1
|
Monir M, Elsayed RE, Azzam RA, Madkour TM. Novel High-Performance Functionalized and Grafted Bio-Based Chitosan Adsorbents for the Efficient and Selective Removal of Toxic Heavy Metals from Contaminated Water. Polymers (Basel) 2024; 16:1718. [PMID: 38932067 PMCID: PMC11207307 DOI: 10.3390/polym16121718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Novel functionalized and/or grafted crosslinked chitosan adsorbents were synthesized and used to remove several toxic heavy metal ions such as nickel, lead, chromium, and cadmium ions from contaminated water. The chitosan biopolymer was functionalized by maleic anhydride (CS_MA) acting also as a crosslinking agent. Glutaraldehyde-crosslinked chitosan (CS_GA) grafted with poly(methyl methacrylate) (CS_MMA) was also synthesized. The synthesized adsorbents were characterized using a variety of analytical techniques such as SEM, TGA, and FTIR, which confirmed their chemical structures and morphology. The adsorption capacity of the adsorbents was analyzed under various conditions of contact time, adsorbent dose, initial concertation, temperature, and pH and evaluated against those of pure chitosan (CS) and the crosslinked chitosan(CS_GA). The ultimate removal conditions were 0.5 g/100 mL adsorbent dose, an initial metal ion concentration of 50 ppm, a temperature of 45 °C, and pH 9. CS_MMA had the highest removal percentages for all metal ions, ranging from 92% to 94%. The adsorption was demonstrated to fit a pseudo-first-order model that followed a Langmuir adsorption isotherm. The results highlight the capacity of the synthesized polymers to efficiently remove major toxic contaminants at low cost from contaminated water, present especially in low-income areas, without harming the environment.
Collapse
Affiliation(s)
- Mohammad Monir
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Cairo 11835, Egypt; (M.M.); (R.E.E.)
| | - Rasha E. Elsayed
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Cairo 11835, Egypt; (M.M.); (R.E.E.)
| | - Rasha A. Azzam
- Department of Chemistry, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Tarek M. Madkour
- Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, AUC Avenue, New Cairo, Cairo 11835, Egypt; (M.M.); (R.E.E.)
| |
Collapse
|
2
|
Hasanvand S, Ebrahimi B, Paimard G, Rouhi M, Hashami Z, Zibaei R, Roshandel Z, Mohammadi R. Optimization of Seleno-chitosan-phytic acid nanocomplex for efficient removal of patulin from apple juice. Food Chem 2024; 443:138576. [PMID: 38301556 DOI: 10.1016/j.foodchem.2024.138576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/03/2024]
Abstract
A novel and effective adsorbent known as Seleno-chitosan-phytic acid nanocomplex (Se-CS-PA) has been developed specifically for efficiently removing patulin (PAT) from a simulated juice solution. The synthesis of Se-CS-PA nanocomplex was confirmed through Fourier transform infrared (FT-IR), scanning electron microscopy (SEM), and energy dispersive X-Ray (EDX) analyses. Response surface methodology (RSM) was employed using central composite design (CCD) to examine the impact of four independent variables (PA concentration, amount of nano-complex, duration of interaction between PAT and nano-complex, and initial concentration of PAT) on the removal of PAT. PA concentration of 0.1 % with 2.1 g Se-CS-PA nanocomplex according to RSM polynomial equation and apple juice with 25 μg.L-1 PAT yielded a remarkable adsorption rate of 94.23 % and 87.52 % respectively after 7 h. The process of PAT adsorption was explained using the pseudo-first-order model (R2 = 0.8858) for the kinetic model and the Freundlich isotherm (R2 = 0.9988) for the isotherm model.
Collapse
Affiliation(s)
- Sara Hasanvand
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Behzad Ebrahimi
- Department of Food Science and Technology, Maragheh University of Medical Science, Maragheh, Iran
| | - Giti Paimard
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical Uni-versity, Wenzhou, Zhejiang 325027, China
| | - Milad Rouhi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Hashami
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Rezvan Zibaei
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Roshandel
- Students Research Committee, Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Reza Mohammadi
- Department of Food Science and Technology, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
3
|
Adeleke AO, Royahu CO, Ahmad A, Dele-Afolabi TT, Alshammari MB, Imteaz M. A novel oyster shell biocomposite for the efficient adsorptive removal of cadmium and lead from aqueous solution: Synthesis, process optimization, modelling and mechanism studies. PLoS One 2024; 19:e0294286. [PMID: 38386950 PMCID: PMC10883703 DOI: 10.1371/journal.pone.0294286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 10/29/2023] [Indexed: 02/24/2024] Open
Abstract
This study highlights the effectiveness of oyster shell biocomposite for the biosorption of Cd(II) and Pb(II) ions from an aqueous solution. The aim of this work was to modify a novel biocomposite derived from oyster shell for the adsorption of Cd(II) and Pb(II) ions from aqueous solution. The studied revealed the specific surface BET surface area was 9.1476 m2/g. The elemental dispersive x-ray analysis (EDS) indicated that C, O, Ag, Ca were the predominant elements on the surface of the biocomposite after which metals ions of Cd and Pb were noticed after adsorption. The Fourier transform Irradiation (FT-IR) revealed the presence of carboxyl and hydroxyl groups on the surface. The effect of process variables on the adsorption capacity of the modified biocomposite was examined using the central composite design (CCD) of the response surface methodology (RSM). The process variables which include pH, adsorbent dose, the initial concentration and temperature were the most effective parameters influencing the uptake capacity. The optimal process conditions of these parameters were found to be pH, 5.57, adsorbent dose, 2.53 g/L, initial concentration, 46.76 mg/L and temperature 28.48°C for the biosorption of Cd(II) and Pb(II) ions from aqueous solution at a desirability coefficient of 1. The analysis of variance (ANOVA) revealed a high coefficient of determination (R2 > 0.91) and low probability coefficients for the responses (P < 0.05) which indicated the validity and aptness of the model for the biosorption of the metal ions. Experimental isotherm data fitted better to the Langmuir model and the kinetic data fitted better to the pseudo-second-order model. Maximun Cd(II) and Pb(II) adsorption capacities of the oyster shell biocomposite were 97.54 and 78.99 mg/g respectively and was obtained at pH 5.56 and 28.48°C. This investigation has provided the possibility of the utilization of alternative biocomposite as a sustainable approach for the biosorption of heavy metal ions from the wastewater stream.
Collapse
Affiliation(s)
- Abdulrahman Oyekanmi Adeleke
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - C. O. Royahu
- Institute of Energy Infrastructure (IEI), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - Akil Ahmad
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Temitope T. Dele-Afolabi
- Institute of Power Engineering (IPE), Universiti Tenaga Nasional (UNITEN), Putrajaya Campus, Jalan IKRAM-UNITEN, Kajang, Selangor, Malaysia
| | - Mohammed B. Alshammari
- Chemistry Department, College of Sciences and Humanities, Prince Sattam bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Monzur Imteaz
- Department of Civil and Construction Engineering, Centre for Sustainable Infrastructure and Digital Construction, Swinburne University of Technology, Melbourne, Australia
| |
Collapse
|
4
|
Anvari S, Hosseini M, Jahanshahi M, Banisheykholeslami F. Design of chitosan/boehmite biocomposite for the removal of anionic and nonionic dyes from aqueous solutions: Adsorption isotherms, kinetics, and thermodynamics studies. Int J Biol Macromol 2024; 259:129219. [PMID: 38184037 DOI: 10.1016/j.ijbiomac.2024.129219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/08/2024]
Abstract
This study introduces a chitosan/boehmite biocomposite as an efficient adsorbent for removing anionic Congo Red (CR) and non-ionic Bromothymol Blue (BTB) from water. Boehmite nanoparticles were synthesized using the Sol-gel method and then attached to chitosan particles using sodium tripolyphosphate through co-precipitation method. Characterized through FTIR, FE-SEM, BET, and XRD, the biosorbent displayed structural integrity with optimized pH conditions of 3 for CR and 4 for BTB, achieving over 90 % adsorption within 30 min. Pseudo second order kinetics model and Langmuir isotherm revealed monolayer sorption with capacities of 64.93 mg/g for CR and 90.90 mg/g for BTB. Thermodynamics indicated a spontaneous and exothermic process, with physisorption as the primary mechanism. The biosorbent demonstrated excellent performance and recyclability over five cycles, highlighting its potential for eco-friendly dye removal in contaminated waters.
Collapse
Affiliation(s)
- Sina Anvari
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | - Morteza Hosseini
- Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran.
| | - Mohsen Jahanshahi
- Nanotechnology Research Institute, Department of Chemical Engineering, Babol Noshirvani University of Technology, Babol, Iran
| | | |
Collapse
|
5
|
Soltany P, Miralinaghi M, Pajoum Shariati F. Folic acid conjugated poly (Amidoamine) dendrimer grafted magnetic chitosan as a smart drug delivery platform for doxorubicin: In-vitro drug release and cytotoxicity studies. Int J Biol Macromol 2024; 257:127564. [PMID: 37865361 DOI: 10.1016/j.ijbiomac.2023.127564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/27/2023] [Accepted: 10/18/2023] [Indexed: 10/23/2023]
Abstract
This study reports the development of a magnetic and pH-responsive nanocarrier for targeted delivery and controlled release of doxorubicin (DOX). A multifunctional magnetic chitosan nanocomposite (FA-PAMAMG2-MCS) was fabricated by grafting poly(amidoamine) dendrimer and folic acid onto the MCS surface for active targeting. DOX was loaded into this core-shell bio-nanocomposite via adsorption. Structural and morphological characterization of the prepared nanomaterials was performed using XRD, FT-IR, VSM, TGA, BET, FE-SEM/EDX, and TEM techniques. Adsorption capacity of the FA-PAMAMG2-MCS was optimized by changing diverse parameters, such as pH, initial drug concentration, temperature, contact time, and adsorbent dosage. The maximum adsorption capacity for DOX was 102.85 mg g-1 at 298 K. The in-vitro drug release curve at pHs 5.6 and 7.4 manifested a faster drug release from the prepared nanocarrier in acidic environments and, conversely, a slower release in neutral environments over 48 h. The release kinetics followed Peppas-Sahlin models, showing non-Fickian behavior. Moreover, the in-vitro cytotoxicity studies against the human breast cancer (MDA-MB 231) cell line demonstrated the remarkable anticancer activity of the DOX@FA-PAMAMG2-MCS and declared its potency for nanomedicine applications. This multifunctional system could overcome limitations of conventional chemotherapeutic agents through pH-triggered drug release, enabling targeted cytotoxicity against cancer cells.
Collapse
Affiliation(s)
- Parva Soltany
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mahsasadat Miralinaghi
- Department of Chemistry, Faculty of Science, Varamin - Pishva Branch, Islamic Azad University, Varamin, Iran.
| | - Farshid Pajoum Shariati
- Department of Chemical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
6
|
Tee WT, Loh NYL, Hiew BYZ, Show PL, Hanson S, Gan S, Lee LY. Evaluation of adsorption performance and mechanisms of a highly effective 3D boron-doped graphene composite for amitriptyline pharmaceutical removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 344:118363. [PMID: 37413724 DOI: 10.1016/j.jenvman.2023.118363] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/25/2023] [Accepted: 06/07/2023] [Indexed: 07/08/2023]
Abstract
Three-dimensional heteroatom-doped graphene presents a state-of-the-art approach for effective remediation of pharmaceutical wastewater on account of its distinguished adsorption and physicochemical attributes. Amitriptyline is an emerging tricyclic antidepressant pollutant posing severe risks to living habitats through water supply and food chain. With ultra-large surface area and plentiful chemical functional groups, graphene oxide is a favorable adsorbent for decontaminating polluted water. Herein, a new boron-doped graphene oxide composite reinforced with carboxymethyl cellulose was successfully developed via solution-based synthesis. Characterization study revealed that the adsorbent was formed by graphene sheets intertwined into a porous network and engrafted with 13.37 at% of boron. The adsorbent has a zero charge at pH 6 and contained various chemical functional groups favoring the attachment of amitriptyline. It was also found that a mere 10 mg of adsorbent was able to achieve relatively high amitriptyline removal (89.31%) at 50 ppm solution concentration and 30 °C. The amitriptyline adsorption attained equilibrium within 60 min across solution concentrations ranging from 10 to 300 ppm. The kinetic and equilibrium of amitriptyline adsorption were well correlated to the pseudo-second-order and Langmuir models, respectively, portraying the highest Langmuir adsorption capacity of 737.4 mg/g. Notably, the predominant mechanism was chemisorption assisted by physisorption that contributed to the outstanding removal of amitriptyline. The saturated adsorbent was sufficiently regenerated using ethanol eluent. The results highlighted the impressive performance of the as-synthesized boron-doped adsorbent in treating amitriptyline-containing waste effluent.
Collapse
Affiliation(s)
- Wan Ting Tee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Nicholas Yung Li Loh
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Billie Yan Zhang Hiew
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, 62200 Putrajaya, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Chemical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Svenja Hanson
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China
| | - Suyin Gan
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia
| | - Lai Yee Lee
- Department of Chemical and Environmental Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|
7
|
Alyasi H, Mackey H, McKay G. Adsorption of Methyl Orange from Water Using Chitosan Bead-like Materials. Molecules 2023; 28:6561. [PMID: 37764337 PMCID: PMC10537054 DOI: 10.3390/molecules28186561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 09/29/2023] Open
Abstract
Natural product waste treatment and the removal of harmful dyes from water by adsorption are two of the crucial environmental issues at present. Traditional adsorbents are often not capable in removing detrimental dyes from wastewater due to their hydrophilic nature and because they form strong bonds with water molecules, and therefore they remain in the dissolved state in water. Consequently, new and effective sorbents are required to reduce the cost of wastewater treatment as well as to mitigate the health problems caused by water pollution contaminants. In this study, the adsorption behaviour of methyl orange, MO, dye on chitosan bead-like materials was investigated as a function of shaking time, contact time, adsorbent dosage, initial MO concentration, temperature and solution pH. The structural and chemical properties of chitosan bead-like materials were studied using several techniques including SEM, BET, XRD and FTIR. The adsorption process of methyl orange by chitosan bead materials was well described by the Langmuir isotherm model for the uptake capacity and followed by the pseudo-second-order kinetic model to describe the rate processes. Under the optimal conditions, the maximum removal rate (98.9%) and adsorption capacity (12.46 mg/g) of chitosan bead-like materials were higher than those of other previous reports; their removal rate for methyl orange was still up to 87.2% after three regenerative cycles. Hence, this chitosan bead-like materials are very promising materials for wastewater treatment.
Collapse
Affiliation(s)
| | | | - Gordon McKay
- Division of Sustainable Development, College of Science and Engineering, Hamad Bin Khalifa University, Education City, Qatar Foundation, Doha 24144, Qatar
| |
Collapse
|
8
|
Majhi K, Let M, Halder U, Chitikineni A, Varshney RK, Bandopadhyay R. Copper removal capability and genomic insight into the lifestyle of copper mine inhabiting Micrococcus yunnanensis GKSM13. ENVIRONMENTAL RESEARCH 2023; 223:115431. [PMID: 36754109 DOI: 10.1016/j.envres.2023.115431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Heavy metal pollution in mining areas is a serious environmental concern. The exploration of mine-inhabiting microbes, especially bacteria may use as an effective alternative for the remediation of mining hazards. A highly copper-tolerant strain GKSM13 was isolated from the soil of the Singhbhum copper mining area and characterized for significant copper (Cu) removal potential and tolerance to other heavy metals. The punctate, yellow-colored, coccoid strain GKSM13 was able to tolerate 500 mg L-1 Cu2+. Whole-genome sequencing identified strain GKSM13 as Micrococcus yunnanensis, which has a 2.44 Mb genome with 2176 protein-coding genes. The presence of putative Cu homeostasis genes and other heavy metal transporters/response regulators or transcription factors may responsible for multi-metal resistance. The maximum Cu2+ removal of 89.2% was achieved at a pH of 7.5, a temperature of 35.5 °C, and an initial Cu2+ ion concentration of 31.5 mg L-1. Alteration of the cell surface, deposition of Cu2+ in the bacterial cell, and the involvement of hydroxyl, carboxyl amide, and amine groups in Cu2+ removal were observed using microscopic and spectroscopic analysis. This study is the first to reveal a molecular-based approach for the multi-metal tolerance and copper homeostasis mechanism of M. yunnanensis GKSM13.
Collapse
Affiliation(s)
- Krishnendu Majhi
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India; Department of Botany, Ananda Chandra College, Jalpaiguri, 735101, India
| | - Moitri Let
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Urmi Halder
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India
| | - Annapurna Chitikineni
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India; State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Murdoch University, Murdoch, 6500, Australia
| | - Rajib Bandopadhyay
- Microbiology Section, Department of Botany, The University of Burdwan, Burdwan, West Bengal, 713104, India.
| |
Collapse
|
9
|
Khanniri E, Yousefi M, Mortazavian AM, Khorshidian N, Sohrabvandi S, Koushki MR, Esmaeili S. Biosorption of cadmium from aqueous solution by combination of microorganisms and chitosan: response surface methodology for optimization of removal conditions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:433-446. [PMID: 37035917 DOI: 10.1080/10934529.2023.2188023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/27/2022] [Accepted: 01/07/2023] [Indexed: 06/19/2023]
Abstract
The food-grade adsorbents of Saccharomyces cerevisiae (108 CFU/mL), Bifidobacterium longum (108 CFU/mL) and chitosan (1%w/v) alone or in combination were used for biosorption of cadmium (Cd) from aqueous solution. Among the tested adsorbents, combination of B. longum and chitosan had the highest efficiency. Therefore, biosorption process with B. longum/chitosan as the most efficient biosorbent was optimized by variables of pH (3-6), temperature (4-37 °C), contact time (5-180 min) and Cd concentrations (0.01-5 mg/L) using RSM. Twenty-seven tests were carried out and the data fitted to the second-order polynomial models. Results revealed that 99.11% of Cd was reduced within 180 min at concentration of 2.5 mg/L, pH 6 and temperature of 20.5 °C that were considered as the optimal conditions for Cd removal. The trend of isotherm was more fitted to the Langmuir model and maximum biosorption capacity was obtained about 3.61 mg/g. The pseudo-second-order fitted the biosorption kinetics for Cd ions. The B. longum/chitosan biosorbent exhibited the high affinity to Cd ion in the presence of coexisting metal ions. It could remove 81.18% of Cd from simulated gastrointestinal tract. Thus, B. longum/chitosan can have good potential as an effective adsorbent for Cd biosorption from aqueous solutions and human body.
Collapse
Affiliation(s)
- Elham Khanniri
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| | | | - Nasim Khorshidian
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Koushki
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeideh Esmaeili
- Department of Food Technology Research, Faculty of Nutrition Sciences and Food Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Recent Application Prospects of Chitosan Based Composites for the Metal Contaminants Wastewater Treatment. Polymers (Basel) 2023; 15:polym15061453. [PMID: 36987232 PMCID: PMC10057141 DOI: 10.3390/polym15061453] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
Heavy metals, known for their toxic nature and ability to accumulate and magnify in the food chain, are a major environmental concern. The use of environmentally friendly adsorbents, such as chitosan (CS)—a biodegradable cationic polysaccharide, has gained attention for removing heavy metals from water. This review discusses the physicochemical properties of CS and its composites and nanocomposites and their potential application in wastewater treatment.
Collapse
|
11
|
Mushtaq M, Arshad N, Hameed M, Munir A, Javed GA, Rehman A. Lead biosorption efficiency of Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779: A response surface based approach. Saudi J Biol Sci 2023; 30:103547. [PMID: 36698856 PMCID: PMC9868880 DOI: 10.1016/j.sjbs.2022.103547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/18/2022] [Accepted: 12/17/2022] [Indexed: 12/25/2022] Open
Abstract
Lead (Pb) is a substantial contaminant in the environment and a potent toxin for living organisms. Current study describes probiotic characteristics of Pb-biosorbing lactic acid bacteria (LAB), and response surface methodology (RSM) based optimization of physical conditions for maximum Pb biosorption. A total of 18 LAB, isolated from carnivore feces (n = 8) and human breast milk (n = 9), along with one reference strain Lactobacillus acidophilus ATCC4356 were included in the study. Pb biosorption was strain specific. Eight strains, demonstrating ≥ 70 % lead biosorption, were selected for further testing. The lactobacillus-Pb complex was found to be stable and strains had a negative surface charge. The strains displayed good probiotic properties with the survival rate of 71-90 % in simulated gastric environment, 36-69 % in intestinal condition (1.8 % bile salts) and 55-72 % hydrophobicity. On the basis of excellent probiotic ability, Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779 were selected for optimization of physical conditions of Pb biosorption through RSM. Maximum biosorption was observed at pH 6 in 60 min at a cell density of 1 g/L. L. brevis MZ384011 and L. brevis MW362779 are recommended for experimentation on Pb toxicity amelioration and safety evaluation in in-vivo setting.
Collapse
Affiliation(s)
- Maria Mushtaq
- Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan
| | - Najma Arshad
- Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan,Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), The University of Lahore, 54792, Pakistan,Corresponding author at: Institute of Zoology, University of the Punjab, Pakistan and Department of Zoology, Institute of Molecular Biology and Biotechnology (IMBB), Centre for Research in Molecular Medicine (CRIMM), The University of Lahore, Pakistan.
| | - Mamoona Hameed
- Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan
| | - Aneela Munir
- Institute of Zoology, University of the Punjab, 54590 Lahore, Pakistan
| | | | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics (MMG), University of the Punjab, 54590, Lahore, Pakistan
| |
Collapse
|
12
|
Effective remediation of lead(II) wastewater by Parkia speciosa pod biosorption: Box-Behnken design optimisation and adsorption performance evaluation. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
13
|
Anderson A, Anbarasu A, Pasupuleti RR, Manigandan S, Praveenkumar TR, Aravind Kumar J. Treatment of heavy metals containing wastewater using biodegradable adsorbents: A review of mechanism and future trends. CHEMOSPHERE 2022; 295:133724. [PMID: 35101432 DOI: 10.1016/j.chemosphere.2022.133724] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/16/2022] [Accepted: 01/20/2022] [Indexed: 05/27/2023]
Abstract
The direct disposal of industrial effluents into the aquatic system is considered as a significant environmental hazard in many countries. Because of poisonous chemicals, substantial volumes of effluent release, as well as the lack of adequate of conventional treatment methodologies, industrial effluent treatment is extremely difficult. Numerous researchers have been interested in adsorption technology for its high efficiency of pollutant removal, low cost, and abundantly available adsorbent. Various adsorbent materials, both natural and modified form, have been widely used for the removal of toxic contaminants from industrial effluent. This paper highlights recent advancements in multiple modification types to functionalize the adsorbent material, resulting in higher adsorption capacity on various toxic pollutants. This review provides an overview of the adsorption mechanism and parameters (pH, adsorbent dosage, initial concentration, temperature and interaction time), which influencing the removal efficiency of adsorbents. Furthermore, this review compiles the desorption study to recover the adsorbent and improve the cycle's financial viability. This review provides a concise overview of the future directions and outlook in the framework of adsorbent application for industrial wastewater treatment.
Collapse
Affiliation(s)
- A Anderson
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India
| | - A Anbarasu
- Department of Mechanical Engineering, Panimalar Engineering College, 600123, India
| | - Raghavendra Rao Pasupuleti
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Sekar Manigandan
- Department of Aeronautical Engineering, Sathyabama Institute of Science and Technology, Chennai, 119, India.
| | - T R Praveenkumar
- Department of Construction Technology and Management, Wollega University, Nekemte, Ethiopia.
| | - J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| |
Collapse
|
14
|
Synthesis of a novel EDTA-functionalized nanocomposite of Fe3O4-Eucalyptus camaldulensis green carbon fiber for selective separation of lead ions from synthetic wastewater: isotherm and kinetic studies. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02420-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Electrochemical Recovery to Overcome Direct Osmosis Concentrate-Bearing Lead: Optimization of Treatment Process via RSM-CCD. WATER 2021. [DOI: 10.3390/w13213136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The use of electrochemistry is a promising approach for the treatment of direct osmosis concentrate that contains a high concentration of organic pollutants and has high osmotic pressure, to achieve the safe discharge of effluent. This work addresses, for the first time, this major environmental challenge using perforated aluminum electrodes mounted in an electrocoagulation–flotation cell (PA-ECF). The design of the experiments, the modeling, and the optimization of the PA-ECF conditions for the treatment of DO concentrate rich in Pb were explored using a central composite design (CCD) under response surface methodology (RSM). Therefore, the CCD-RSM was employed to optimize and study the effect of the independent variables, namely electrolysis time (5.85 min to 116.15 min) and current intensity (0.09 A to 2.91 A) on Pb removal. Optimal values of the process parameters were determined as an electrolysis time of 77.65 min and a current intensity of 0.9 A. In addition to Pb removal (97.8%), energy consumption, electrode mass-consumed material, and operating cost were estimated as 0.0025 kWh/m3, 0.217 kg Al/m3, and 0.423 USD/m3, respectively. In addition, it was found that DO concentrate obtained from metallurgical wastewater can be recovered through PA-ECF (almost 94% Pb removal). This work demonstrated that the PA-ECF technique could became a viable process applicable in the treatment of DO concentrate containing Pb-rich for reuse.
Collapse
|
16
|
Determination of Lead Level in Pasteurized Milk and Dairy Products Consumed In Tehran and Evaluation of Associated Health Risk. INTERNATIONAL JOURNAL OF CANCER MANAGEMENT 2021. [DOI: 10.5812/ijcm.115541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: Milk and dairy products are the main sources of essential nutrients particularly for children. However, milk and dairy products can be contaminated with chemical hazards and contaminants which pose serious health risks for consumers. These toxic compounds are entered into the food chain through contaminated soil, water, and air and their presence even at low levels would result in metabolic disorders. Objectives: The aim of this study was to determine the level of lead in pasteurized milk and different dairy products in high-consumed brands in Tehran. Methods: A total of 38 samples (18 pasteurized milk and 20 dairy products from the most-consumed brands) were analyzed using graphite furnace atomic absorption spectroscopy for quantification of lead level. Hazard quotient (HQ) and carcinogenic risk (CR) were used to assess health risk and carcinogenic risk. Results: The results showed that the levels of lead in all pasteurized milk samples and dairy products were below the allowable limit. HQ was less than 1 in all samples and CR was in the range of 10-8 to 10-7 and both were at acceptable levels. Conclusions: It can be concluded that there was no risk of carcinogenicity in pasteurized milk samples and dairy products for children and adults. However, due to the higher consumption of milk by children and their greater susceptibility, the level of heavy metals should be monitored by health agencies.
Collapse
|
17
|
Sayin F, Tunali Akar S, Akar T, Celik S, Gedikbey T. Chitosan immobilization and Fe 3O 4 functionalization of olive pomace: An eco-friendly and recyclable Pb 2+ biosorbent. Carbohydr Polym 2021; 269:118266. [PMID: 34294298 DOI: 10.1016/j.carbpol.2021.118266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/10/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
An effective and sustainable biosorbent (MagOPIC) was prepared from chitosan and olive pomace by the combined action of immobilization and magnetic modification to remediate Pb2+-contaminated waters. Pb2+ sorption yield at the end of the equilibrium (45 min) period was estimated to be 98.56 ± 0.28% at pH 5.5. Agitation speed, ionic strength, and temperature did not significantly affect the Pb2+ biosorption. Biosorption kinetics are successfully fitted by the pseudo-second-order equation while the equilibrium biosorption data are properly modeled using the Freundlich and D-R isotherms. MagOPIC has also exhibited a high biosorption yield in the column tests (≥99%) and showed remarkable stability up to twenty consecutive regeneration cycles. Furthermore, it was successfully used for the treatment of Pb2+ containing real wastewater. The findings of this work highlighted the potential use of MagOPIC as a novel, cost-effective and eco-friendly biosorbent for the Pb2+ removal from the contaminated aquatic phase.
Collapse
Affiliation(s)
- Fatih Sayin
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey.
| | - Sibel Tunali Akar
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Tamer Akar
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Sema Celik
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| | - Tevfik Gedikbey
- Department of Chemistry, Faculty of Science and Letters, Eskisehir Osmangazi University, TR-26040 Eskisehir, Turkey
| |
Collapse
|
18
|
Waly SM, El-Wakil AM, El-Maaty WMA, Awad FS. Efficient removal of Pb(II) and Hg(II) ions from aqueous solution by amine and thiol modified activated carbon. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101296] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|