1
|
Navab F, Rezaei A, Rouhani MH, Shahdadian F, Alikord M. Vitamin D3 capsulation using maillard reaction complex of sodium caseinate and tragacanth gum. Food Chem X 2024; 24:101910. [PMID: 39553234 PMCID: PMC11564911 DOI: 10.1016/j.fochx.2024.101910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
The encapsulation of vitamin D3 (VitD3) using the Maillard reaction complex of sodium caseinate-tragacanth gum (TG) to the production of water-soluble vitamins were studied. Spray drying was used to prepare the complex. Its physicochemical properties, stability, and release characteristics were evaluated. The results showed that containing sodium caseinate- Tragacanth gum (TG) 1 % (w/v) and VitD3 1 % (w/v) had the highest encapsulation efficiency (71 %). The resulting microcapsules showed suitable particle size, strong negative zeta potential, and good stability with spherical morphology. Thermal and spectroscopic analyses showed proper interaction between wall and core components. In vitro, release and simulated digestion studies demonstrated the ability of microcapsules to protect VitD3 under gastric conditions and provide controlled release in the intestine. This encapsulation system shows potential for enriching food with VitD3 and increasing its stability and bioavailability.
Collapse
Affiliation(s)
- Fatemeh Navab
- Student Research Committee, Isfahan University of Medical Sciences, Isfahan, Iran
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Atefe Rezaei
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Hossein Rouhani
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Community Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Farnaz Shahdadian
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Clinical Nutrition, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahsa Alikord
- Nutrition and Food Security Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
- Department of Food Science & Technology, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
2
|
Tao J, Zhu L, Zhu L, Lei L, Zhao G. Colloidal lignin particle reinforces the stability of Pickering emulsions prepared with zein nanoparticle. Food Chem 2024; 460:140581. [PMID: 39067384 DOI: 10.1016/j.foodchem.2024.140581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/29/2024] [Accepted: 07/21/2024] [Indexed: 07/30/2024]
Abstract
Zein nanoparticle (ZNP) is at the forefront of research on Pickering emulsions, valued for its self-assembling and surfactant-free nature. Nevertheless, its emulsion stability is undermined by inadequate amphiphilicity. Colloidal lignin particle (CLP), characterized by its antithetical charge and amphiphilic nature, appears the promising for augmenting the stability of ZNP-based emulsion. This study meticulously investigated the impact of CLP on the colloidal properties and emulsifying performance of ZNP. The results revealed that electrostatic interactions between ZNP and CLP significantly mitigated the charge of ZNP and improved its hydrophilic/lipophilic balance. Under optimized conditions (1.0 wt% particle concentration, pH 4.0, 50% oil content), CLP notably reduced droplet sizes (41-225 μm) and enhanced the stability of ZNP-based Pickering emulsion, particularly at ZNP/CLP ratios of 6:4 and 5:5. In nature, CLP improved the stability ZNP-based Pickering emulsions via increased interfacial adsorption, enhanced steric hindrance, and reinforced viscous structure.
Collapse
Affiliation(s)
- Jianming Tao
- College of Food Science, Southwest University, Chongqing 400715, PR China.
| | - Lijun Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Luyi Zhu
- College of Food Science, Southwest University, Chongqing 400715, PR China
| | - Lin Lei
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, PR China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Yan X, Bai X, Liu X, Liu F. Enhanced functional properties of pea protein isolate microgel particles modified with sodium alginate: Mixtures and conjugates. Food Chem 2024; 441:138358. [PMID: 38266315 DOI: 10.1016/j.foodchem.2024.138358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/29/2023] [Accepted: 01/01/2024] [Indexed: 01/26/2024]
Abstract
Protein microgels are emerging as versatile soft particles due to their desirable interfacial activities and functional properties. In this study, pea protein isolate microgel particles (PPIMP) were prepared by heat treatment and transglutaminase crosslinking, and PPIMP were non-covalently and covalently modified with sodium alginate (SA). The effects of polymer ratio and pH on the formation of PPIMP-SA mixtures and conjugates were investigated. The optimal ratio of PPIMP and SA was found to be 20:1, with the optimal pH being 7 and 10, respectively. PPIMP-SA conjugates were prepared by Maillard reaction. It was found that ultrasound (195 W, 40 min) enhanced the degree of glycation of PPIMP, with a highest value of 37.21 ± 0.71 %. SDS-PAGE, browning intensity and FTIR data also confirmed the formation of PPIMP-SA conjugates. Compared with PPIMP and PPIMP-SA mixtures, PPIMP-SA conjugates exhibited better thermal stability, antioxidant, emulsifying and foaming properties, which opens up opportunities for protein microgel in various food applications.
Collapse
Affiliation(s)
- Xiaojia Yan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiangqi Bai
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China
| | - Fuguo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
4
|
Sharkawy A, Rodrigues AE. Plant gums in Pickering emulsions: A review of sources, properties, applications, and future perspectives. Carbohydr Polym 2024; 332:121900. [PMID: 38431409 DOI: 10.1016/j.carbpol.2024.121900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/25/2024] [Accepted: 01/30/2024] [Indexed: 03/05/2024]
Abstract
Recently, there has been an increasing research interest in the development of Pickering emulsions stabilized with naturally derived biopolymeric particles. In this regard, plant gums, obtained as plant exudates or from plant seeds, are considered promising candidates for the development of non-toxic, biocompatible, biodegradable and eco-friendly Pickering stabilizers. The main objective of this review article is to provide a detailed overview and assess the latest advances in the formulation of Pickering emulsions stabilized with plant gum-based particles. The plant gum sources, types and properties are outlined. Besides, the current methodologies used in the production of plant gum particles formed solely of plant gums, or through interactions of plant gums with proteins or other polysaccharides are highlighted and discussed. Furthermore, the work compiles and assesses the innovative applications of plant gum-based Pickering emulsions in areas such as encapsulation and delivery of drugs and active agents, along with the utilization of these Pickering emulsions in the development of active packaging films, plant-based products and low-fat food formulations. The last part of the review presents potential future research trends that are expected to motivate and direct research to areas related to other novel food applications, as well as tissue engineering and environmental applications.
Collapse
Affiliation(s)
- Asma Sharkawy
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal.
| | - Alírio E Rodrigues
- LSRE-LCM, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto, Portugal
| |
Collapse
|
5
|
Mishra S, Sahani S, Pandhi S, Kumar A, Mahato DK, Kumar P, Khaire KC, Rai A. Enhancement in Biological Availability of Vitamins by Nano-engineering and its Applications: An Update. Curr Pharm Biotechnol 2024; 25:1523-1537. [PMID: 37936473 DOI: 10.2174/0113892010251234231025085759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/04/2023] [Accepted: 09/19/2023] [Indexed: 11/09/2023]
Abstract
Vitamin nano-engineering has been accomplished by synthesizing various nanostructures to improve their stability, bioavailability, shelf life, and functioning. This review provides a detailed description of recent advances in the art of encapsulation with high efficiency through the use of practical and logistic nano-engineering techniques such as nanofibres, nanogels, nanobeads, nanotubes, nanoparticles, nanoliposomes, and many other nanostructures. To demonstrate the interaction of molecules with nano-forms, the bioavailability of several vitamins such as B, C, E, A, D, and others in the form of nanostructures is explored. This review will provide a thorough understanding of how to improve bioavailability and nanostructure selection to extend the utility, shelf life, and structural stability of vitamins. While nanoencapsulation can improve vitamin stability and distribution, the materials employed in nanotechnologies may offer concerns if they are not sufficiently tested for safety. If nanoparticles are not adequately designed and evaluated, they may cause inflammation, oxidative stress, or other unwanted effects. Researchers and makers of nanomaterials and medication delivery systems should adhere to established rules and regulations. Furthermore, long-term studies are required to monitor any negative consequences that may result from the use of nanostructure.
Collapse
Affiliation(s)
- Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura-281406, India
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Shalini Sahani
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan 38541, South Korea
| | - Shikha Pandhi
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi-221005, India
| | - Dipendra Kumar Mahato
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pradeep Kumar
- Department of Botany, University of Lucknow, Lucknow, 226007, India
| | - Kaustubh Chandrakant Khaire
- CASS Food Research Centre, School of Exercise and Nutrition Sciences, Deakin University, Burwood, VIC 3125, Australia
| | - Ashutosh Rai
- Department of Basic and Social Sciences, College of Horticulture, Banda University of Agriculture and Technology, Banda-210001, India
| |
Collapse
|
6
|
Reis CA, Gomes A, do Amaral Sobral PJ. Films Based on Biopolymers Incorporated with Active Compounds Encapsulated in Emulsions: Properties and Potential Applications-A Review. Foods 2023; 12:3602. [PMID: 37835255 PMCID: PMC10573032 DOI: 10.3390/foods12193602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
The rising consumer demand for safer, healthier, and fresher-like food has led to the emergence of new concepts in food packaging. In addition, the growing concern about environmental issues has increased the search for materials derived from non-petroleum sources and biodegradable options. Thus, active films based on biopolymers loaded with natural active compounds have great potential to be used as food packaging. However, several lipophilic active compounds are difficult to incorporate into aqueous film-forming solutions based on polysaccharides or proteins, and the hydrophilic active compounds require protection against oxidation. One way to incorporate these active compounds into film matrices is to encapsulate them in emulsions, such as microemulsions, nanoemulsions, Pickering emulsions, or double emulsions. However, emulsion characteristics can influence the properties of active films, such as mechanical, barrier, and optical properties. This review addresses the advantages of using emulsions to encapsulate active compounds before their incorporation into biopolymeric matrices, the main characteristics of these emulsions (emulsion type, droplet size, and emulsifier nature), and their influence on active film properties. Furthermore, we review the recent applications of the emulsion-charged active films in food systems.
Collapse
Affiliation(s)
- Camily Aparecida Reis
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
| | - Andresa Gomes
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| | - Paulo José do Amaral Sobral
- Department of Food Engineering, Faculty of Animal Science and Food Engineering, University of São Paulo, Pirassununga 13635-900, SP, Brazil; (C.A.R.); (P.J.d.A.S.)
- Food Research Center (FoRC), University of São Paulo, Rua do Lago, 250, Semi-Industrial Building, Block C, São Paulo 05508-080, SP, Brazil
| |
Collapse
|
7
|
Xie A, Zhao S, Liu Z, Yue X, Shao J, Li M, Li Z. Polysaccharides, proteins, and their complex as microencapsulation carriers for delivery of probiotics: A review on carrier types and encapsulation techniques. Int J Biol Macromol 2023; 242:124784. [PMID: 37172705 DOI: 10.1016/j.ijbiomac.2023.124784] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Probiotics provide several benefits for humans, including restoring the balance of gut bacteria, boosting the immune system, and aiding in the management of certain conditions such as irritable bowel syndrome and lactose intolerance. However, the viability of probiotics may undergo a significant reduction during food storage and gastrointestinal transit, potentially hindering the realization of their health benefits. Microencapsulation techniques have been recognized as an effective way to improve the stability of probiotics during processing and storage and allow for their localization and slow release in intestine. Although, numerous techniques have been employed for the encapsulation of probiotics, the encapsulation techniques itself and carrier types are the main factors affecting the encapsulate effect. This work summarizes the applications of commonly used polysaccharides (alginate, starch, and chitosan), proteins (whey protein isolate, soy protein isolate, and zein) and its complex as the probiotics encapsulation materials; evaluates the evolutions in microencapsulation technologies and coating materials for probiotics, discusses their benefits and limitations, and provides directions for future research to improve targeted release of beneficial additives as well as microencapsulation techniques. This study provides a comprehensive reference for current knowledge pertaining to microencapsulation in probiotics processing and suggestions for best practices gleaned from the literature.
Collapse
Affiliation(s)
- Aijun Xie
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 119077, Singapore
| | - Shanshan Zhao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Zifei Liu
- Department of Food Science and Technology, National University of Singapore, 117542, Singapore
| | - Xiqing Yue
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Junhua Shao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Mohan Li
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China; Department of Food Science and Technology, National University of Singapore, 117542, Singapore.
| | - Zhiwei Li
- Jiangsu Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, 213164, Jiangsu, China.
| |
Collapse
|
8
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Chitosan-based Pickering emulsion: A comprehensive review on their stabilizers, bioavailability, applications and regulations. Carbohydr Polym 2023; 304:120491. [PMID: 36641178 DOI: 10.1016/j.carbpol.2022.120491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/13/2022] [Accepted: 12/19/2022] [Indexed: 12/28/2022]
Abstract
BACKGROUND Chitosan-based particles are one of the most promising Pickering emulsions stabilizers due to its cationic properties, cost-effective, biocompatibility, biodegradability. However, there are currently no comprehensive reviews analyzing the role of chitosan to develop Pickering emulsions, and the bioavailability and multiple uses of these emulsions. SCOPE AND APPROACH This review firstly summarizes the types, preparation and functional properties of chitosan-based Pickering emulsion stabilizers, followed by in vivo and in vitro bioavailability, main regulations, and future application and trends. KEY FINDINGS AND CONCLUSIONS Stabilizers used in chitosan-based Pickering emulsions include 6 categories: chitosan self-aggregating particles and 5 types of composites (chitosan-protein, chitosan-polysaccharide, chitosan-fatty acid, chitosan-polyphenol, and chitosan-inorganic). Chitosan-based Pickering emulsions improved the bioavailability of different compounds compared to traditional emulsions. Current applications include hydrogels, microcapsules, food ingredients, bio-based films, cosmeceuticals, porous scaffolds, environmental protection agents, and interfacial catalysis systems. However, due to current limitations, more research and development are needed to be extensively explored to meet consumer demand, industrial manufacturing, and regulatory requirements. Thus, optimization of stabilizers, bioavailability studies, 3D4D printing, fat substitutes, and double emulsions are the main potential development trends or research gaps in the field which would contribute to increase adoption of these promising emulsions at industrial level.
Collapse
Affiliation(s)
- Weihao Meng
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hongnan Sun
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Taihua Mu
- Laboratory of Food Chemistry and Nutrition Science, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China; Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, No.2 Yuan Ming Yuan West Road, Haidian District, 5109, Beijing 100193, PR China.
| | - Marco Garcia-Vaquero
- School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
9
|
Li W, Huang D, Song W, Ouyang F, Li W, Song Y, Li F, Jiang Y, Huang Q, Li D. Pickering emulsions stabilized by zein-proanthocyanidins-pectin ternary composites (ZPAAPs): Construction and delivery studies. Food Chem 2023; 404:134642. [DOI: 10.1016/j.foodchem.2022.134642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 10/07/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022]
|
10
|
Yang Y, Gupta VK, Amiri H, Pan J, Aghbashlo M, Tabatabaei M, Rajaei A. Recent developments in improving the emulsifying properties of chitosan. Int J Biol Macromol 2023; 239:124210. [PMID: 37001778 DOI: 10.1016/j.ijbiomac.2023.124210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/21/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Chitosan is one of the valuable products obtained from crustacean waste. The unique characteristics of chitosan (antimicrobial, antioxidant, anticancer, and anti-inflammatory) have increased its application in various sectors. Besides unique biological properties, chitosan or chitosan-based compounds can stabilize emulsions. Nevertheless, studies have shown that chitosan cannot be used as an efficient stabilizer because of its high hydrophilicity. Hence, this review aims to provide an overview of recent studies dealing with improving the emulsifying properties of chitosan. In general, two different approaches have been reported to improve the emulsifying properties of chitosan. The first approach tries to improve the stabilization property of chitosan by modifying its structure. The second one uses compounds such as polysaccharides, proteins, surfactants, essential oils, and polyphenols with more wettability and emulsifying properties than chitosan's particles in combination with chitosan to create complex particles. The tendency to use chitosan-based particles to stabilize Pickering emulsions has recently increased. For this reason, more studies have been conducted in recent years to improve the stabilizing properties of chitosan-based particles, especially using the electrostatic interaction method. In the electrostatic interaction method, numerous research has been conducted on using proteins and polysaccharides to increase the stabilizing property of chitosan.
Collapse
Affiliation(s)
- Yadong Yang
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Vijai Kumar Gupta
- Centre for Safe and Improved Food, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK; Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Hamid Amiri
- Department of Biotechnology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan 81746-73441, Iran; Environmental Research Institute, University of Isfahan, Isfahan 81746-73441, Iran
| | - Junting Pan
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Mortaza Aghbashlo
- Department of Mechanical Engineering of Agricultural Machinery, Faculty of Agricultural Engineering and Technology, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran.
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India.
| | - Ahmad Rajaei
- Department of Food Science and Technology, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
| |
Collapse
|
11
|
Citral and cinnamaldehyde – Pickering emulsion stabilized by zein coupled with chitosan against Aspergillus. spp and their application in food storage. Food Chem 2023; 403:134272. [DOI: 10.1016/j.foodchem.2022.134272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 08/21/2022] [Accepted: 09/12/2022] [Indexed: 11/18/2022]
|
12
|
Song S, Li Y, Zhu Q, Zhang X, Wang Y, Tao L, Yu L. Structure and properties of Pickering emulsions stabilized solely with novel buckwheat protein colloidal particles. Int J Biol Macromol 2023; 226:61-71. [PMID: 36493922 DOI: 10.1016/j.ijbiomac.2022.12.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
In this paper, buckwheat protein colloidal particles (BPCPs) were prepared by heat treatment to stabilize oil-water interface. The results of particle size, surface hydrophobicity and wettability indicated that the prepared BPCPs could be used as novel Pickering emulsifier. The effects of BPCPs concentration, ionic strength and heat treatment on the structure and properties of Pickering emulsions were explored. The microstructure results showed that BPCPs could tightly coated on the surface of oil droplets to form a tight interfacial film, confirming that BPCPs could be used as an effective Pickering-like stabilizer. With the increase of BPCPs concentration, the droplet size of the Pickering emulsion gradually decreased, and the viscoelasticity and storage stability of the emulsion were effectively improved. Different from the effect of ionic strength, heat treatment was beneficial to increasing the viscoelasticity of BPCPs-stabilized Pickering emulsion. The Pickering emulsions exhibited certain flocculation at different temperatures and ionic strengths, while still maintained good solid-like behavior. These results suggest that the structure and properties of BPCPs-stabilized Pickering emulsion could be regulated by changing the ionic strength and temperature.
Collapse
Affiliation(s)
- Shixin Song
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yufei Li
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Qiyuan Zhu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Xin Zhang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Yang Wang
- National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, PR China
| | - Li Tao
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China
| | - Lei Yu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, PR China; National Engineering Laboratory of Wheat and Corn Deep Processing, Changchun 130118, PR China.
| |
Collapse
|
13
|
Meng W, Sun H, Mu T, Garcia-Vaquero M. Pickering emulsions with chitosan and macroalgal polyphenols stabilized by layer-by-layer electrostatic deposition. Carbohydr Polym 2023; 300:120256. [DOI: 10.1016/j.carbpol.2022.120256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/02/2022] [Accepted: 10/20/2022] [Indexed: 11/07/2022]
|
14
|
Huang D, Li W, Li G, Zhang W, Chen H, Jiang Y, Li D. Effect of high-intensity ultrasound on the physicochemical properties of Tenebrio Molitor Protein. Food Hydrocoll 2023. [DOI: 10.1016/j.foodhyd.2022.108056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
15
|
Zhao T, Huang K, Luo Y, Li Y, Cheng N, Mei X. Preparation and characterization of high internal phase Pickering emulsions stabilized by hordein-chitosan composite nanoparticles. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
de Carvalho-Guimarães FB, Correa KL, de Souza TP, Rodríguez Amado JR, Ribeiro-Costa RM, Silva-Júnior JOC. A Review of Pickering Emulsions: Perspectives and Applications. Pharmaceuticals (Basel) 2022; 15:1413. [PMID: 36422543 PMCID: PMC9698490 DOI: 10.3390/ph15111413] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 09/10/2023] Open
Abstract
Pickering emulsions are systems composed of two immiscible fluids stabilized by organic or inorganic solid particles. These solid particles of certain dimensions (micro- or nano-particles), and desired wettability, have been shown to be an alternative to conventional emulsifiers. The use of biodegradable and biocompatible stabilizers of natural origin, such as clay minerals, presents a promising future for the development of Pickering emulsions and, with this, they deliver some advantages, especially in the area of biomedicine. In this review, the effects and characteristics of microparticles in the preparation and properties of Pickering emulsions are presented. The objective of this review is to provide a theoretical basis for a broader type of emulsion, in addition to reviewing the main aspects related to the mechanisms and applications to promote its stability. Through this review, we highlight the use of this type of emulsion and its excellent properties as permeability promoters of solid particles, providing ideal results for local drug delivery and use in Pickering emulsions.
Collapse
Affiliation(s)
| | - Kamila Leal Correa
- Laboratory of Pharmaceutical and Cosmetic R&D, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | - Tatiane Pereira de Souza
- Laboratory of Innovation and Development in Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Federal University of Amazonas, Manaus 69077-000, Brazil
| | - Jesus Rafael Rodríguez Amado
- Laboratory of Pharmaceutical Technology, Faculty of Pharmacy, Food and Nutrition, Federal University of Mato-Grosso do Sul, Campo Grande 79070-900, Brazil
| | - Roseane Maria Ribeiro-Costa
- Laboratory of Pharmaceutical Nanotechnology, College of Pharmacy, Federal University of Pará, Belém 66075-110, Brazil
| | | |
Collapse
|
17
|
Wang H, Li HM, Li ZZ, Liang XY, Lei L, Yuan Y. Novel strategy for color-controllable Pickering emulsion: Location control of pigments at different phase. J FOOD ENG 2022. [DOI: 10.1016/j.jfoodeng.2022.111038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Ge S, Jia R, Li Q, Liu W, Liu M, Cai D, Zheng M, Liu H, Liu J. Pickering emulsion stabilized by zein/Adzuki bean seed coat polyphenol nanoparticles to enhance the stability and bioaccessibility of astaxanthin. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|