102553] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/09/2021] [Accepted: 10/23/2021] [Indexed: 01/11/2023]
Abstract
Over the past few years, development of wearable devices has gained increasing momentum. Notably, the demand for stretchable strain sensors has significantly increased due to many potential and emerging applications such as human motion monitoring, prosthetics, robotic systems, and touch panels. Recently, hydrogels have been developed to overcome the drawbacks of the elastomer-based wearable strain sensors, caused by insufficient biocompatibility, brittle mechanical properties, complicated fabrication process, as the hydrogels can provide a combination of various exciting properties such as intrinsic electrical conductivity, suitable mechanical properties, and biocompatibility. There are numerous research works reported in the literature which consider various aspects as preparation approaches, design strategies, properties control, and applications of hydrogel-based strain sensors. This article aims to present a review on this exciting topic with a new insight on the hydrogel-based wearable strain sensors in terms of their features, strain sensory performance, and prospective applications. In this respect, we first briefly review recent advances related to designing the materials and the methods for promoting hydrogels' intrinsic features. Then, strain (both tensile and pressure) sensing performance of prepared hydrogels is critically studied, and alternative approaches for their high-performance sensing are proposed. Subsequently, this review provides several promising applications of hydrogel-based strain sensors, including bioapplications and human-machine interface devices. Finally, challenges and future outlooks of conductive and stretchable hydrogels employed in the wearable strain sensors are discussed.
Collapse
|
38
|
Arunagiri V, Tsai HC, Darge HF, Chiang HW, Thankachan D, Mei CJ, Lai JY. Preparation of physically crosslinked polyelectrolyte Gelatin-Tannic acid-κ-Carrageenan (GTC) microparticles as hemostatic agents. Int J Biol Macromol 2021; 191:324-334. [PMID: 34530038 DOI: 10.1016/j.ijbiomac.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 08/25/2021] [Accepted: 09/01/2021] [Indexed: 12/17/2022]
Abstract
In humans, excessive bleeding during civilian accidents, and surgery account for 40% of the mortality worldwide. Hence, the development of biocompatible hemostatic materials useful for rapid hemorrhage control has become a fundamental research problem in the biomedicine community. In this study, we prepared biocompatible gelatin-tannic acid-κ-carrageenan (GTC) microparticles using a facile Tween 80 stabilized water-in-oil (W/O) emulsion method for rapid hemostasis. The formation of GTC microparticles occurs via polyelectrolyte interactions between gelatin and k-carrageenan as well as hydrogen bonding from tannic acid. In addition, the GTC microparticles formulated in our study showed high water adsorption ability with a low volume-swelling ratio for a particle size of 46 μm. In addition, the GTC microparticles displayed >80% biocompatibility in NIH 3T3 cells and <5% hemocompatibility in hemolysis ratio tests. Notably, the GTC microparticles induced rapid blood clotting in 50 s and blood loss of approximately 46 mg in the femoral artery of BALB/c female mice with a 100% survival rate that was significantly better than the control group (blood clot time:250 s; blood loss: 259 mg). Thus, the findings from our study collectively suggest that GTC microparticles may play a promising clinical role in medical applications to tackle hemorrhage control.
Collapse
Affiliation(s)
- Vinothini Arunagiri
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Centre, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Centre for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Haile Fentahun Darge
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; College of Medicine and Health Science, Bahir Dar University, Bahir Dar 79, Ethiopia
| | - Hung Wei Chiang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Darieo Thankachan
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Chia-Jui Mei
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Centre, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Centre for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC
| |
Collapse
|
39
|
Kołodziejska M, Jankowska K, Klak M, Wszoła M. Chitosan as an Underrated Polymer in Modern Tissue Engineering. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3019. [PMID: 34835782 PMCID: PMC8625597 DOI: 10.3390/nano11113019] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Chitosan is one of the most well-known and characterized materials applied in tissue engineering. Due to its unique chemical, biological and physical properties chitosan is frequently used as the main component in a variety of biomaterials such as membranes, scaffolds, drug carriers, hydrogels and, lastly, as a component of bio-ink dedicated to medical applications. Chitosan's chemical structure and presence of active chemical groups allow for modification for tailoring material to meet specific requirements according to intended use such as adequate endurance, mechanical properties or biodegradability time. Chitosan can be blended with natural (gelatin, hyaluronic acid, collagen, silk, alginate, agarose, starch, cellulose, carbon nanotubes, natural rubber latex, κ-carrageenan) and synthetic (PVA, PEO, PVP, PNIPPAm PCL, PLA, PLLA, PAA) polymers as well as with other promising materials such as aloe vera, silica, MMt and many more. Chitosan has several derivates: carboxymethylated, acylated, quaternary ammonium, thiolated, and grafted chitosan. Its versatility and comprehensiveness are confirming by further chitosan utilization as a leading constituent of innovative bio-inks applied for tissue engineering. This review examines all the aspects described above, as well as is focusing on a novel application of chitosan and its modifications, including the 3D bioprinting technique which shows great potential among other techniques applied to biomaterials fabrication.
Collapse
Affiliation(s)
- Marta Kołodziejska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Kamila Jankowska
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
| | - Marta Klak
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| | - Michał Wszoła
- Foundation of Research and Science Development, 01-793 Warsaw, Poland; (M.K.); (K.J.); (M.W.)
- Polbionica Ltd., 01-793 Warsaw, Poland
| |
Collapse
|
40
|
Parhizkar A, Asgary S. Local Drug Delivery Systems for Vital Pulp Therapy: A New Hope. Int J Biomater 2021; 2021:5584268. [PMID: 34567123 PMCID: PMC8457968 DOI: 10.1155/2021/5584268] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/18/2021] [Accepted: 09/09/2021] [Indexed: 12/24/2022] Open
Abstract
Vital pulp therapy (VPT) is deliberated as an ultraconservative/minimally invasive approach for the conservation of vital pulpal tissues, preservation of dental structure, and maintenance of tooth function in the oral cavity. In VPT, following the exposure of the dental pulp, the environment is prepared for the possible healing and probable refunctionalisation of pulpal connective tissue. However, to succeed in VPT, specific biomaterials are used to cover and/or dress the exposed pulp, lower the inflammation, heal the dental pulp, provoke the remaining odontoblastic cells, and induce the formation of a hard tissue, i.e., the dentinal bridge. It can be assumed that if the employed biomaterial is transferred to the target site using a specially designed micro-/nanosized local drug delivery system (LDDS), the biomaterial would be placed in closer proximity to the connective tissue, may be released in a controlled and sustained pattern, could properly conserve the remaining dental pulp and might appropriately enhance hard-tissue formation. Furthermore, the loaded LDDS could help VPT modalities to be more ultraconservative and may minimise the manipulation of the tooth structure as well as pulpal tissue, which could, in turn, result in better VPT outcomes.
Collapse
Affiliation(s)
- Ardavan Parhizkar
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| | - Saeed Asgary
- Iranian Centre for Endodontic Research, Research Institute for Dental Sciences, Shahid Beheshti University of Medical Sciences, Tehran 1983963113, Iran
| |
Collapse
|
41
|
Sharma D, Mathur VP, Satapathy BK. Biodegradable and Biocompatible 3D Constructs for Dental Applications: Manufacturing Options and Perspectives. Ann Biomed Eng 2021; 49:2030-2056. [PMID: 34318403 DOI: 10.1007/s10439-021-02839-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Designing 3D constructs with appropriate materials and structural frameworks for complex dental restorative/regenerative procedures has always remained a multi-criteria optimization challenge. In this regard, 3D printing has long been known to be a potent tool for various tissue regenerative applications, however, the preparation of biocompatible, biodegradable, and stable inks is yet to be explored and revolutionized for overall performance improvisation. The review reports the currently employed manufacturing processes for the development of engineered self-supporting, easily processable, and cost-effective 3D constructs with target-specific tuneable mechanics, bioactivity, and degradability aspects in the oral cavity for their potential use in numerous dental applications ranging from soft pulp tissues to hard alveolar bone tissues. A hybrid synergistic approach, comprising of development of multi-layered, structurally stable, composite building blocks with desired physicomechanical performance and bioactivity presents an optimal solution to circumvent the major limitations and develop new-age advanced dental restorations and implants. Further, the review summarizes some manufacturing perspectives which may inspire the readers to design appropriate structures for clinical trials so as to pave the way for their routine applications in dentistry in the near future.
Collapse
Affiliation(s)
- Deepika Sharma
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Vijay Prakash Mathur
- Division of Pedodontics and Preventive Dentistry, Centre for Dental Education and Research, All India Institute of Medical Sciences, New Delhi, 110029, India
| | - Bhabani K Satapathy
- Department of Materials Science and Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.
| |
Collapse
|
42
|
Alqahtani MS, Al-Yousef HM, Alqahtani AS, Tabish Rehman M, AlAjmi MF, Almarfidi O, Amina M, Alshememry A, Syed R. Preparation, characterization, and in vitro-in silico biological activities of Jatropha pelargoniifolia extract loaded chitosan nanoparticles. Int J Pharm 2021; 606:120867. [PMID: 34242629 DOI: 10.1016/j.ijpharm.2021.120867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 07/02/2021] [Accepted: 07/03/2021] [Indexed: 12/14/2022]
Abstract
Jatropha pelargoniifolia (JP) is a medicinal plant that is widely used in traditional medicine owing to its broad range of therapeutic activities. Despite its promising pharmacological activities, the use of plant extracts has several limitations which can be overcome using pharmaceutical nanotechnology. The aim of this study was to systematically investigate the effect of nanoencapsulation on the antimicrobial and anticancer activities of JP extract. JP-loaded chitosan nanoparticles (JP-CSNPs) were prepared using the ionic gelation method and characterized in terms of size, polydispersity index, zeta potential, encapsulation efficiency, and release profile. Transmission electron microscopy was used to observe the morphology of the nanoparticles. The mean particle size, zeta potential, and encapsulation efficiency of optimized JP-CSNPs were 185.5 nm, 44 mV, and 78.5%, respectively. The release profile of the JP-CSNPs was mainly dependent on the pH of the surrounding medium, and the JP extract was released in a controlled manner over time. The total phenolic and flavonoid contents in JP extract were 191.8 mg GAE/g extract and 51.4 mg of QE/g extract, respectively. The results of a 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay showed that JP-CSNPs retained the antioxidant activity of unencapsulated JP extract. JP-CSNPs also exhibited higher antimicrobial activity against gram-positive bacteria than against gram-negative bacteria, and their minimum inhibitory concentration was 1.6-fold lower than that of blank nanoparticles, indicating the synergy between JP extract and nanoparticles. In vitro cytotoxicity studies using A549 human lung adenocarcinoma cells revealed that JP-CSNPs had a 2-fold lower half-maximal inhibitory concentration than free extract. Molecular docking analyses revealed that the active phytoconstituent of JP extract, linarin, binds strongly to the active sites of bacterial DNA gyrase B and human DNA topoisomerase IIα and thus, may inhibit their activities. Computational analysis results supported the in vitro finding that JP-CSNPs act as an anticancer and antimicrobial agent. Taken together, the results of this study highlighted the advantages of using CSNPs as a nanocarrier for herbal extracts, thus providing a potential strategy for improving plant-based therapeutics.
Collapse
Affiliation(s)
- Mohammed S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Hanan M Al-Yousef
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Ali S Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Md Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Mohamed F AlAjmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Omar Almarfidi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Musarat Amina
- Department of Pharmacognosy, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah Alshememry
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, PO Box 2457, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
43
|
Tien ND, Lyngstadaas SP, Mano JF, Blaker JJ, Haugen HJ. Recent Developments in Chitosan-Based Micro/Nanofibers for Sustainable Food Packaging, Smart Textiles, Cosmeceuticals, and Biomedical Applications. Molecules 2021; 26:2683. [PMID: 34063713 PMCID: PMC8125268 DOI: 10.3390/molecules26092683] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 02/07/2023] Open
Abstract
Chitosan has many useful intrinsic properties (e.g., non-toxicity, antibacterial properties, and biodegradability) and can be processed into high-surface-area nanofiber constructs for a broad range of sustainable research and commercial applications. These nanofibers can be further functionalized with bioactive agents. In the food industry, for example, edible films can be formed from chitosan-based composite fibers filled with nanoparticles, exhibiting excellent antioxidant and antimicrobial properties for a variety of products. Processing 'pure' chitosan into nanofibers can be challenging due to its cationic nature and high crystallinity; therefore, chitosan is often modified or blended with other materials to improve its processability and tailor its performance to specific needs. Chitosan can be blended with a variety of natural and synthetic polymers and processed into fibers while maintaining many of its intrinsic properties that are important for textile, cosmeceutical, and biomedical applications. The abundance of amine groups in the chemical structure of chitosan allows for facile modification (e.g., into soluble derivatives) and the binding of negatively charged domains. In particular, high-surface-area chitosan nanofibers are effective in binding negatively charged biomolecules. Recent developments of chitosan-based nanofibers with biological activities for various applications in biomedical, food packaging, and textiles are discussed herein.
Collapse
Affiliation(s)
- Nguyen D. Tien
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (N.D.T.); (S.P.L.)
| | - Ståle Petter Lyngstadaas
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (N.D.T.); (S.P.L.)
| | - João F. Mano
- CICECO–Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Jonathan James Blaker
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (N.D.T.); (S.P.L.)
- Department of Materials and Henry Royce Institute, The University of Manchester, Manchester M13 9PL, UK
| | - Håvard J. Haugen
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, 0317 Oslo, Norway; (N.D.T.); (S.P.L.)
| |
Collapse
|
44
|
Hivechi A, Milan PB, Modabberi K, Amoupour M, Ebrahimzadeh K, Gholipour AR, Sedighi F, Amini N, Bahrami SH, Rezapour A, Hamidi M, Delattre C. Synthesis and Characterization of Exopolysaccharide Encapsulated PCL/Gelatin Skin Substitute for Full-Thickness Wound Regeneration. Polymers (Basel) 2021; 13:polym13060854. [PMID: 33802198 PMCID: PMC8000589 DOI: 10.3390/polym13060854] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 12/15/2022] Open
Abstract
Loss of skin integrity can lead to serious problems and even death. In this study, for the first time, the effect of exopolysaccharide (EPS) produced by cold-adapted yeast R. mucilaginosa sp. GUMS16 on a full-thickness wound in rats was evaluated. The GUMS16 strain's EPS was precipitated by adding cold ethanol and then lyophilized. Afterward, the EPS with polycaprolactone (PCL) and gelatin was fabricated into nanofibers with two single-needle and double-needle procedures. The rats' full-thickness wounds were treated with nanofibers and Hematoxylin and eosin (H&E) and Masson's Trichrome staining was done for studying the wound healing in rats. Obtained results from SEM, DLS, FTIR, and TGA showed that EPS has a carbohydrate chemical structure with an average diameter of 40 nm. Cell viability assessments showed that the 2% EPS loaded sample exhibits the highest cell activity. Moreover, in vivo implantation of nanofiber webs on the full-thickness wound on rat models displayed a faster healing rate when EPS was loaded into a nanofiber. These results suggest that the produced EPS can be used for skin tissue engineering applications.
Collapse
Affiliation(s)
- Ahmad Hivechi
- Department of Textile Engineering, School of Materials and Advanced Processing, Amirkabir University of Technology, Tehran 1591639675, Iran; (A.H.); (S.H.B.)
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1591639675, Iran; (P.B.M.); (N.A.)
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 1591639675, Iran
| | - Khashayar Modabberi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Moein Amoupour
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran 1591639675, Iran;
| | - Kaveh Ebrahimzadeh
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1591639675, Iran;
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran 1591639675, Iran
| | - Amir Reza Gholipour
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Faezeh Sedighi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
| | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran 1591639675, Iran; (P.B.M.); (N.A.)
| | - S. Hajir Bahrami
- Department of Textile Engineering, School of Materials and Advanced Processing, Amirkabir University of Technology, Tehran 1591639675, Iran; (A.H.); (S.H.B.)
| | - Alireza Rezapour
- Department of Tissue Engineering, School of Medicine, Qom University of Medical Sciences, Qom 3716993456, Iran;
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht 4477166595, Iran; (K.M.); (A.R.G.); (F.S.)
- Correspondence: (M.H.); (C.D.); Tel.: +32-26-50-3681 (M.H.); +33-(0)4-73-40-7423 (C.D.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France
- Institut Universitaire de France (IUF), 1 Rue Descartes, 75005 Paris, France
- Correspondence: (M.H.); (C.D.); Tel.: +32-26-50-3681 (M.H.); +33-(0)4-73-40-7423 (C.D.)
| |
Collapse
|