1
|
Zhang X, Jiang W, Guo K, Guo Z, Duan J, Jing X, Xia Q, Zhao P. A mutation in the Bombyx mori BmSPI51 gene results in alterations protein abundance in cocoon and unveils compensatory mechanism of silk gland proteinase inhibitors. Int J Biol Macromol 2024; 282:137001. [PMID: 39481729 DOI: 10.1016/j.ijbiomac.2024.137001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/25/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Proteinase inhibitors constitute a significant component of Lepidoptera cocoon. BmSPI51 is the most abundant protease inhibitors in silkworm cocoons. In this study, we aimed to elucidate the biological function of BmSPI51 in both the silkworm silk gland and cocoon formation. To achieve this, we utilized CRISPR/Cas9 gene editing to target the BmSPI51 gene, resulting in premature termination of translation at the 33rd amino acid residue. The mutation of BmSPI51 did not affect the growth and development. Nevertheless, it led to a substantial decrease in the economic traits of silkworm cocoons. Proteomic analysis indicated the abundance of fibroin heavy chain (Fib-H), fibroin light chain (Fib-L), and fibrohexamerin (P25) decreased significantly in the homozygous mutants. Further analysis of cocoon proteins found that the mutants significantly increased the secretion of other protease inhibitors in order to deal with the increased environmental stress resulting from the absence of BmSPI51. Surprisingly, homozygous mutant cocoons exhibited an enhanced inhibitory ability against Saccharomyces cerevisiae compared to the WT cocoons. In conclusion, our study provides a valuable insight into the biological function of protease inhibitors and revealed their roles in cocoon formation and potential applications in biotechnology.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
2
|
Jiang W, Guo K, Dong H, Zhang X, Guo Z, Duan J, Jing X, Xia Q, Zhao P. Mutation in the Bombyx mori BmGMC2 gene impacts silk production and silk protein synthesis. Int J Biol Macromol 2024; 274:133400. [PMID: 38925172 DOI: 10.1016/j.ijbiomac.2024.133400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Silk is a natural protein fiber that is predominantly comprised of fibroin and sericin. In addition, it contains seroins, protease inhibitors, enzymes, and other proteins. We found an ecdysone oxidase BmGMC2, notably, which is specifically and highly expressed only in the silk glands of silkworms (Bombyx mori L.). It is also one of the main components of non-cocoon silk, however, its precise function remains unclear. In this study, we examined the spatiotemporal expression pattern of this protein and obtained a homozygous mutant strain (K-GMC2) using the CRISPR-Cas9 system. Compared to the wild-type strain (WT), the silk production and main silk proteins significantly decreased in the larval stage, and the adhesive strength of native silk proteins decreased in the final instar. Proteomic data indicated the abundance of ribosomal proteins decreased significantly in K-GMC2, differentially expressed proteins (DEPs) were enriched in pathways related to neurodegenerative diseases and genetic information processing, indicating that knockout may lead to a certain degree of cell stress, affecting the synthesis of silk proteins. This study investigated the expression pattern and gene function of ecdysone oxidase BmGMC2 in silk and silk glands, laying the groundwork for understanding the role of enzymes in the production of silk fibers.
Collapse
Affiliation(s)
- Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Haonan Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
3
|
Wang SL, Zhuo JJ, Fang SM, Xu W, Yu QY. Silk Sericin and Its Composite Materials with Antibacterial Properties to Enhance Wound Healing: A Review. Biomolecules 2024; 14:723. [PMID: 38927126 PMCID: PMC11201629 DOI: 10.3390/biom14060723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Wound infections may disrupt the normal wound-healing process. Large amounts of antibiotics are frequently used to prevent pathogenic infections; however, this can lead to resistance development. Biomaterials possessing antimicrobial properties have promising applications for reducing antibiotic usage and promoting wound healing. Silk sericin (SS) has been increasingly explored for skin wound healing applications owing to its excellent biocompatibility and antioxidant, antimicrobial, and ultraviolet-resistant properties. In recent years, SS-based composite biomaterials with a broader antimicrobial spectrum have been extensively investigated and demonstrated favorable efficacy in promoting wound healing. This review summarizes various antimicrobial agents, including metal nanoparticles, natural extracts, and antibiotics, that have been incorporated into SS composites for wound healing and elucidates their mechanisms of action. It has been revealed that SS-based biomaterials can achieve sustained antimicrobial activity by slow-release-loaded antimicrobial agents. The antimicrobial-loaded SS composites may promote wound healing through anti-infection, anti-inflammation, hemostasis, angiogenesis, and collagen deposition. The manufacturing methods, benefits, and limitations of antimicrobial-loaded SS materials are briefly discussed. This review aims to enhance the understanding of new advances and directions in SS-based antimicrobial composites and guide future biomedical research.
Collapse
Affiliation(s)
- Sheng-Lan Wang
- College of Life Science, China West Normal University, Nanchong 637002, China;
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Jia-Jun Zhuo
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China;
| | - Wei Xu
- Department of Dermatology, Chongqing Hospital of Traditional Chinese Medicine, No. 40 Daomenkou St., District Yuzhong, Chongqing 400011, China
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (J.-J.Z.); (Q.-Y.Y.)
| |
Collapse
|
4
|
Zhang X, Dong Z, Guo K, Jiang W, Wu X, Duan J, Jing X, Xia Q, Zhao P. Identification and functional study of fhx-L1, a major silk component in Bombyx mori. Int J Biol Macromol 2023; 232:123371. [PMID: 36709809 DOI: 10.1016/j.ijbiomac.2023.123371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/14/2023] [Accepted: 01/17/2023] [Indexed: 01/27/2023]
Abstract
The silkworm cocoon was composed of fibroins, sericins, protease inhibitors, and proteins of unknown function. In this study, we focused on fhx-L1 (fibrohexamerin-like1), which was the homolog of fibroin fhx (fibrohexamerin). We identified 154 fhx family genes in 44 Lepidoptera insects, and seven fhx-Ls were found in Bombyx mori. Fhx-L1 was the most abundant of these proteins in silk and was specifically expressed in the silk gland. Immunofluorescence analysis showed that fhx-L1 was secreted into the whole sericin layers, similar to sericin1 (ser1). Western blotting revealed that the fhx-L1 protein contains N-linked oligosaccharide chains. CRISPR/Cas9-mediated gene editing was used to generate a homozygous mutant of fhx-L1 (fhx-L1KO). The cocoon of fhx-L1KO was larger and fluffier than that of the wild-type (WT), which was attributed to the lower adhesion between silk fibers. We also found that the content of β-sheet in the mutant silk was lower than in the WT silk, which resulted in further deterioration of the mechanical properties of the fhx-L1KO silk. Our study revealed the properties and function of fhx-L1 as a major structural component in silk. Then, our study provided a potential insight for in-depth study of silk protein function.
Collapse
Affiliation(s)
- Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xianxian Wu
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Jingmin Duan
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xinyuan Jing
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
5
|
Guo K, Dong Z, Zhang X, Chen Y, Li Y, Jiang W, Qin L, Zhang Y, Guo Z, Xia Q, Zhao P. Analysis of histomorphometric and proteome dynamics inside the silk gland lumen of Bombyx mori revealed the dynamic change of silk protein during the molt stage. Int J Biol Macromol 2023; 236:123926. [PMID: 36889618 DOI: 10.1016/j.ijbiomac.2023.123926] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/18/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023]
Abstract
Silkworms spin different silks at different growth stages for specific purposes. The silk spun before the end of each instar is stronger than that at the beginning of each instar and cocoon silk. However, the compositional changes in silk proteins during this process are unknown. Consequently, we performed histomorphological and proteomic analyses of the silk gland to characterize changes from the instar end to the next instar beginning. The silk glands were collected on day 3 of third- and fourth-instar larvae (III-3 and IV-3) and the beginning of fourth-instar larvae (IV-0). Proteomic analysis identified 2961 proteins from all silk glands. Silk proteins P25 and Ser5 were significantly more abundant in III-3 and IV-3 than in IV-0, and many cuticular proteins and protease inhibitors increased significantly in IV-0 compared with III-3 and IV-3. This shift may cause mechanical property differences between the instar end and beginning silk. Using section staining, qPCR, and western blotting, we found for the first time that silk proteins were degraded first and then resynthesized during the molting stage. Furthermore, we revealed that fibroinase mediated the changes of silk proteins during molting. Our results provide insights into the molecular mechanisms of silk proteins dynamic regulation during molting.
Collapse
Affiliation(s)
- Kaiyu Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhaoming Dong
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Xiaolu Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yuqing Chen
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Yi Li
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Wenchao Jiang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Lixia Qin
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Yan Zhang
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Zhouguanrui Guo
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China
| | - Qingyou Xia
- Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China
| | - Ping Zhao
- Biological Science Research Center, Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, 400715 Chongqing, China; Key Laboratory for Germplasm Creation in Upper Reaches of the Yangtze River, Ministry of Agriculture and Rural Affairs, 400715 Chongqing, China; Engineering Laboratory of Sericultural and Functional Genome and Biotechnology, Development and Reform Commission, 400715 Chongqing, China.
| |
Collapse
|
6
|
Qin L, Li J, Guo K, Lu M, Zhang Y, Zhang X, Zeng Y, Wang X, Xia Q, Zhao P, Zhang AB, Dong Z. Insights into the structure and composition of mineralized hard cocoons constructed by the oriental moth, Monema (Cnidocampa) flavescens Walker. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103878. [PMID: 36410578 DOI: 10.1016/j.ibmb.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
Animals widely use minerals and organic components to construct biomaterials with excellent properties, such as teeth, bones, molluscan shells and eggshells. The larvae of the oriental moth, Monema (Cnidocampa) flavescens Walker, secrete silk proteins that combine closely with calcareous minerals to construct a hard cocoon, which is completely different from the mineral-free Bombyx mori cocoon. The cocoons of oriental moths are likely to be the hardest among the cocoons constructed by insect species. The cocoons of oriental moths were found to be mainly composed of calcium oxalates and Asx/Ser/Gly-rich cocoon proteins, but the types of calcium oxalates and cocoon proteins remain to be elucidated. In this study, we provide an in-depth explanation of the inorganic and organic components in the oriental moth cocoon. Microscopy and imaging technologies revealed that the cocoon is composed of mineral crystals, silk fibers and other organic matter. X-ray diffraction and infrared spectral analyses showed that the mineral crystals in the oriental moth cocoon were mainly CaC2H2O4·H2O. ICP-OES analysis suggested that the mineral crystals in the cocoons were mainly CaC2H2O4·H2O. LC-MS/MS-based proteomics allowed us to identify 467 proteins from the oriental moth cocoon, including 252 uncharacterized proteins, 87 enzymes, 36 small molecule binding proteins, and 5 silk proteins. Among the uncharacterized proteins, 25 of which were Asn-rich proteins because they contained a high proportion of Asn residues (19.1%-41.4%). Among the top 20 cocoon proteins with the highest abundance, 9 of which were Asn-rich proteins. The qPCR was used to investigate the expression patterns of the major cocoon protein-coding genes. Three fibroins and three Asn-rich proteins were expressed only in the silk gland but not in other tissues. The expression of Asn-rich proteins in the silk gland gradually increased from the anterior silk gland to the posterior silk gland. These findings provide important references for understanding the formation mechanism and mechanical properties of mineralized hard cocoons constructed by oriental moths.
Collapse
Affiliation(s)
- Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Jing Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China
| | - Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Mengyao Lu
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yan Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Yanqiong Zeng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Xin Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China
| | - Ai-Bing Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China.
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
7
|
Dong Z, Xia Q, Zhao P. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori. Int J Biol Macromol 2022; 224:68-78. [DOI: 10.1016/j.ijbiomac.2022.10.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/23/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022]
|
8
|
Guo K, Zhang X, Zhao D, Qin L, Jiang W, Hu W, Liu X, Xia Q, Dong Z, Zhao P. Identification and characterization of sericin5 reveals non-cocoon silk sericin components with high β-sheet content and adhesive strength. Acta Biomater 2022; 150:96-110. [PMID: 35902035 DOI: 10.1016/j.actbio.2022.07.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 07/03/2022] [Accepted: 07/10/2022] [Indexed: 11/01/2022]
Abstract
Sericins are glue proteins on the surface of silk fibers. Four sericins have been characterized in silkworm, namely sericin1 (Ser1), sericin2 (Ser2), sericin3 (Ser3), and sericin4 (Ser4). In this study, we report a novel sericin, sericin5 (Ser5), which exists only in non-cocoon silk. We describe the sequence, exon-intron structure, and translation products of Ser5 in Bombyx mori. The Ser5 gene is approximately 22-kb long and comprises 16 exons. Ser5 protein has a size of 260 kDa, as determined by SDS-PAGE, western blot, and LC-MS/MS. Immunofluorescence analysis revealed that Ser5 co-localizes with Ser1 in the sericin layer. The expression pattern of Ser5 was detected at the transcriptional and translational levels. We systematically analyzed and compared the amino acid composition, repeat regions, and hydrophilicity of silkworm sericins. Morphological observations showed that non-cocoon silk had more sericin than cocoon silk. Circular dichroism spectra revealed that non-cocoon silk sericin contained more β-sheet structures than cocoon silk sericin. In addition, we found that the hydrophilicity and adhesive strength of native sericin increases gradually from the inner layer to the outer layer. This research enhances our understanding of various sericins from cocoon silk and non-cocoon silk with regard to their expression patterns, hydrophilicity, secondary structure and adhesive performances. STATEMENT OF SIGNIFICANCE: : Sericin is a natural biomaterial with diverse biological properties, which has long been used as tissue engineering and biomedical applications. However, the composition and distribution of sericins in different kinds of silk are still uncertain, and the properties difference between sericins have not yet been reported. Our study makes a significant contribution to the literature as it identifies the sequence, composition, hydrophilicity and adhesive property of sericins. Moreover, it provides key insights into the structure-function and function-distribution relationships associated with sericins. We believe that this study will arouse the interest to the readership of your journal as it identifies the new complete sequence of sericin and revealed the composition and properties of sericin, thus highlighting their future potentials applications in both the biomaterial and technical fields.
Collapse
Affiliation(s)
- Kaiyu Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Xiaolu Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Dongchao Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Lixia Qin
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China
| | - Wenchao Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Wenbo Hu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China
| | - Xiao Liu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China
| | - Zhaoming Dong
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400716, China; Biological Science Research Center, Southwest University, Chongqing 400716, China.; Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing 400716, China; Chongqing Key Laboratory of Sericulture, Southwest University, Chongqing 400716, China.; Sericulture Genome and Biotechnology Engineering Laboratory, Chongqing 400716, China.
| |
Collapse
|
9
|
Guan R, Hu S, Li X, An S, Miao X, Li H. A TIL-Type Serine Protease Inhibitor Involved in Humoral Immune Response of Asian Corn Borer Ostrinia furnaculis. Front Immunol 2022; 13:900129. [PMID: 35651613 PMCID: PMC9149172 DOI: 10.3389/fimmu.2022.900129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 04/20/2022] [Indexed: 11/13/2022] Open
Abstract
To elucidate the application value of insect endogenous protease and its inhibitor genes in pest control, we analyzed in detail the transcriptome sequence of the Asian corn borer, Ostrinia furnacalis. We obtained 12 protease genes and 11 protease inhibitor genes, and comprehensively analyzed of their spatiotemporal expression by qRT-PCR. In which, a previous unstudied serine protease inhibitor gene attracted our attention. It belongs to the canonical serine proteinase inhibitor family, a trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitor, but its TIL domain lacks two cysteine residues, and it was named as ACB-TIL. Its expression level is relatively very low in the absence of pathogen stimulation, and can be up-regulated expression induced by Gram-negative bacteria (Escherichia coli), virus (BmNPV), and dsRNA (dsEGFP), but cannot be induced by fungus spores (Metarrhizium anisopliae). Prokaryotic expressed ACB-TIL protein can significantly inhibit the melanization in vitro. Injecting this protein into insect body can inhibit the production of antimicrobial peptides of attacin, lebocin and gloverin. Inhibition of ACB-TIL by RNAi can cause the responses of other immune-, protease- and inhibitor-related genes. ACB-TIL is primarily involved in Asian corn borer humoral immunity in responses to Gram-negative bacteria and viruses. This gene can be a potential target for pest control since this will mainly affect insect immune response.
Collapse
Affiliation(s)
- Ruobing Guan
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Shaoru Hu
- Biobank of Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiang Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shiheng An
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xuexia Miao
- Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| | - Haichao Li
- Henan International Laboratory for Green Pest Control, College of Plant Protection, Henan Agricultural University, Zhengzhou, China.,Key Laboratory of Insect Developmental and Evolutionary Biology, Chinese Academy of Sciences (CAS) Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
10
|
From Naturally-Sourced Protease Inhibitors to New Treatments for Fungal Infections. J Fungi (Basel) 2021; 7:jof7121016. [PMID: 34946998 PMCID: PMC8704869 DOI: 10.3390/jof7121016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/24/2021] [Accepted: 11/24/2021] [Indexed: 02/08/2023] Open
Abstract
Proteases are involved in a broad range of physiological processes, including host invasion by fungal pathogens, and enzymatic inhibition is a key molecular mechanism controlling proteolytic activity. Importantly, inhibitors from natural or synthetic sources have demonstrated applications in biochemistry, biotechnology, and biomedicine. However, the need to discover new reservoirs of these inhibitory molecules with improved efficacy and target range has been underscored by recent protease characterization related to infection and antimicrobial resistance. In this regard, naturally-sourced inhibitors show promise for application in diverse biological systems due to high stability at physiological conditions and low cytotoxicity. Moreover, natural sources (e.g., plants, invertebrates, and microbes) provide a large reservoir of undiscovered and/or uncharacterized bioactive molecules involved in host defense against predators and pathogens. In this Review, we highlight discoveries of protease inhibitors from environmental sources, propose new opportunities for assessment of antifungal activity, and discuss novel applications to combat biomedically-relevant fungal diseases with in vivo and clinical purpose.
Collapse
|