1
|
Liu W, Nie F, Jiang H, Zhao Y, Zhang Y, Zhang Z, Zhang J, Xu J, Guo Y. Preparation of pH-Sensitive Polysaccharide-Small Molecule Nanoparticles and Their Applications for Tumor Chemo- and Immunotherapy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68437-68452. [PMID: 39586061 DOI: 10.1021/acsami.4c16504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Hydrophobic chemotherapy drugs face significant challenges in cancer treatment, including low bioavailability, unavoidable toxic side effects, and the development of drug resistance. To address these issues, a multifunctional nanoplatform was developed for cancer therapy, aimed at achieving effective drug delivery and enhancing antitumor efficacy. Poria cocos polysaccharide (PCP), a natural polymer known for its immunomodulatory properties, was utilized as an immunoreactive vector for drug delivery after being cross-linked with 1,4-phenylenebisboronic acid (BDBA). Subsequently, a small-molecule chemotherapy drug, esculetin (EL), was confirmed through density functional theory (DFT) simulations to be encapsulated within the PCP-BDBA nanoparticles via weak interactions. The results demonstrated that the synthesized nanoparticles were spherical, with an average particle size of 162.0 nm. In addition to exhibiting excellent stability, the nanoparticles also displayed pH-responsive drug release properties. In vivo experiments indicated that EL@PCP-BDBA NPs exhibited antitumor effects. Furthermore, EL@PCP-BDBA NPs showed superior in vitro antitumor activity compared to EL at the cellular level. Additionally, EL@PCP-BDBA NPs were found to increase intracellular reactive oxygen species (ROS) levels, induce cell apoptosis, and suppress cell migration to combat cancer. Meanwhile, EL@PCP-BDBA NPs enhanced immune function in vivo. In summary, this study developed a nano-pharmaceutical that combined chemotherapy and immunotherapy functions, which was considered a promising tool for cancer therapy.
Collapse
Affiliation(s)
- Wenhui Liu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Fan Nie
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Haojing Jiang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yinan Zhao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yan Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Zheng Zhang
- Tianjin Stomatological Hospital, School of Medicine, Nankai University, Tianjin 300071, People's Republic of China
- Tianjin Key Laboratory of Oral and Maxillofacial Function Reconstruction, Tianjin 300041, People's Republic of China
| | - Jie Zhang
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang 832003, People's Republic of China
| | - Jing Xu
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| | - Yuanqiang Guo
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, People's Republic of China
| |
Collapse
|
2
|
Xu C, Zhang Y, Li H, Zhang Z, Sheng W, Zhang S, Li P, Zhang X, Li X, Lin H, Duan H, Guan S, Wang L. Carboxymethylated yeast β-glucan: Biological activity screening in zebrafish, sprayable hydrogel preparation, and wound healing study in diabetic mice. Int J Biol Macromol 2024; 285:138178. [PMID: 39615714 DOI: 10.1016/j.ijbiomac.2024.138178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/15/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
Yeast β-glucan exhibits dramatic potential as wound healing regent owing to its various biological properties including immunomodulatory, anti-inflammatory, and antioxidant. But, the poor water solubility of yeast β-glucan limits its application. In this study, some carboxymethylated yeast β-glucans (CMGs) with different substitution degree was prepared. The effect of substitution degree on biological activities of carboxymethylated yeast β-glucan was investigated using zebrafish model. CMG3 with substitution degree 0.55 showed anti-inflammatory, antioxidant, and immunomodulatory activities in zebrafish. CMG3 also showed potential ability to promote angiogenesis and caudal fin regeneration. The cytotoxicity of CMG3 was investigated on L929 cells and the effect of CMG3 on cell migration was studied by scratch test. The hemolysis ratio of CMG3 was determined, and the in vitro antioxidant activity was studied. Next, CMG3 was used to prepare a sprayable hydrogel through a simple method, and the wound healing ability was studied using a streptozotocin-induced diabetic mice model. The results indicated that CMG3-based sprayable hydrogel could accelerate wound healing in a diabetic mice and influence the expression of biomarkers related to inflammatory, macrophage polarization, and angiogenesis.
Collapse
Affiliation(s)
- Chunhua Xu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Yongchun Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hui Li
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Zhihan Zhang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenlong Sheng
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Shanshan Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Peihai Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xuanming Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Xiaobin Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China
| | - Houwen Lin
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China; Research Center for Marine Drugs, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hongdong Duan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Shibing Guan
- Department of Hand and Foot Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China.
| | - Lizhen Wang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250103, Shandong Province, China.
| |
Collapse
|
3
|
Deng L, Huang G. Preparation, structure and application of polysaccharides from Poria cocos. RSC Adv 2024; 14:31008-31020. [PMID: 39351410 PMCID: PMC11440477 DOI: 10.1039/d4ra04005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Poria cocos polysaccharides (PCPs) are fungal polysaccharides derived from the traditional Chinese medicine Poria cocos. They are considered an important active ingredient for their pharmacological activity. Herein, the extraction, separation and purification, structure, and application of PCPs are reviewed. Additional research is necessary to fully understand the advanced structure of PCPs, which has implications for their structure-activity relationship. Their application mostly involves the medical industry, with less involvement in other fields. This article highlights the current research status on PCPs in the above-mentioned areas and some problems that need to be solved in future research. Additionally, it points the way for further studies on PCPs in the hopes that they will be more widely and realistically used in various industries.
Collapse
Affiliation(s)
- Laiqing Deng
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Normal University Chongqing 401331 China
| |
Collapse
|
4
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
5
|
Sun M, Yao L, Yu Q, Duan Y, Huang J, Lyu T, Yu N, Peng D, Chen W, Wang Y, Wang L, Zhang Y. Screening of Poria cocos polysaccharide with immunomodulatory activity and its activation effects on TLR4/MD2/NF-κB pathway. Int J Biol Macromol 2024; 273:132931. [PMID: 38942665 DOI: 10.1016/j.ijbiomac.2024.132931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/30/2024]
Abstract
PCP-W1, the Poria cocos polysaccharide with the strong immunomodulatory activity, was isolated through column chromatography and screened for in vitro immune activity in RAW 264.7 cells in this study. The structure analysis results revealed that the PCP-W1 were composed of galactose, glucose, fucose and mannose in a molar percentage of 35.87: 28.56: 21.77: 13.64. And it exhibited a random coil and branched conformational features with a molecular weight of 18.38 kDa. The main chain consisted of residues→3)-β-D-Glcp-(1 → 3,6)-β-D-Glcp-(1 → 3)-β-D-Glcp-(1 → 6)-β-D-Glcp-(1 → 6)-α-D-Galp-(1 → 6)-α-D-Galp-(1 → 2,6)-α-D-Galp-(1→6)-α-D-Galp-(1 → 6)-α-D-Galp-(1 → , while branching occurred at β-D-Glcp-(1→, α-D-Manp-(1→, and α-L-Fucp-(1 → 3)- α-L-Fucp-(1→. The pharmacodynamic studies demonstrated that PCP-W1 activated the release of NO, IL-6, IL-β, TNF-α, CD86, and ROS to induce polarization of RAW 264.7 murine macrophages towards M1-type through modulation of the TLR4/MD2/NF-κB pathway. The molecular docking results showed that PCP-W1 could primarily dock onto the hydrophobic binding site of TLR4/MD2 complex via its galactose chain. Furthermore, molecular dynamics simulation displayed stable modeling for TLR4-MD2-PCP-W1 complex. Overall, we screened the most immunoactive components of the polysaccharide, analyzed its structure, demonstrated its impact on TLR4/MD2/NF-kB pathway, and studied the interaction between TLR4/MD2 and the polysaccharide fragments. These results provide further support for the structure-activity relationship study of the immunomodulatory effects of Poria cocos polysaccharide.
Collapse
Affiliation(s)
- Mingjie Sun
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China
| | - Qimeng Yu
- Institute of Drug Development & Chemical Biology, Zhejiang University of Technology, Hangzhou, 310014 Zhejiang, China
| | - Yuting Duan
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Jiajing Huang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Tingting Lyu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China
| | - Yanyan Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China; Institute of Conservation and Development of Traditional Chinese Medicine Resources, Hefei 230012, Anhui, China.
| | - Lei Wang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China; Anhui Province Key Laboratory of Chinese Medicinal Formula, Hefei 230012, Anhui, China.
| | - Yue Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, Anhui, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei 230012, Anhui, China.
| |
Collapse
|
6
|
Bai Y, Ning N, Zhao J, Chen G, Du Y, Huang S, Jiang X, Feng X, Feng Y, Nan Y, Yuan L. Explore the mechanism of Astragalus membranaceus and Poria cocos drug pair in improving immunity based on network pharmacology. Medicine (Baltimore) 2024; 103:e38531. [PMID: 38905394 PMCID: PMC11191921 DOI: 10.1097/md.0000000000038531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/17/2024] [Indexed: 06/23/2024] Open
Abstract
The aim of this study was to investigate the key targets and molecular mechanisms of the drug pair Astragalus membranaceus and Poria cocos (HFDP) in the treatment of immunity. We utilized network pharmacology, molecular docking, and immune infiltration techniques in conjunction with data from the GEO database. Previous clinical studies have shown that HFDP has a positive impact on immune function. We first identified the active ingredients and targets of HFDP from the Traditional Chinese Medicine Systems Pharmacology database and the Swiss Target Prediction database, respectively. Next, we retrieved the differentially expressed genes (DEGs) related to immunity from the GEO databases. The intersection targets of the drugs and diseases were then analyzed using the STRING database for protein-protein interaction (PPI) network analysis, and the core targets were determined through topological analysis. Finally, the intersection genes were further analyzed using the DAVID database for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. Subsequently, by analyzing the expression and prognostic survival of 12 core targets, 5 core target genes were identified, and molecular docking between the hub genes and immunity was performed. Finally, we used the CIBERSORT algorithm to analyze the immune infiltration of immunity genes In this study, 34 effective ingredients of HFDP, 530 target genes, and 568 differential genes were identified. GO and KEGG analysis showed that the intersection genes of HFDP targets and immunity-related genes were mainly related to complement and coagulation cascades, cytokine receptors, and retinol metabolism pathways. The molecular docking results showed that the 5 core genes had obvious affinity for the active ingredients of HFDP, which could be used as potential targets to improve the immunity of HFDP. Our findings suggest that HFDP is characterized by "multiple components, multiple targets, and multiple pathways" in regulating immunity. It may play an essential role in regulating immunity by regulating the expression and polymorphism of the central target genes ESR1, JUN, CYP3A4, CYP2C9, and SERPINE1.
Collapse
Affiliation(s)
- Yuting Bai
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Jianjun Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Xilong Jiang
- Ningxia Chinese Medicine Research Center, Yinchuan, China
| | - Xuelan Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yuanyuan Feng
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Hui Ethnic Medicine Modernization of Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
7
|
Hu H, Sun W, Zhang L, Zhang Y, Kuang T, Qu D, Lian S, Hu S, Cheng M, Xu Y, Liu S, Qian Y, Lu Y, He L, Cheng Y, Si H. Carboxymethylated Abrus cantoniensis polysaccharide prevents CTX-induced immunosuppression and intestinal damage by regulating intestinal flora and butyric acid content. Int J Biol Macromol 2024; 261:129590. [PMID: 38266859 DOI: 10.1016/j.ijbiomac.2024.129590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/23/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
As a Chinese folk health product, Abrus cantoniensis exhibits good immunomodulatory activity because of its polysaccharide components (ACP), and carboxymethylation of polysaccharides can often further improve the biological activity of polysaccharides. In this study, we explored the impact of prophylactic administration of carboxymethylated Abrus cantoniensis polysaccharide (CM-ACP) on immunosuppression and intestinal damage induced by cyclophosphamide (CTX) in mice. Our findings demonstrated that CM-ACP exhibited a more potent immunomodulatory activity compared to ACP. Additionally, CM-ACP effectively enhanced the abundance of short-chain fatty acid (SCFA)-producing bacteria in immunosuppressed mice and regulated the gene expression of STAT6 and STAT3 mediated pathway signals. In order to further explore the relationship among polysaccharides, intestinal immunity and intestinal flora, we performed a pseudo-sterile mouse validation experiment and fecal microbiota transplantation (FMT) experiment. The findings suggest that CM-FMT and butyrate attenuate CTX-induced immunosuppression and intestinal injury. CM-FMT and butyrate show superior immunomodulatory ability, and may effectively regulate intestinal cell metabolism and repair the damaged intestine by activating STAT6 and STAT3-mediated pathways. These findings offer new insights into the mechanisms by which CM-ACP functions as functional food or drug, facilitating immune response regulation and maintaining intestinal health.
Collapse
Affiliation(s)
- Hongjie Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Wenjing Sun
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, College of Biology & Pharmacy, Yulin Normal University, No. 1303 Jiaoyu East Road, Yulin, 537000, Guangxi, China
| | - Lifang Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yuan Zhang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Tiantian Kuang
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Dongshuai Qu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shuaitao Lian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Shanshan Hu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Ming Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yanping Xu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Song Liu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yajing Qian
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yujie Lu
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Lingzhi He
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Yumeng Cheng
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China
| | - Hongbin Si
- College of Animal Science and Technology, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Nanning 530004, China.
| |
Collapse
|
8
|
Ng CYJ, Lai NPY, Ng WM, Siah KTH, Gan RY, Zhong LLD. Chemical structures, extraction and analysis technologies, and bioactivities of edible fungal polysaccharides from Poria cocos: An updated review. Int J Biol Macromol 2024; 261:129555. [PMID: 38278384 DOI: 10.1016/j.ijbiomac.2024.129555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/02/2024] [Accepted: 01/15/2024] [Indexed: 01/28/2024]
Abstract
Poria cocos is a popular medicinal food. Polysaccharides are the key component of Poria cocos, forming 70-90 % of the dry sclerotia mass. Recent studies indicate that Poria cocos polysaccharides (PCP-Cs) have multiple beneficial functions and applications. A literature search was conducted using the Web of Science Core Collection and PubMed databases. For this review, we provided an updated research progress in chemical structures, various extraction and analysis technologies, bioactivities of PCP-Cs, and insights into the directions for future research. The main polysaccharides identified in Poria cocos are water-soluble polysaccharides and acidic polysaccharides. Hot water, alkali, supercritical fluid, ultrasonic, enzyme, and deep eutectic solvent-based methods are the most common methods for PCP-Cs extraction. Technologies such as near-infrared spectroscopy, high-performance liquid chromatography, and ultraviolet-visible spectrophotometry, are commonly used to evaluate the qualities of PCP-Cs. In addition, PCP-Cs have antioxidant, immunomodulatory, neuroregulatory, anticancer, hepatoprotective, and gut microbiota regulatory properties. Future research is needed to focus on scaling up extraction, enhancing quality control, elucidating mechanisms of bioactivities, and the utilisation of PCP-Cs in food industries. Overall, Poria cocos is a good source of edible fungi polysaccharides, which can be developed into functional foods with potential health benefits.
Collapse
Affiliation(s)
- Chester Yan Jie Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Nicole Poh Yee Lai
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Wen Min Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| | - Kewin Tien Ho Siah
- Yong Loo Lin School of Medicine, National University of Singapore, 10 Medical Drive, Singapore 117597, Singapore; Division of Gastroenterology and Hepatology, University Medicine Cluster, National University Health System, Singapore.
| | - Ren-You Gan
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 31 Biopolis Way, Singapore 138669, Singapore; Department of Food Science and Technology, Faculty of Science, National University of Singapore, 2 Science Drive 2, Singapore 117542, Singapore.
| | - Linda L D Zhong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore.
| |
Collapse
|
9
|
Liu C, Zhang L, Zhang J, Wang M, You S, Su R, Qi W. Rational design of antibodies and development of a novel method for (1-3)-β-D glucan detection as an alternative to Limulus amebocyte lysate assay. Front Cell Infect Microbiol 2024; 14:1322264. [PMID: 38328671 PMCID: PMC10847287 DOI: 10.3389/fcimb.2024.1322264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/02/2024] [Indexed: 02/09/2024] Open
Abstract
With advances in medicine, increasing medical interventions have increased the risk of invasive fungal disease development. (1-3)-β-D glucan (BDG) is a common fungal biomarker in serological tests. However, the scarcity of Limulus resources for BDG detection poses a challenge. This study addresses the need for an alternative to Limulus amebocyte lysate by using BDG mutant antibody for chemiluminescence detection. The wild-type BDG antibody was obtained by immunizing rabbits. An optimal V52HI/N34L Y mutant antibody, which has increased 3.7-fold of the testing efficiency compared to the wild-type antibody, was first achieved by mutating "hot-spot" residues that contribute to strong non-covalent bonds, as determined by alanine scanning and molecular dynamics simulation. The mutant was then applied to develop the magnetic particle chemiluminescence method. 574 clinical samples were tested using the developed method, with a cutoff value of 95 pg/mL set by Limulus amebocyte lysate. The receiver operating characteristic curve demonstrated an area under the curve of 0.905 (95% CI: 0.880-0.929). Chemiluminescence detected an antigen concentration of 89.98 pg/mL, exhibiting a sensitivity of 83.33% and specificity of 89.76%. In conclusion, the results showed a good agreement with Limulus amebocyte lysate and demonstrated the feasibility of using BDG mutant antibodies for invasive fungal disease diagnosis. The new method based on chemiluminescence for detecting BDG could shorten the sample-to-result time to approximately 30 min, rescue Limulus from being endangered and is resource efficient in terms of equipment and the non-use of a skilled technician.
Collapse
Affiliation(s)
- Chunlong Liu
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- R&D Department, Dynamiker Biotechnology (Tianjin) Co., Ltd, Tianjin, China
| | - Lin Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaxing Zhang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Mengfan Wang
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Shengping You
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
| | - Rongxin Su
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| | - Wei Qi
- Chemical Engineering Research Center, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin, China
- State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, China
| |
Collapse
|
10
|
Wang L, Mao J, Zhou Q, Deng Q, Zheng L, Shi J. A curcumin oral delivery system based on sodium caseinate and carboxymethylpachymaran nanocomposites. Int J Biol Macromol 2023; 253:126698. [PMID: 37678690 DOI: 10.1016/j.ijbiomac.2023.126698] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/09/2023]
Abstract
The food industry has paid lots of attentions to curcumin because of its potential bioactive qualities. However, its use is severely constrained by its low bioavailability, stability and water solubility. Herein, we created sodium caseinate and carboxymethylpachymaran (CMP) nanoparticles (SMCNPs) that were loaded with curcumin. The composite nanoparticles were spherical, as characterized by SEM and TEM, the fluorescence spectroscopy, FTIR and XRD research revealed that hydrogen bonding, hydrophobic interaction and electrostatic interaction were the main drivers behind the creation of the nanoparticles. The SMCNPs exhibited lower particle size, greater dispersion and higher encapsulation rate when the mass ratio of sodium caseinate to CMP was 3:5 (particle size of 166.8 nm, PDI of 0.15, and encapsulation efficiency of 88.07 %). The composite nanoparticles had good antioxidant activity, physical stability and sustained release effect on intestinal tract during the in vitro simulation experiments, successfully preventing the early release of curcumin into gastric fluid. Finally, cytotoxicity studies told that the prepared composite nanoparticles have good biocompatibility and can inhibit the growth of tumor cells (HT-29). In conclusion, using CMP and sodium caseinate as carriers in this study may open up a fresh, environmentally friendly, and long-lasting way to construct a bioactive material delivery system.
Collapse
Affiliation(s)
- Lan Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jin Mao
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qi Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Qianchun Deng
- Key Laboratory of Biology and Genetic Improvement of Oil Crop, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Lei Zheng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Jie Shi
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| |
Collapse
|
11
|
Zhao Y, Feng X, Zhang L, Huang W, Liu Y. Antitumor Activity of Carboxymethyl Pachymaran with Different Molecular Weights Based on Immunomodulatory and Gut Microbiota. Nutrients 2023; 15:4527. [PMID: 37960180 PMCID: PMC10648391 DOI: 10.3390/nu15214527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
Carboxymethyl pachymaran (CMP) was treated via high-temperature and cellulase hydrolysis to obtain HTCMP, HTEC-24, and HTEC-48. The chemical structure and in vivo antitumor activities of the four types of CMPs were investigated. Compared with CMP (787.9 kDa), the molecular weights of HTCMP, HTEC-24, and HTEC-48 were decreased to 429.8, 129.9, and 68.6 kDa, respectively. The viscosities and particle sizes of the CMPs could also decrease with the decline in the molecular weights. All the CMPs showed antitumor abilities, but HTEC-24 exhibited the best activity. In the animal study, when curing the spleen and thymus, CMPs displayed immunomodulatory effects by increasing the secretion of IFN-γ and IL2 in mice. The CMPs also exerted an antitumor ability by regulating the gut microbiota in tumor-bearing mice. Our results established a foundation to develop an antitumor drug with CMP.
Collapse
Affiliation(s)
- Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (W.H.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (W.H.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (W.H.)
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (Y.Z.); (L.Z.); (W.H.)
| |
Collapse
|
12
|
Yue S, Feng X, Cai Y, Ibrahim SA, Liu Y, Huang W. Regulation of Tumor Apoptosis of Poriae cutis-Derived Lanostane Triterpenes by AKT/PI3K and MAPK Signaling Pathways In Vitro. Nutrients 2023; 15:4360. [PMID: 37892435 PMCID: PMC10610537 DOI: 10.3390/nu15204360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Poria cocos is traditionally used as both food and medicine. Triterpenoids in Poria cocos have a wide range of pharmacological activities, such as diuretic, sedative and tonic properties. In this study, the anti-tumor activities of poricoic acid A (PAA) and poricoic acid B (PAB), purified by high-speed counter-current chromatography, as well as their mechanisms and signaling pathways, were investigated using a HepG2 cell model. After treatment with PAA and PAB on HepG2 cells, the apoptosis was obviously increased (p < 0.05), and the cell cycle arrested in the G2/M phase. Studies showed that PAA and PAB can also inhibit the occurrence and development of tumor cells by stimulating the generation of ROS in tumor cells and inhibiting tumor migration and invasion. Combined Polymerase Chain Reaction and computer simulation of molecular docking were employed to explore the mechanism of tumor proliferation inhibition by PAA and PAB. By interfering with phosphatidylinositol-3-kinase/protein kinase B, Mitogen-activated protein kinases and p53 signaling pathways; and further affecting the expression of downstream caspases; matrix metalloproteinase family, cyclin-dependent kinase -cyclin, Intercellular adhesion molecules-1, Vascular Cell Adhesion Molecule-1 and Cyclooxygenase -2, may be responsible for their anti-tumor activity. Overall, the results suggested that PAA and PAB induced apoptosis, halted the cell cycle, and inhibited tumor migration and invasion through multi-pathway interactions, which may serve as a potential therapeutic agent against cancer.
Collapse
Affiliation(s)
- Shuai Yue
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Yousheng Cai
- School of Pharmaceutical Sciences, Wuhan University, Wuhan 430071, China;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
13
|
Bai C, Su F, Zhang W, Kuang H. A Systematic Review on the Research Progress on Polysaccharides from Fungal Traditional Chinese Medicine. Molecules 2023; 28:6816. [PMID: 37836659 PMCID: PMC10574063 DOI: 10.3390/molecules28196816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
Traditional Chinese medicine (TCM) is a class of natural drugs with multiple components and significant therapeutic effects through multiple targets. It also originates from a wide range of sources containing plants, animals and minerals, and among them, plant-based Chinese medicine also includes fungi. Fungal traditional Chinese medicine is a medicinal resource with a long history and widespread application in China. Accumulating evidence confirms that polysaccharide is the main pharmacodynamic material on which fungal TCM is based. The purpose of the current systematic review is to summarize the extraction, isolation, structural identification, biological functions, quality control and medicinal and edible applications of polysaccharides from fungal TCM in the past three years. This paper will supplement and deepen the understanding and application of polysaccharides from fungal TCM, and propose some valuable insights for further research and development of drugs and functional foods.
Collapse
Affiliation(s)
| | | | | | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.B.); (F.S.); (W.Z.)
| |
Collapse
|
14
|
Chen Z, Zhao Y, Feng X, Zhang L, Ibrahim SA, Huang W, Liu Y. Effects of degradation on the physicochemical and antioxidant properties of carboxymethyl pachymaran. Int J Biol Macromol 2023:125560. [PMID: 37364805 DOI: 10.1016/j.ijbiomac.2023.125560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/01/2023] [Accepted: 06/23/2023] [Indexed: 06/28/2023]
Abstract
Poria cocos (Schw.) Wolf is a well-known edible and medicinal fungus. The polysaccharide in the sclerotium of P. cocos was extracted and prepared into carboxymethyl pachymaran (CMP). Three different degradation treatments including high temperature (HT), high pressure (HP) and gamma irradiation (GI) were used to process CMP. The changes in physicochemical properties and antioxidant activities of CMP were then comparatively investigated. We found that the molecular weights of HT-CMP, HP-CMP, and GI-CMP decreased from 787.9 kDa to 429.8, 569.5 and 6.0 kDa, respectively. Degradation treatments had no effect on the main chains of →3-β-D-Glcp-(1 → while changed the branched sugar residues. The polysaccharide chains of CMP were depolymerized after high pressure and gamma irradiation treatments. The three degradation methods improved the stability of CMP solution while decreased the thermal stability of CMP. In addition, we found that the GI-CMP with lowest molecular weight had the best antioxidant activity. Our results suggest that gamma irradiation treatment could degrade CMP as functional foods with strong antioxidant activity.
Collapse
Affiliation(s)
- Zhaoxi Chen
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Yalin Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, United States
| | - Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Salam A Ibrahim
- Department of Family and Consumer Sciences, North Carolina A&T State University, 171 Carver Hall, Greensboro, NC 27411, United States
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Key Laboratory of Environment Correlative Dietology, Ministry of Education, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
The differences between the water- and alkaline-soluble Poria cocos polysaccharide: A review. Int J Biol Macromol 2023; 235:123925. [PMID: 36871682 DOI: 10.1016/j.ijbiomac.2023.123925] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
Poria cocos (PC) refers to a fungal species which is also known as "Fuling" in China. For >2000 years, PC has demonstrated its therapeutic values as a kind of traditional medicine. It is believed that the various biological benefits created by PCs highly rely on the Poria cocos polysaccharide (PCP). This review recapitulates the recent progress made in PCP in four aspects: i) the methods of extraction, separation, and purification, ii) structural characterization and identification, iii) the related bioactivities and mechanism of action, and iv) structure-activity relationships. Through discussion about the objective as mentioned above, it can be found out that PCP is categorized into water-soluble polysaccharide (WPCP) and alkaline-soluble polysaccharide (APCP), which are totally different in structure and bioactivity. The structures of WPCP are multiplicity whose backbone can be (1,6)-α-galactan and (1,3)-β-mannoglucan etc. to perform various bioactivities including anti-tumor effect, anti-depressant effect, anti-Alzheimer effect, anti-atherosclerosis effect, hepatoprotection etc. The structures of APCP are much more single with backbone of (1,3)-β-D-glucan and the studies of activity concentrate on anti-tumor effect, anti-inflammatory effect and immunomodulation. Besides, the future opportunities of WPCP are primary structure identification. For APCP, scholars can focus on the conformation of polysaccharide and its relationship with activity.
Collapse
|
16
|
Liu D, Wang SY, Wang GN, Zheng LH, Sun Y, Liu L, Bao YL. Structural characterization and immunoregulatory activity of a neutral polysaccharide from the roots of Apocynum venetum L. Int J Biol Macromol 2022; 222:90-100. [PMID: 36165870 DOI: 10.1016/j.ijbiomac.2022.09.158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/20/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022]
Abstract
The structural characteristics and immunoregulatory activities of neutral heteropolysaccharide (AVRP-N) separated from the roots of Apocynum venetum L. were extensively investigated. The results showed that the weight average molecular mass (Mw) of AVRP-N was 6.430 × 103 Da. Moreover, the backbone is composed of natural acetylated (1 → 4)-β-D-Man and (1 → 5)-α-L-Ara domains. The mannan is composed of →4)-β-D-Manp-(1→, →4)-β-D-Glcp-(1→, and the terminal group α-D-Galp-(1→ attached to →4,6)-β-D-Manp-(1→ at O-6. Araban is composed of →5)-α-L-Araf-(1→; the terminal group α-L-Araf-(1→attached to→2,3,5)-α-L-Araf-(1→ at O-2, O-3 and →3,5)-α-L-Araf-(1→ at O-3. In addition, the senior structure shows that AVRP-N has a triple-helix conformation. Furthermore, AVRP-N exhibited immunomodulatory effects, which could significantly regulate the proliferation of mouse splenic lymphocytes by enhancing the secretion of the cytokines (IFN-γ, IL-2, IL-4, and IL-10). Our results provide new structural and immunoregulatory information for natural polysaccharides derived from Apocynum venetum L.
Collapse
Affiliation(s)
- Dan Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Shu-Yue Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Guan-Nan Wang
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Li-Hua Zheng
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Ying Sun
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Lei Liu
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| | - Yong-Li Bao
- National Engineering Laboratory for Druggable Gene and Protein Screening, Northeast Normal University, Changchun 130024, China.
| |
Collapse
|
17
|
Xu T, Zhang H, Wang S, Xiang Z, Kong H, Xue Q, He M, Yu X, Li Y, Sun D, Gao P, Cong Z. A review on the advances in the extraction methods and structure elucidation of Poria cocos polysaccharide and its pharmacological activities and drug carrier applications. Int J Biol Macromol 2022; 217:536-551. [PMID: 35843404 DOI: 10.1016/j.ijbiomac.2022.07.070] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/06/2022] [Accepted: 07/09/2022] [Indexed: 11/05/2022]
Abstract
Poria cocos polysaccharide (PCP) is one of the main active components of Poria cocos that is extensively used in the world. PCP can be divided into intro-polysaccharides and exopolysaccharides. PCP is mainly composed of glucose, galactose and mannose. There are many methods to exact PCP, and methods can affect its yield. PCP and its derivatives exhibit diverse biological functions such as antitumour, antioxidant, anti-inflammatory, immune-regulatory, hepatoprotective, etc. There is the potential application of PCP as drug carriers. The review provides a comprehensive summary of the latest extraction and purification methods of PCP, its chemistry, synthesis of PCP derivates, their pharmacological activities and their applications as drug carriers. This review provides comprehensive information on PCP, which can be used as the basis for further research on PCP and its derivates.
Collapse
Affiliation(s)
- Tianren Xu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongmeng Zhang
- Laboratory management office, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Shengguang Wang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zedong Xiang
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongwei Kong
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Qing Xue
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Mengyuan He
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xiaojun Yu
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yanan Li
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongjie Sun
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Peng Gao
- College of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Zhufeng Cong
- Shandong First Medical University Affiliated Shandong Tumor Hospital and Institute: Shandong Cancer Hospital and Institute, Jinan 250117, China.
| |
Collapse
|
18
|
Zhang L, Yin M, Feng X, Ibrahim SA, Liu Y, Huang W. Anti-Inflammatory Activity of Four Triterpenoids Isolated from Poriae Cutis. Foods 2021; 10:foods10123155. [PMID: 34945705 PMCID: PMC8700795 DOI: 10.3390/foods10123155] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/11/2021] [Accepted: 12/15/2021] [Indexed: 01/20/2023] Open
Abstract
In this study, triterpenoid compounds from Poriae Cutis were separated by high-speed countercurrent chromatography (HSCCC) and identified using ultra-high performance liquid chromatography quadrupole time-of-flight tandem mass spectrometry (UHPLC-QTOF-MS/MS) and nuclear magnetic resonance (NMR). The in vitro anti-inflammatory activities of the purified triterpenoids on RAW 264.7 cells were also investigated. Triterpenoids, poricoic acid B, poricoic acid A, dehydrotrametenolic acid, and dehydroeburicoic acid were obtained; their levels of purity were 90%, 92%, 93%, and 96%, respectively. The results indicated that poricoic acid B had higher anti-inflammatory activity than those of poricoic acid A by inhibiting the generation of NO in lipopolysaccharide (LPS)-induced RAW 264.7 cells. However, dehydrotrametenolic acid and dehydroeburicoic acid had no anti-inflammatory activity. In addition, the production of cytokines (TNF-α, IL-1β, and IL-6) in cells treated with poricoic acid B decreased in a dose-dependent manner in the concentration range from 10 to 40 μg/mL. The results provide evidence for the use of Poriae Cutis as a natural anti-inflammatory agent in medicines and functional foods.
Collapse
Affiliation(s)
- Lijia Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Mengzhou Yin
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Xi Feng
- Department of Nutrition, Food Science and Packaging, San Jose State University, San Jose, CA 95192, USA;
| | - Salam A. Ibrahim
- Department of Family and Consumer Sciences, North Carolina Agricultural and Technical State University, 171 Carver Hall, Greensboro, NC 27411, USA;
| | - Ying Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
| | - Wen Huang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; (L.Z.); (M.Y.); (Y.L.)
- Correspondence: ; Tel.: +86-136-5980-7072
| |
Collapse
|
19
|
Immunomodulatory Activity of Carboxymethyl Pachymaran on Immunosuppressed Mice Induced by Cyclophosphamide. Molecules 2021; 26:molecules26195733. [PMID: 34641277 PMCID: PMC8509999 DOI: 10.3390/molecules26195733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
The effects of immunomodulatory activity of two types of carboxymethyl pachymaran (CMP-1 and CMP-2) on cyclophosphamide (CTX)-induced mice were investigated. Both CMP-1 and CMP-2 were found to restore the splenomegaly and alleviate the spleen lesions and the mRNA expressions of TLR4, MyD88, p65 and NF-κB in spleen were also increased. CMP-1 and CMP-2 could enhance the immunity by increasing the levels of TNF-α, IL-2, IL-6, IFN-γ, Ig-A and Ig-G in serum. In addition, CMP-1 could increase the relative abundance of Bacteroidetes and reduce the relative richness of Firmicutes at the phylum level. CMP-1 and CMP-2 could reduce the relative abundance Erysipelatoclostridum at the genus level. CMP-1 and CMP-2 might enhance the immune function of immunosuppression mice by regulating the gene expression in the TLR4/NF-κB signaling pathway and changing the composition and abundance of the intestinal microbiota. The results suggested that CMP-1 and CMP-2 would be as potential immunomodulatory agents in functional foods.
Collapse
|