1
|
Wang H, Cui L, Luo Y, Chen H, Liu X, Shi Q. Inflammation-responsive PCL/gelatin microfiber scaffold with sustained nitric oxide generation and heparin release for blood-contacting implants. Int J Biol Macromol 2024; 281:136544. [PMID: 39414218 DOI: 10.1016/j.ijbiomac.2024.136544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/18/2024]
Abstract
Delayed endothelialization, the excessive proliferation of smooth muscle cells (SMCs), and persistent inflammation are the main reasons for the implantation failure of blood-contacting materials. To overcome this problem, an inflammation-responsive, core-shell structured microfiber scaffold is developed using polycaprolactone (PCL), selenocystamine-modified gelatin (Gel-Se), L-ascorbyl 6-palmitate (AP), and dexamethasone as the fiber shell, with poly (l-lysine) (PLL) and heparin incorporated in the fiber core. Superhydrophilic microfiber scaffolds exhibit antifouling properties that inhibit protein adsorption and blood cell adhesion, thereby effectively mitigating the risk of acute thrombosis. The continuous release of heparin and sustained generation of nitric oxide (NO) through the catalytic decomposition of S-nitrosothiols by selenocystamine lead to a biomimetic endothelial function for the enhancement of blood compatibility. The inflammation-responsive compound AP can detoxify excess reactive oxygen species (ROS) while controlling the release of dexamethasone to reduce chronic inflammation. We demonstrate the ability of microfiber scaffolds to reduce thrombotic and inflammatory complications, inhibit SMC proliferation, and promote rapid endothelialization both in vitro and ex vivo. Hence, microfiber scaffolds are robust and promising for blood-contacting implants with enhanced antithrombogenicity and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Haozheng Wang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| | - Lei Cui
- Department of Chemical Pathology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China; Li Ka Shing Institute of Health Science, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Ying Luo
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Institute of Hepatobiliary Disease, Nankai University Affiliated the Third Center Hospital, Tianjin, China
| | - Honghong Chen
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaoju Liu
- Department of Clinical Laboratory, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Qiang Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui, China.
| |
Collapse
|
2
|
Liu Y, Gao Z, Yu X, Lin W, Lian H, Meng Z. Recent Advances in the Fabrication and Performance Optimization of Polyvinyl Alcohol Based Vascular Grafts. Macromol Biosci 2024; 24:e2400093. [PMID: 38801024 DOI: 10.1002/mabi.202400093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/11/2024] [Indexed: 05/29/2024]
Abstract
Cardiovascular disease is one of the diseases with the highest morbidity and mortality rates worldwide, and coronary artery bypass grafting (CABG) is a fast and effective treatment. More researchers are investigating in artificial blood vessels due to the limitations of autologous blood vessels. Despite the availability of large-diameter vascular grafts (Ø > 6 mm) for clinical use, small-diameter vascular grafts (Ø < 6 mm) have been a challenge for researchers to overcome in recent years. Vascular grafts made of polyvinyl alcohol (PVA) and PVA-based composites have excellent biocompatibility and mechanical characteristics. In order to gain a clearer and more specific understanding of the progress in PVA vascular graft research, particularly regarding the preparation methods, principles, and functionality of PVA vascular graft, this article discusses the mechanical properties, biocompatibility, blood compatibility, and other properties of PVA vascular graft prepared or enhanced with different blends using various techniques that mimic natural blood vessels. The findings reveal the feasibility and promising potential of PVA or PVA-based composite materials as vascular grafts.
Collapse
Affiliation(s)
- Yixuan Liu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zichun Gao
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Xinrong Yu
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Wenjiao Lin
- Qingmao Technology (Shenzhen) Co., LTD, Shenzhen, China
| | - He Lian
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhaoxu Meng
- School of Medical Devices, Shenyang Pharmaceutical University, Shenyang, 110016, China
| |
Collapse
|
3
|
Mi CH, Qi XY, Zhou YW, Ding YW, Wei DX, Wang Y. Advances in medical polyesters for vascular tissue engineering. DISCOVER NANO 2024; 19:125. [PMID: 39115796 PMCID: PMC11310390 DOI: 10.1186/s11671-024-04073-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 07/25/2024] [Indexed: 08/11/2024]
Abstract
Blood vessels are highly dynamic and complex structures with a variety of physiological functions, including the transport of oxygen, nutrients, and metabolic wastes. Their normal functioning involves the close and coordinated cooperation of a variety of cells. However, adverse internal and external environmental factors can lead to vascular damage and the induction of various vascular diseases, including atherosclerosis and thrombosis. This can have serious consequences for patients, and there is an urgent need for innovative techniques to repair damaged blood vessels. Polyesters have been extensively researched and used in the treatment of vascular disease and repair of blood vessels due to their excellent mechanical properties, adjustable biodegradation time, and excellent biocompatibility. Given the high complexity of vascular tissues, it is still challenging to optimize the utilization of polyesters for repairing damaged blood vessels. Nevertheless, they have considerable potential for vascular tissue engineering in a range of applications. This summary reviews the physicochemical properties of polyhydroxyalkanoate (PHA), polycaprolactone (PCL), poly-lactic acid (PLA), and poly(lactide-co-glycolide) (PLGA), focusing on their unique applications in vascular tissue engineering. Polyesters can be prepared not only as 3D scaffolds to repair damage as an alternative to vascular grafts, but also in various forms such as microspheres, fibrous membranes, and nanoparticles to deliver drugs or bioactive ingredients to damaged vessels. Finally, it is anticipated that further developments in polyesters will occur in the near future, with the potential to facilitate the wider application of these materials in vascular tissue engineering.
Collapse
Affiliation(s)
- Chen-Hui Mi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xin-Ya Qi
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Yan-Wen Ding
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China.
- School of Clinical Medicine, Chengdu University, Chengdu, China.
- Shaanxi Key Laboratory for Carbon-Neutral Technology, Xi'an, 710069, China.
| | - Yong Wang
- Department of Interventional Radiology and Vascular Surgery, Second Affiliated Hospital of Hainan Medical University, Haikou, China.
| |
Collapse
|
4
|
Tong Q, Cai J, Wang Z, Sun Y, Liang X, Xu Q, Mahamoud OA, Qian Y, Qian Z. Recent Advances in the Modification and Improvement of Bioprosthetic Heart Valves. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309844. [PMID: 38279610 DOI: 10.1002/smll.202309844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/10/2023] [Indexed: 01/28/2024]
Abstract
Valvular heart disease (VHD) has become a burden and a growing public health problem in humans, causing significant morbidity and mortality worldwide. An increasing number of patients with severe VHD need to undergo heart valve replacement surgery, and artificial heart valves are in high demand. However, allogeneic valves from donors are lacking and cannot meet clinical practice needs. A mechanical heart valve can activate the coagulation pathway after contact with blood after implantation in the cardiovascular system, leading to thrombosis. Therefore, bioprosthetic heart valves (BHVs) are still a promising way to solve this problem. However, there are still challenges in the use of BHVs. For example, their longevity is still unsatisfactory due to the defects, such as thrombosis, structural valve degeneration, calcification, insufficient re-endothelialization, and the inflammatory response. Therefore, strategies and methods are needed to effectively improve the biocompatibility and longevity of BHVs. This review describes the recent research advances in BHVs and strategies to improve their biocompatibility and longevity.
Collapse
Affiliation(s)
- Qi Tong
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Jie Cai
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhengjie Wang
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yiren Sun
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Xuyue Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Qiyue Xu
- School of Basic Medicine, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157011, P. R. China
| | - Oumar Abdel Mahamoud
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Yongjun Qian
- Department of Cardiovascular Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| | - Zhiyong Qian
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, #37 Guoxue Alley, Chengdu, Sichuan, 610041, P. R. China
| |
Collapse
|
5
|
Yang Z, Zhang Y, Chen Y, Fu L, Sun Y, Yang Z, Cui T, Wang J, Wan Y. In situ densification and heparin immobilization of bacterial cellulose vascular patch for potential vascular applications. Int J Biol Macromol 2024; 270:132181. [PMID: 38740155 DOI: 10.1016/j.ijbiomac.2024.132181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 05/16/2024]
Abstract
Nowadays, developing vascular grafts (e.g., vascular patches and tubular grafts) is challenging. Bacterial cellulose (BC) with 3D fibrous network has been widely investigated for vascular applications. In this work, different from BC vascular patch cultured with the routine culture medium, dopamine (DA)-containing culture medium is employed to in situ synthesize dense BC fibrous structure with significantly increased fiber diameter and density. Simultaneously, BC fibers are modified by DA during in situ synthesis process. Then DA on BC fibers can self-polymerize into polydopamine (PDA) accompanied with the removal of bacteria in NaOH solution, obtaining PDA-modified dense BC (PDBC) vascular patch. Heparin (Hep) is subsequently covalently immobilized on PDBC fibers to form Hep-immobilized PDBC (Hep@PDBC) vascular patch. The obtained results indicate that Hep@PDBC vascular patch exhibits remarkable tensile and burst strength due to its dense fibrous structure. More importantly, compared with BC and PDBC vascular patches, Hep@PDBC vascular patch not only displays reduced platelet adhesion and improved anticoagulation activity, but also promotes the proliferation, adhesion, spreading, and protein expression of human umbilical vein endothelial cells, contributing to the endothelialization process. The combined strategy of in situ densification and Hep immobilization provides a feasible guidance for the construction of BC-based vascular patches.
Collapse
Affiliation(s)
- Zhiwei Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yichuan Zhang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yuqin Chen
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Ling Fu
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Yanan Sun
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Zhengzhao Yang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Teng Cui
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China
| | - Jie Wang
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China.
| | - Yizao Wan
- Jiangxi Key Laboratory of Nanobiomaterials, School of Materials Science and Engineering, East China Jiaotong University, Nanchang 330013, China; School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Tabish TA, Crabtree MJ, Townley HE, Winyard PG, Lygate CA. Nitric Oxide Releasing Nanomaterials for Cardiovascular Applications. JACC Basic Transl Sci 2024; 9:691-709. [PMID: 38984042 PMCID: PMC11228123 DOI: 10.1016/j.jacbts.2023.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/27/2023] [Accepted: 07/27/2023] [Indexed: 07/11/2024]
Abstract
A central paradigm of cardiovascular homeostasis is that impaired nitric oxide (NO) bioavailability results in a wide array of cardiovascular dysfunction including incompetent endothelium-dependent vasodilatation, thrombosis, vascular inflammation, and proliferation of the intima. Over the course of more than a century, NO donating formulations such as organic nitrates and nitrites have remained a cornerstone of treatment for patients with cardiovascular diseases. These donors primarily produce NO in the circulation and are not targeted to specific (sub)cellular sites of action. However, safe, and therapeutic levels of NO require delivery of the right amount to a precise location at the right time. To achieve these aims, several recent strategies aimed at therapeutically generating or releasing NO in living systems have shown that polymeric and inorganic (silica, gold) nanoparticles and nanoscale metal-organic frameworks could either generate NO endogenously by the catalytic decomposition of endogenous NO substrates or can store and release therapeutically relevant amounts of NO gas. NO-releasing nanomaterials have been developed for vascular implants (such as stents and grafts) to target atherosclerosis, hypertension, myocardial ischemia-reperfusion injury, and cardiac tissue engineering. In this review, we discuss the advances in design and development of novel NO-releasing nanomaterials for cardiovascular therapeutics and critically examine the therapeutic potential of these nanoplatforms to modulate cellular metabolism, to regulate vascular tone, inhibit platelet aggregation, and limit proliferation of vascular smooth muscle with minimal toxic effects.
Collapse
Affiliation(s)
- Tanveer A. Tabish
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
- Department of Biochemical Sciences, School of Biosciences & Medicine, University of Surrey, Guildford, United Kingdom
| | - Helen E. Townley
- Nuffield Department of Women’s and Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
- Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Paul G. Winyard
- University of Exeter Medical School, College of Medicine and Health, St. Luke’s Campus, University of Exeter, Exeter, United Kingdom
| | - Craig A. Lygate
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, British Heart Foundation (BHF) Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
7
|
Soleymani Eil Bakhtiari S, Karbasi S. Keratin-containing scaffolds for tissue engineering applications: a review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:916-965. [PMID: 38349200 DOI: 10.1080/09205063.2024.2311450] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/24/2024] [Indexed: 04/13/2024]
Abstract
In tissue engineering and regenerative medicine applications, the utilization of bioactive materials has become a routine tool. The goal of tissue engineering is to create new organs and tissues by combining cell biology, materials science, reactor engineering, and clinical research. As part of the growth pattern for primary cells in an organ, backing material is frequently used as a supporting material. A porous three-dimensional (3D) scaffold can provide cells with optimal conditions for proliferating, migrating, differentiating, and functioning as a framework. Optimizing the scaffolds' structure and altering their surface may improve cell adhesion and proliferation. A keratin-based biomaterials platform has been developed as a result of discoveries made over the past century in the extraction, purification, and characterization of keratin proteins from hair and wool fibers. Biocompatibility, biodegradability, intrinsic biological activity, and cellular binding motifs make keratin an attractive biomaterial for tissue engineering scaffolds. Scaffolds for tissue engineering have been developed from extracted keratin proteins because of their capacity to self-assemble and polymerize into intricate 3D structures. In this review article, applications of keratin-based scaffolds in different tissues including bone, skin, nerve, and vascular are explained based on common methods of fabrication such as electrospinning, freeze-drying process, and sponge replication method.
Collapse
Affiliation(s)
- Sanaz Soleymani Eil Bakhtiari
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Saeed Karbasi
- Biomaterials and Tissue Engineering Department, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
8
|
Wang L, Liang F, Shang Y, Liu X, Yin M, Shen J, Yuan J. Endothelium-Mimicking Bilayer Vascular Grafts with Dual-Releasing of NO/H 2S for Anti-Inflammation and Anticalcification. ACS APPLIED MATERIALS & INTERFACES 2024; 16:318-331. [PMID: 38156407 DOI: 10.1021/acsami.3c15176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Vascular complications caused by diabetes impair the activities of endothelial nitric oxide synthase (eNOS) and cystathionine γ-lyase (CSE), resulting in decreased physiological levels of nitric oxide (NO) and hydrogen sulfide (H2S). The low bioavailability of NO and H2S hinders the endothelialization of vascular grafts. In this study, endothelium-mimicking bilayer vascular grafts were designed with spatiotemporally controlled dual releases of NO and H2S for in situ endothelialization and angiogenesis. Keratin-based H2S donor was synthesized and electrospun with poly(l-lactide-co-ε-caprolactone) (PLCL) as the outer layer of the graft to release H2S. Hyaluronic acid, one of the major glycosaminoglycans in endothelial glycocalyx, was complexed with Cu ions as the inner layer to mimic glutathione peroxidase (GPx) and maintain long-term physiological NO flux. The synergistic effects of NO and H2S of bilayer grafts selectively promoted the regeneration and migration of human umbilical vascular endothelial cells (HUVECs), while inhibiting the overproliferation of human umbilical artery smooth muscle cells (HUASMCs). Bilayer grafts could effectively prevent vascular calcification, reduce inflammation, and alleviate endothelial dysfunction. The in vivo study in a rat abdominal aorta replacement model for 1 month showed that the graft had a good patency rate and had potential for vascular remodeling in situ.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-Functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
9
|
Li P, Liang F, Wang L, Jin D, Shang Y, Liu X, Pan Y, Yuan J, Shen J, Yin M. Bilayer vascular grafts with on-demand NO and H 2S release capabilities. Bioact Mater 2024; 31:38-52. [PMID: 37601276 PMCID: PMC10432902 DOI: 10.1016/j.bioactmat.2023.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/23/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023] Open
Abstract
Nitric oxide (NO) and hydrogen sulfide (H2S) gasotransmitters exhibit potential therapeutic effects in the cardiovascular system. Herein, biomimicking multilayer structures of biological blood vessels, bilayer small-diameter vascular grafts (SDVGs) with on-demand NO and H2S release capabilities, were designed and fabricated. The keratin-based H2S donor (KTC) with good biocompatibility and high stability was first synthesized and then electrospun with poly (l-lactide-co-caprolactone) (PLCL) to be used as the outer layer of grafts. The electrospun poly (ε-caprolactone) (PCL) mats were aminolyzed and further chelated with copper (II) ions to construct glutathione peroxidase (GPx)-like structural surfaces for the catalytic generation of NO, which acted as the inner layer of grafts. The on-demand release of NO and H2S selectively and synergistically promoted the proliferation and migration of human umbilical vein endothelial cells (HUVECs) while inhibiting the proliferation and migration of human umbilical artery smooth muscle cells (HUASMCs). Dual releases of NO and H2S gasotransmitters could enhance their respective production, resulting in enhanced promotion of HUVECs and inhibition of HUASMCs owing to their combined actions. In addition, the bilayer grafts were conducive to forming endothelial cell layers under flow shear stress. In rat abdominal aorta replacement models, the grafts remained patency for 6 months. These grafts were capable of facilitating rapid endothelialization and alleviating neointimal hyperplasia without obvious injury, inflammation, or thrombosis. More importantly, the grafts were expected to avoid calcification with the degradation of the grafts. Taken together, these bilayer grafts will be greatly promising candidates for SDVGs with rapid endothelialization and anti-calcification properties.
Collapse
Affiliation(s)
- Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Fubang Liang
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, PR China
- Jiangsu Engineering Research Center of Interfacial Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai, 200127, PR China
| |
Collapse
|
10
|
Wang L, Shang Y, Zhang J, Yuan J, Shen J. Recent advances in keratin for biomedical applications. Adv Colloid Interface Sci 2023; 321:103012. [PMID: 37837703 DOI: 10.1016/j.cis.2023.103012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 10/16/2023]
Abstract
The development of keratin-based biomaterials provides an approach to addressing related environmental pollutants and turns waste into wealth. Keratin possesses various merits, such as biocompatibility, biodegradability, hemostasis, non-immunogenicity, antibacterial activity, antioxidation, multi-responsiveness, and abundance in nature. Additionally, keratin biomaterials have been extensively employed in various biomedical applications such as drug delivery, wound healing, and tissue engineering. This review focuses on the properties and biomedical applications of keratin biomaterials. It is anticipated to provide valuable insights for the research and development of keratin biomaterials.
Collapse
Affiliation(s)
- Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, Department of Materials Science and Engineering, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
11
|
Coronel-Meneses D, Sánchez-Trasviña C, Ratera I, Mayolo-Deloisa K. Strategies for surface coatings of implantable cardiac medical devices. Front Bioeng Biotechnol 2023; 11:1173260. [PMID: 37256118 PMCID: PMC10225971 DOI: 10.3389/fbioe.2023.1173260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/25/2023] [Indexed: 06/01/2023] Open
Abstract
Cardiac medical devices (CMDs) are required when the patient's cardiac capacity or activity is compromised. To guarantee its correct functionality, the building materials in the development of CMDs must focus on several fundamental properties such as strength, stiffness, rigidity, corrosion resistance, etc. The challenge is more significant because CMDs are generally built with at least one metallic and one polymeric part. However, not only the properties of the materials need to be taken into consideration. The biocompatibility of the materials represents one of the major causes of the success of CMDs in the short and long term. Otherwise, the material will lead to several problems of hemocompatibility (e.g., protein adsorption, platelet aggregation, thrombus formation, bacterial infection, and finally, the rejection of the CMDs). To enhance the hemocompatibility of selected materials, surface modification represents a suitable solution. The surface modification involves the attachment of chemical compounds or bioactive compounds to the surface of the material. These coatings interact with the blood and avoid hemocompatibility and infection issues. This work reviews two main topics: 1) the materials employed in developing CMDs and their key characteristics, and 2) the surface modifications reported in the literature, clinical trials, and those that have reached the market. With the aim of providing to the research community, considerations regarding the choice of materials for CMDs, together with the advantages and disadvantages of the surface modifications and the limitations of the studies performed.
Collapse
Affiliation(s)
- David Coronel-Meneses
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Calef Sánchez-Trasviña
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
| | - Imma Ratera
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Instituto de Salud Carlos IIIBellaterra, Spain
| | - Karla Mayolo-Deloisa
- Tecnologico de Monterrey, The Institute for Obesity Research, Monterrey, Mexico
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Centro de Biotecnología-FEMSA, Monterrey, Mexico
- Institute of Materials Science of Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra, Spain
| |
Collapse
|
12
|
Liu X, Wang C, Du M, Dou J, Yang J, Shen J, Yuan J. Nitric oxide releasing poly(vinyl alcohol)/S-nitrosated keratin film as a potential vascular graft. J Biomed Mater Res B Appl Biomater 2023; 111:1015-1023. [PMID: 36462186 DOI: 10.1002/jbm.b.35210] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/08/2022] [Accepted: 11/23/2022] [Indexed: 12/05/2022]
Abstract
Nitric oxide (NO) releasing vascular graft is promising due to its merits of thromboembolism reduction and endothelialization promotion. In this study, keratin-based NO donor of S-nitrosated keratin (KSNO) was blended with poly(vinyl alcohol) (PVA) and further crosslinked with sodium trimetaphosphate (STMP) to afford PVA/KSNO biocomposite films. These films could release NO sustainably for up to 10 days, resulting in the promotion of HUVECs growth and the inhibition of HUASMCs growth. In addition, these films displayed good blood compatibility and antibacterial activity. Taken together, these films have potential applications in vascular grafts.
Collapse
Affiliation(s)
- Xu Liu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chenshu Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
13
|
Su H, Liu W, Li X, Li G, Guo S, Liu C, Yang T, Ou C, Liu J, Li Y, Wei C, Huang Q, Xu T, Duan C. Cellular energy supply for promoting vascular remodeling of small-diameter vascular grafts: a preliminary study of a new strategy for vascular graft development. Biomater Sci 2023; 11:3197-3213. [PMID: 36928127 DOI: 10.1039/d2bm01338j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Rapid endothelialization is extremely essential for the success of small-diameter tissue-engineered vascular graft (TEVG) (<6 mm) transplantation. However, severe inflammation in situ often causes cellular energy decline of endothelial cells. The cellular energy supply involved in vascular graft therapy remains unclear, and whether promoting energy supply would be helpful in the regeneration of vascular grafts needs to be established. In our work, we generated an AMPK activator (5-aminoimidazole-4-carboxamide ribonucleotide, AICAR) immobilized vascular graft. AICAR-modified vascular grafts were successfully generated by the co-electrospinning technique. In vitro results indicated that AICAR could upregulate energy supply in endothelial cells and reprogram macrophages (MΦ) to assume an anti-inflammatory phenotype. Furthermore, endothelial cells (ECs) co-cultured with AICAR achieved higher survival rates, better migration, and angiogenic capacity than the controls. Concurrently, a rabbit carotid artery transplantation model was used to investigate AICAR-modified vascular grafts at different time points. The results showed that AICAR-modified vascular grafts had higher patency rates (92.9% and 85.7% at 6 and 12 weeks, respectively) than those of the untreated group (11.1% and 0%). In conclusion, AICAR strengthened the cellular energy state and attenuated the adverse effects of inflammation. AICAR-modified vascular grafts achieved better vascular remodeling. This study provides a new perspective on promoting the regeneration of small-diameter vascular grafts.
Collapse
Affiliation(s)
- Hengxian Su
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Guangxu Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chang Liu
- Department of Orthopedic Surgery, The Lingnan Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Tao Yang
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chubin Ou
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Jiahui Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Yuanzhi Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Chengcong Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| | - Qing Huang
- Department of Neurosurgery, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China.
| | - Tao Xu
- Biomanufacturing and Rapid Forming Technology Key Laboratory of Beijing, Department of Mechanical Engineering and Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, People's Republic of China. .,East China Institute of Digital Medical Engineering, Shangrao, 334000, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
14
|
Miao C, Wang L, Shang Y, Du M, Yang J, Yuan J. Tannic Acid-Assisted Immobilization of Copper(II), Carboxybetaine, and Argatroban on Poly(ethylene terephthalate) Mats for Synergistic Improvement of Blood Compatibility and Endothelialization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15683-15693. [PMID: 36480797 DOI: 10.1021/acs.langmuir.2c02508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Due to thrombosis and intimal hyperplasia, small-diameter vascular grafts have poor long-term patency. A combination strategy based on nitric oxide (NO) and anticoagulants has the potential to address those issues. In this study, poly(ethylene terephthalate) (PET) mats were prepared by electrospinning and coated with tannic acid (TA)/copper ion complexes. The chelated copper ions endowed the mats with sustained NO generation by catalytic decomposition of endogenous S-nitrosothiol. Subsequently, zwitterionic carboxybetaine acrylate (CBA) and argatroban (AG) were immobilized on the mats. The introduced AG and CBA had synergistic effects on the improvement of blood compatibility, resulting in reduced platelet adhesion and prolonged blood clotting time. The biocomposite mats selectively promoted the proliferation and migration of human umbilical vein endothelial cells while inhibiting the proliferation and migration of human umbilical arterial smooth muscle cells under physiological conditions. In addition, the prepared mats exhibited antibacterial activity against Escherichia coli and Staphylococcus aureus. Collectively, the prepared mats hold great promise as artificial small-diameter vascular grafts.
Collapse
Affiliation(s)
- Cuie Miao
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Yushuang Shang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Mingyu Du
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jinyu Yang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Non‑isothermal crystallization kinetics of polycaprolactone-based composite membranes. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03335-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
16
|
Synthesis and catalytic performance of banana cellulose nanofibres grafted with poly(ε-caprolactone) in a novel two-dimensional zinc(II) metal-organic framework. Int J Biol Macromol 2022; 224:568-577. [DOI: 10.1016/j.ijbiomac.2022.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
|
17
|
Zhou Y, Wang M, Yan C, Liu H, Yu DG. Advances in the Application of Electrospun Drug-Loaded Nanofibers in the Treatment of Oral Ulcers. Biomolecules 2022; 12:1254. [PMID: 36139093 PMCID: PMC9496154 DOI: 10.3390/biom12091254] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/26/2022] [Accepted: 09/04/2022] [Indexed: 02/07/2023] Open
Abstract
Oral ulcers affect oral and systemic health and have high prevalence in the population. There are significant individual differences in the etiology and extent of the disease among patients. In the treatment of oral ulcers, nanofiber films can control the drug-release rate and enable long-term local administration. Compared to other drug-delivery methods, nanofiber films avoid the disadvantages of frequent administration and certain side effects. Electrospinning is a simple and effective method for preparing nanofiber films. Currently, electrospinning technology has made significant breakthroughs in energy-saving and large-scale production. This paper summarizes the polymers that enable oral mucosal adhesion and the active pharmaceutical ingredients used for oral ulcers. Moreover, the therapeutic effects of currently available electrospun nanofiber films on oral ulcers in animal experiments and clinical trials are investigated. In addition, solvent casting and cross-linking methods can be used in conjunction with electrospinning techniques. Based on the literature, more administration systems with different polymers and loading components can be inspired. These administration systems are expected to have synergistic effects and achieve better therapeutic effects. This not only provides new possibilities for drug-loaded nanofibers but also brings new hope for the treatment of oral ulcers.
Collapse
Affiliation(s)
- Yangqi Zhou
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Menglong Wang
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Chao Yan
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Hui Liu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Deng-Guang Yu
- School of Materials Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai 200093, China
| |
Collapse
|
18
|
Huang X, Zhu Z, Lu L, Jin R, Sun D, Luo X. Frozen bean curd-inspired Xenogeneic acellular dermal matrix with triple pretreatment approach of freeze-thaw, laser drilling and ADSCs pre-culture for promoting early vascularization and integration. Regen Biomater 2022; 9:rbac053. [PMID: 35974951 PMCID: PMC9375572 DOI: 10.1093/rb/rbac053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
Xenogeneic acellular dermal matrix (ADM) is widely used in clinical practice given its good biocompatibility and biomechanical properties. Yet, its dense structure remains a hindrance. Incorporation of laser drilling and pre-culture with Adipose-derived stem cells (ADSCs) have been attempted to promote early vascularization and integration, but the results were not ideal. Inspired by the manufacturing procedure of frozen bean curd, we proposed a freeze-thaw treatment to enhance the porosity of ADM. We found that the ADM treated with -80°C3R+-30°C3R had the largest disorder of stratified plane arrangement (deviation angle 28.6%) and the largest porosity (96%), making it an optimal approach. Human umbilical vein endothelial cells on freeze-thaw treated ADM demonstrated increased expression in Tie-2 and CD105 genes, proliferation, and tube formation in vitro compared with those on ADM. Combining freeze-thaw with laser drilling and pre-culture with ADSCs, such tri-treatment improved the gene expression of pro-angiogenic factors including IGF-1, EGF, and VEGF, promoted tube formation, increased cell infiltration, and accelerated vascularization soon after implantation. Overall, freeze-thaw is an effective method for optimizing the internal structure of ADM, and tri-treatments may yield clinical significance by promoting early cell infiltration, vascularization, and integration with surrounding tissues.
Collapse
Affiliation(s)
- Xing Huang
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Zhu Zhu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
- Shanghai Key Lab of Tissue Engineering, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai, PR China
| | - Lin Lu
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Rui Jin
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Di Sun
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| | - Xusong Luo
- Shanghai Jiao Tong University School of Medicine Department of Plastic and Reconstructive Surgery, Shanghai 9th People's Hospital, , Shanghai, PR China
| |
Collapse
|
19
|
Miao C, Du J, Dou J, Wang C, Wang L, Yuan J, Shen J, Yin M. Facile fabrication of copper-incorporating poly(ε-caprolactone)/keratin mats for tissue-engineered vascular grafts with the potential of catalytic nitric oxide generation. J Mater Chem B 2022; 10:6158-6170. [PMID: 35904091 DOI: 10.1039/d2tb01031c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Tissue-engineered vascular grafts (TEVGs) provide a new alternative for vascular construction. Nitric oxide (NO) is capable of promoting vascular tissue regeneration and reducing restenosis caused by vascular implantation. Therefore, in situ production of NO by catalytic decomposition of the endogenous donor is a promising strategy to fabricate a TEVG. In this study, poly(ε-caprolactone) (PCL) was first electrospun with keratin (Ker) to afford PCL/Ker mats and then incorporated with Cu(II) ions through multiple interactions. This strategy is very simple, green, and facile. Particularly, the incorporated Cu(II) ions were partially reduced to Cu(I) ions due to the reducibility of keratin. The chelated copper ions were expected to catalyze the generation of NO from endogenous S-nitrosothiol (RSNO). As a result, PCL/Ker-Cu mats selectively accelerated the adhesion, migration, and growth of human umbilical vein endothelial cells (HUVECs), while inhibiting the proliferation of human umbilical artery smooth muscle cells (HUASMCs). Furthermore, these mats exhibited excellent blood compatibility and significant antibacterial activity. Vascular implantation in vivo indicated that the tubular mats could inhibit thrombus formation and retain patency for 3 months after implantation in the rabbit carotid artery. More importantly, vascular remodeling was observed during follow-up, including a complete endothelium and smooth muscle layer. Taken together, the PCL/Ker-Cu mats have great potential application in vascular tissue regeneration.
Collapse
Affiliation(s)
- Cuie Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jun Du
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| | - Jie Dou
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Chenshu Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Lijuan Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jiang Yuan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China. .,Jiangsu Engineering Research Center of Interfacial Chemistry, Nanjing University, Nanjing, 210023, P. R. China
| | - Meng Yin
- Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, 1678 Dong Fang Road, Shanghai 200127, P. R. China.
| |
Collapse
|
20
|
He M, Wang D, Xu Y, Jiang F, Zheng J, Feng Y, Cao J, Zhou X. Nitric Oxide-Releasing Platforms for Treating Cardiovascular Disease. Pharmaceutics 2022; 14:pharmaceutics14071345. [PMID: 35890241 PMCID: PMC9317153 DOI: 10.3390/pharmaceutics14071345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/14/2022] [Accepted: 06/22/2022] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the first leading cause of death globally. Nitric oxide (NO) is an important signaling molecule that mediates diverse processes in the cardiovascular system, thereby providing a fundamental basis for NO-based therapy of CVD. At present, numerous prodrugs have been developed to release NO in vivo. However, the clinical application of these prodrugs still faces many problems, including the low payloads, burst release, and non-controlled delivery. To address these, various biomaterial-based platforms have been developed as the carriers to deliver NO to the targeted tissues in a controlled and sustained manner. This review aims to summarize recent developments of various therapeutic platforms, engineered to release NO for the treatment of CVD. In addition, two potential strategies to improve the effectiveness of existing NO therapy are also discussed, including the combination of NO-releasing platforms and either hydrogen sulfide-based therapy or stem cell therapy. Hopefully, some NO-releasing platforms may provide important therapeutic benefits for CVD.
Collapse
Affiliation(s)
- Mingyue He
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Deping Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Yumei Xu
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
| | - Fangying Jiang
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
| | - Jian Zheng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Department of Breast Surgery, Shanxi Provincial Cancer Hospital, Shanxi Medical University, Taiyuan 030001, China
| | - Yanlin Feng
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| | - Xin Zhou
- Department of Medical Imaging, Shanxi Medical University, Taiyuan 030001, China; (M.H.); (Y.X.)
- Key Laboratory of Cellular Physiology, Ministry of Education, The Department of Physiology, Shanxi Medical University, Taiyuan 030001, China; (D.W.); (F.J.); (J.Z.)
- Correspondence: (Y.F.); (J.C.); (X.Z.)
| |
Collapse
|
21
|
Dou J, Yang R, Jin X, Li P, Han X, Wang L, Chi B, Shen J, Yuan J. Nitric oxide-releasing polyurethane/ S-nitrosated keratin mats for accelerating wound healing. Regen Biomater 2022; 9:rbac006. [PMID: 35592138 PMCID: PMC9113238 DOI: 10.1093/rb/rbac006] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/24/2022] [Accepted: 01/24/2022] [Indexed: 10/07/2023] Open
Abstract
Nitric oxide (NO) plays an important role in wound healing, due to its ability to contract wound surfaces, dilate blood vessels, participate in inflammation as well as promote collagen synthesis, angiogenesis and fibroblast proliferation. Herein, keratin was first nitrosated to afford S-nitrosated keratin (KSNO). As a NO donor, KSNO was then co-electrospun with polyurethane (PU). These as-spun PU/KSNO biocomposite mats could release NO sustainably for 72 h, matching the renewal time of the wound dressing. Moreover, these mats exhibited excellent cytocompatibility with good cell adhesion and cell migration. Further, the biocomposite mats exhibited antibacterial properties without inducing severe inflammatory responses. The wound repair in vivo demonstrated that these mats accelerated wound healing by promoting tissue formation, collagen deposition, cell migration, re-epithelialization and angiogenesis. Overall, PU/KSNO mats may be promising candidates for wound dressing.
Collapse
Affiliation(s)
- Jie Dou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Rong Yang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Xingxing Jin
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Pengfei Li
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Lijuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| | - Jiang Yuan
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P.R. China
| |
Collapse
|
22
|
Huang W, Huo M, Cheng N, Wang R. New Forms of Electrospun Nanofibers Applied in Cardiovascular Field. Front Cardiovasc Med 2022; 8:801077. [PMID: 35127862 PMCID: PMC8814313 DOI: 10.3389/fcvm.2021.801077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/29/2021] [Indexed: 11/29/2022] Open
Abstract
Cardiovascular disease (CVD) is one of the leading causes of death worldwide. In recent years, regenerative medicine, tissue engineering and the development of new materials have become the focus of attention this field, and electrospinning technology to prepare nanofibrous materials for the treatment of cardiovascular diseases has attracted people's attention. Unlike previous reviews, this research enumerates the experimental methods and applications of electrospinning technology combined with nanofibrous materials in the directions of myocardial infarction repair, artificial heart valves, artificial blood vessels and cardiovascular patches from the perspective of cardiovascular surgery. In the end, this review also summarizes the limitations, unresolved technical challenges, and possible future directions of this technology for cardiovascular disease applications.
Collapse
Affiliation(s)
- Weimin Huang
- Baotou Clinical Medical College, Inner Mongolia Medical University, Hohhot, China
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mengen Huo
- Institute of Poisons and Drugs, Beijing Academy of Military Medical Sciences, Beijing, China
| | - Nan Cheng
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
| | - Rong Wang
- Department of Cardiac Surgery, Chinese PLA General Hospital, Beijing, China
- *Correspondence: Rong Wang
| |
Collapse
|
23
|
Bian Q, Chen J, Weng Y, Li S. Endothelialization strategy of implant materials surface: The newest research in recent 5 years. J Appl Biomater Funct Mater 2022; 20:22808000221105332. [PMID: 35666145 DOI: 10.1177/22808000221105332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, more and more metal or non-metal materials have been used in the treatment of cardiovascular diseases, but the vascular complications after transplantation are still the main factors restricting the clinical application of most grafts, such as acute thrombosis and graft restenosis. Implant materials have been extensively designed and surface optimized by researchers, but it is still too difficult to avoid complications. Natural vascular endodermis has excellent function, anti-coagulant and anti-intimal hyperplasia, and it is also the key to maintaining the homeostasis of normal vascular microenvironment. Therefore, how to promote the adhesion of endothelial cells (ECs) on the surface of cardiovascular materials to achieve endothelialization of the surface is the key to overcoming the complications after implant materialization. At present, the surface endothelialization design of materials based on materials surface science, bioactive molecules, and biological function intervention and feedback has attracted much attention. In this review, we summarize the related research on the surface modification of materials by endothelialization in recent years, and analyze the advantages and challenges of current endothelialization design ideas, explain the relationship between materials, cells, and vascular remodeling in order to find a more ideal endothelialization surface modification strategy for future researchers to meet the requirements of clinical biocompatibility of cardiovascular materials.
Collapse
Affiliation(s)
- Qihao Bian
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Junying Chen
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yajun Weng
- Key Laboratory of Advanced Technology of Materials, Ministry of Education, Southwest Jiaotong University, Chengdu, China.,School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Suiyan Li
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
24
|
Kuchinka J, Willems C, Telyshev DV, Groth T. Control of Blood Coagulation by Hemocompatible Material Surfaces-A Review. Bioengineering (Basel) 2021; 8:215. [PMID: 34940368 PMCID: PMC8698751 DOI: 10.3390/bioengineering8120215] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/10/2021] [Accepted: 12/12/2021] [Indexed: 11/16/2022] Open
Abstract
Hemocompatibility of biomaterials in contact with the blood of patients is a prerequisite for the short- and long-term applications of medical devices such as cardiovascular stents, artificial heart valves, ventricular assist devices, catheters, blood linings and extracorporeal devices such as artificial kidneys (hemodialysis), extracorporeal membrane oxygenation (ECMO) and cardiopulmonary bypass. Although lower blood compatibility of materials and devices can be handled with systemic anticoagulation, its side effects, such as an increased bleeding risk, make materials that have a better hemocompatibility highly desirable, particularly in long-term applications. This review provides a short overview on the basic mechanisms of blood coagulation including plasmatic coagulation and blood platelets, as well as the activation of the complement system. Furthermore, a survey on concepts for tailoring the blood response of biomaterials to improve the hemocompatibility of medical devices is given which covers different approaches that either inhibit interaction of material surfaces with blood components completely or control the response of the coagulation system, blood platelets and leukocytes.
Collapse
Affiliation(s)
- Janna Kuchinka
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
| | - Dmitry V. Telyshev
- Institute of Biomedical Systems, National Research University of Electronic Technology, Zelenograd, 124498 Moscow, Russia;
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany; (J.K.); (C.W.)
- Laboratory of Biomedical Nanotechnologies, Institute of Bionic Technologies and Engineering, I.M. Sechenov First Moscow State University, 119991 Moscow, Russia
- Interdisciplinary Center of Materials Science, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany
| |
Collapse
|