1
|
Jawad AH, Maharani RA, Hapiz A, Khadiran T, Jani NA, ALOthman ZA, Wilson LD. Freeze-drying synthesis of mesoporous magnetic grafted chitosan/calcium oxide nanoparticle for remazol brilliant blue dye removal: A statistical optimization. Int J Biol Macromol 2025; 286:138373. [PMID: 39643197 DOI: 10.1016/j.ijbiomac.2024.138373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 06/17/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Herein, a mesoporous magnetic chitosan-salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO/Fe3O4) biocomposite adsorbent that was prepared via freeze-drying. The CS-SL/CaO/Fe3O4 was utilized for the adsorption of ramazol brilliant blue (RBB) dye from aqueous solution. The physicochemical properties of the CS-SL/CaO/Fe3O4 were evaluated using diverse characterization techniques, including BET, XRD, FTIR, FESEM-EDX, CHNS, and pHpzc. The three main factors for adsorption included the following A: CS-SL/CaO/Fe3O4 dosage (0.02-0.1 g/100 mL), B: pH (4-10), and C: Time (60-540 min). These factors were improved using statistical methods, specifically the Box-Behnken design (BBD). The optimal conditions for achieving maximum RBB removal (62.5 %) are listed: CS-SL/CaO/Fe3O4 dosage of 0.1 g/100 mL, a solution pH of 7, and a contact time of 540 min. The adsorption kinetics and equilibrium isotherms were well described by the pseudo first order (PFO) kinetic and Langmuir isotherm models, respectively. Thus, the CS-SL/CaO/Fe3O4 material has a maximum adsorption capacity (qmax) of 63.3 mg/g for RBB at 25 °C. The adsorption mechanism of RBB onto the CS-SL/CaO/Fe3O4 surface was attributed to electrostatic forces, n-π stacking, H-bonding, and Pi-Pi interactions. Thus, CS-SL/CaO/Fe3O4 represents a recoverable magnetic adsorbent with potential for capture of organic dyes from wastewater.
Collapse
Affiliation(s)
- Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Rosika Armiyanti Maharani
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), Kepong, Selangor, Malaysia
| | - Nur Aimi Jani
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
El-Kholy SA. Environmentally Benign Freeze-dried Biopolymer-Based Cryogels for Textile Wastewater Treatments: A review. Int J Biol Macromol 2024; 276:133931. [PMID: 39032896 DOI: 10.1016/j.ijbiomac.2024.133931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/04/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Motivated by sustainability and environmental protection, great efforts have been paid towards water purification and attaining complete decolorization and detoxification of polluted water effluent. Textile effluent, the main participant in water pollution, is a complicated mixture of toxic pollutants which seriously impact human health and the entire ecosystem. Developing effective materials for potential removal of the water contaminants is urgent. Recently, cryogels have been applied in wastewater sectors due to their unique physiochemical attributes(e.g. high surface area, lightweight, porosity, swelling-deswelling, and high permeability). These features robustly affected the cryogel's performance, as adsorbent material, particularly in wastewater sectors. This review serves as a detailed reference to the cryogels derived from biopolymers and applied as adsorbents for the purification of textile drainage. We displayed an overview of: the existing contaminants in textile effluents (dyes and heavy metals), their sources, and toxicity; advantages and disadvantages of the most common treatment techniques (biodegradation, advanced chemical oxidation, membrane filtration, coagulation/flocculation, adsorption). A simple background about cryogels (definition, cryogelation technique, significant features as adsorbents, and the adsorption mechanisms) is also discussed. Finally, the bio-based cryogels dependent on biopolymers such as chitosan, xanthan, cellulose, PVA, and PVP, are fully discussed with evaluating their maximum adsorption capacity.
Collapse
Affiliation(s)
- Samar A El-Kholy
- Chemistry Department, Faculty of Science, Menoufia University, Shebin El Koom 32511, Egypt.
| |
Collapse
|
3
|
Afzaal M, Nawaz R, Hussain S, Nadeem M, Irshad MA, Irfan A, Mannan HA, Al-Mutairi AA, Islam A, Al-Hussain SA, Rubab M, Zaki MEA. Removal of oxytetracycline from pharmaceutical wastewater using kappa carrageenan hydrogel. Sci Rep 2024; 14:19687. [PMID: 39181917 PMCID: PMC11344773 DOI: 10.1038/s41598-024-69989-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024] Open
Abstract
This study investigated the adsorption of Oxytetracycline (OTC) from pharmaceutical wastewater using a kappa carrageenan based hydrogel (KPB). The aim of the present study was to explore the potential of KPB for long-term pharmaceutical wastewater treatment. A sustainable adsorbent was developed to address oxytetracycline (OTC) contamination. The hydrogel's structural and adsorption characteristics were examined using various techniques like Scanning Electron Microscope (SEM), Fourier Transform Infrared (FTIR), X-ray powder diffraction (XRD), and kinetic models. The results revealed considerable changes in the vibrational modes and adsorption bands of the hydrogel, suggesting the effective functionalization of Bentonite nano-clay. Kappa carrageenan based hydrogel achieved the maximum removal (98.5%) of OTC at concerntration of 40 mg/L, pH 8, cotact time of 140 min and adsorbent dose of 0.1 g (KPB-3). Adsorption of OTC increased up to 99% with increasing initial concentrations. The study achieved 95% adsorption capacity for OTC using a KPB film at a concentration of 20 mg/L and a 0.1 g adsorbent dose within 60 min. It also revealed that chemisorptions processes outperform physical adsorption. The Pseudo-Second-Order model, which emphasized the importance of chemical adsorption in the removal process, is better suited to represent the adsorption behavior. Excellent matches were found that R2 = 0.99 for KPB-3, R2 = 0.984 for KPB-2 and R2 = 0.989 for KPB-1 indicated strong chemical bonding interactions. Statisctical analysis (ANOVA) was performed using SPSS (version 25) and it was found that pH and concentration had significant influence on OTC adsorption by the hydrogel, with p-values less than 0.05. The study identified that a Kappa carrageenan-based hydrogel with bentonite nano-clay and polyvinyl alcohol (PVA) can efficiently remove OTC from pharmaceutical effluent, with a p-value of 0.054, but weak positive linear associations with pH, temperature, and contact time. This research contributed to sustainable wastewater treatment and environmental engineering.
Collapse
Affiliation(s)
- Muhammad Afzaal
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan.
| | - Rab Nawaz
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
- Faculty of Engineering and Quantity Surveying, INTI International University, 71800, Nilai, Negeri Sembilan, Malaysia
| | - Saddam Hussain
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Mahnoor Nadeem
- Sustainable Development Study Centre, Government College University Lahore, Lahore, 54000, Pakistan
| | - Muhammad Atif Irshad
- Department of Environmental Sciences, The University of Lahore, Lahore, 54000, Pakistan
| | - Ali Irfan
- Department of Chemistry, Government College University Faisalabad, Faisalabad, 38000, Pakistan.
| | - Hafiz Abdul Mannan
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Aamal A Al-Mutairi
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Atif Islam
- Institute of Polymer and Textile Engineering, University of the Punjab, Lahore, 54590, Pakistan
- School of Chemistry, University of the Punjab, Lahore, 54590, Pakistan
| | - Sami A Al-Hussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia
| | - Mehwish Rubab
- Department of Environmental Science, University of Okara, Renala Khurd Okara, 56130, Pakistan
| | - Magdi E A Zaki
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| |
Collapse
|
4
|
Chen LH, Ban C, Helal MH, El-Bahy SM, Zeinhom M, Song S, Zhao YG, Lu Y. Preparation and modification of polymer microspheres, application in wastewater treatment: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121807. [PMID: 39025011 DOI: 10.1016/j.jenvman.2024.121807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 06/19/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
The removal of various pollutants from water is necessary due to the increasing requirements for the removal of various pollutants from wastewater and the quality of drinking water. Polymer microspheres are regarded as exemplary adsorbent materials due to their high adsorption efficiency, excellent adsorption performance, and ease of handling. Herein, the advantages and disadvantages of different preparation methods, modifications, applications and the current research status of polymer microspheres are summarized at large. Furthermore, the enhanced performance of modified composite microspheres is emphasized, including adsorption efficiency, thermal stability, and significant improvements in physical and chemical properties. Subsequently, the current applications and potential of polymeric microspheres for wastewater treatment, including the removal of inorganic and organic pollutants, heavy metal ions, and other contaminants are summarized. Finally, future research directions for polymer microspheres are proposed, outlining the challenges and solutions associated with the application of polymer microspheres in wastewater treatment.
Collapse
Affiliation(s)
- Li-Hui Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China; College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Cao Ban
- Zhejiang Institute of Geosciences, Zhejiang, 310015, China
| | - Mohamed H Helal
- Department of Chemistry, Faculty of Arts and Science, Northern Border University, Rafha, Saudi Arabia
| | - Salah M El-Bahy
- Department of Chemistry, Turabah University College, Taif University, Turabah, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - M Zeinhom
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City, 11884, Cairo, Egypt
| | - Shuang Song
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yong-Gang Zhao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Yin Lu
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou, 310015, China.
| |
Collapse
|
5
|
Al-salem AS, Nayl AA, Alshammari MS, M Ahmed I. Adsorption Study of Neodymium from the Aqueous Phase Using Fabricated Magnetic Chitosan-Functionalized Graphene Oxide Composites. ACS OMEGA 2024; 9:32175-32184. [PMID: 39072114 PMCID: PMC11270553 DOI: 10.1021/acsomega.4c04742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/30/2024]
Abstract
This work reports the performances of the magnetic chitosan@graphene oxide composite (MCh@GO) for the sorption of Nd(III) from aqueous medium. The prepared composite was synthesized by a coprecipitation method and then examined by FT-IR, XRD, SEM, and TGA. XRD analysis proved physical interactions between magnetic chitosan and graphene oxide through (inter- and intramolecular H-bonding and peptide bonding). TGA data approved the thermal stability of the prepared MCh@GO nanocomposite over their constituents. The optimum pH for the sorption process was 4.5. The Langmuir model and PSO fitted the experimental data. The adsorption process was found to be endothermic and spontaneous with a Q max of 56.6 mg g-1. Indeed, the MCh@GO composite proved to be an excellent adsorbent for the purification, remediation, and separation of Nd due to its promising properties.
Collapse
Affiliation(s)
- Asmaa S. Al-salem
- Department
of Nursing, Northern College of Nursing, Arar 73311, Saudi Arabia
| | - AbdEIAziz A. Nayl
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Mutairah S. Alshammari
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Ismail M Ahmed
- Department
of Chemistry, College of Science, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| |
Collapse
|
6
|
Tan J, Kong L, Huang Q, Gan Y, Lu S. Harnessing the power of polyethyleneimine in modifying chitosan surfaces for efficient anion dyes and hexavalent chromium removal. ENVIRONMENTAL RESEARCH 2024; 247:118192. [PMID: 38224939 DOI: 10.1016/j.envres.2024.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.
Collapse
Affiliation(s)
- Jisuan Tan
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China.
| | - Lingzhen Kong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Qiaoxian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Yulin Gan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
7
|
Niculescu AG, Mihaiescu B, Mihaiescu DE, Hadibarata T, Grumezescu AM. An Updated Overview of Magnetic Composites for Water Decontamination. Polymers (Basel) 2024; 16:709. [PMID: 38475395 DOI: 10.3390/polym16050709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Water contamination by harmful organic and inorganic compounds seriously burdens human health and aquatic life. A series of conventional water purification methods can be employed, yet they come with certain disadvantages, including resulting sludge or solid waste, incomplete treatment process, and high costs. To overcome these limitations, attention has been drawn to nanotechnology for fabricating better-performing adsorbents for contaminant removal. In particular, magnetic nanostructures hold promise for water decontamination applications, benefiting from easy removal from aqueous solutions. In this respect, numerous researchers worldwide have reported incorporating magnetic particles into many composite materials. Therefore, this review aims to present the newest advancements in the field of magnetic composites for water decontamination, describing the appealing properties of a series of base materials and including the results of the most recent studies. In more detail, carbon-, polymer-, hydrogel-, aerogel-, silica-, clay-, biochar-, metal-organic framework-, and covalent organic framework-based magnetic composites are overviewed, which have displayed promising adsorption capacity for industrial pollutants.
Collapse
Affiliation(s)
- Adelina-Gabriela Niculescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Bogdan Mihaiescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| | - Dan Eduard Mihaiescu
- Department of Organic Chemistry, Politehnica University of Bucharest, 011061 Bucharest, Romania
| | - Tony Hadibarata
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
- Environmental Engineering Program, Faculty of Engineering and Science, Curtin University, Miri 98009, Malaysia
| | - Alexandru Mihai Grumezescu
- Research Institute of the University of Bucharest-ICUB, University of Bucharest, 050657 Bucharest, Romania
- Department of Science and Engineering of Oxide Materials and Nanomaterials, University Politehnica of Bucharest, Gh. Polizu St. 1-7, 060042 Bucharest, Romania
| |
Collapse
|
8
|
Shao Z, Jiang X, Lin Q, Wu S, Zhao S, Sun X, Cheng Y, Fang Y, Li P. Nano‑selenium functionalized chitosan gel beads for Hg(II) removal from apple juice. Int J Biol Macromol 2024; 261:129900. [PMID: 38316329 DOI: 10.1016/j.ijbiomac.2024.129900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 01/07/2024] [Accepted: 01/30/2024] [Indexed: 02/07/2024]
Abstract
The presence of potentially toxic elements and compounds poses threats to the quality and safety of fruit juices. Among these, Hg(II) is considered as one of the most poisonous heavy metals to human health. Traditional chitosan-based and selenide-based adsorbents face challenges such as poor adsorption capacity and inconvenient separation in juice applications. In this study, we prepared nano‑selenium functionalized chitosan gel beads (nanoSe@CBs) and illustrated the synergistic promotions between chitosan and nanoSe in removing Hg(II) from apple juice. The preparation conditions, adsorption behaviors, and adsorption mechanism of nanoSe@CBs were systematically investigated. The results revealed that the adsorption process was primarily controlled by chemical adsorption. At the 0.1 % dosage, the adsorbent exhibited high uptake, and the maximum adsorption capacity from the Langmuir isotherm model could reach 376.5 mg/g at room temperature. The adsorbent maintained high adsorption efficiency (> 90 %) across a wide range of Hg(II) concentrations (0.01 to 10 mg/L) and was unaffected by organic acids present in apple juice. Additionally, nanoSe@CBs showed negligible effects on the quality of apple juice. Overall, nanoSe@CBs open up possibilities to be used as a safe, low-cost and highly-efficient adsorbent for the removal of Hg(II) from juices and other liquid foods.
Collapse
Affiliation(s)
- Zhiying Shao
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China; Key Laboratory of Modern Agriculture Equipment and Technology, School of Agricultural Engineering, Jiangsu University, Zhenjiang, China
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha, China
| | - Simiao Wu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Yunhui Cheng
- College of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China.
| |
Collapse
|
9
|
Luo K, Wang Q, Xin Q, Lei Z, Hu E, Wang H, Wang H, Liang F. Preparation of novel polyvinyl alcohol-carbon nanotubes containing imidazolyl ionic liquid/chitosan hydrogel for highly efficient uranium extraction from seawater. Int J Biol Macromol 2024; 258:128751. [PMID: 38101661 DOI: 10.1016/j.ijbiomac.2023.128751] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/17/2023]
Abstract
A novel polyvinyl alcohol-carbon nanotube containing an imidazolyl ionic liquid/chitosan composite hydrogel (termed CBCS) was prepared for highly selective uranium adsorption from seawater. The results show that CBCS has good adsorption properties for uranium within the pH range of 5.0-8.0. Kinetics and thermodynamics experiments show that the theoretical maximum adsorption capacity of CBCS to U(VI) is 496.049 mg/g (288 K, pH = 6.0), indicating a spontaneous exothermic reaction. Mechanism analysis shows that the hydroxyl group, amino group, and CN bond on the surface of CBCS directly participate in uranium adsorption and that the dense pores on the surface of CBCS play an important role in uranium adsorption. The competitive adsorption experiment shows that CBCS has excellent uranium adsorption selectivity. In addition, CBCS exhibits good reusability. After five adsorption-desorption cycles, the uranium adsorption rate of CBCS can still reach >98 %. Hence, CBCS has excellent potential for uranium extraction from seawater.
Collapse
Affiliation(s)
- Kaiwen Luo
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qingliang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Xin
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Zhiwu Lei
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Eming Hu
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Hongqing Wang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Hongqiang Wang
- School of Resource & Environment and Safety Engineering, University of South China, Hengyang 421001, China.
| | - Feng Liang
- Henan Key Laboratory of Water Pollution Control and Rehabilitation Technology, School of Municipal and Environmental Engineering, Henan University of Urban Construction, Pingdingshan 467036, China
| |
Collapse
|
10
|
Yadav A, Raghav S, Jangid NK, Srivastava A, Jadoun S, Srivastava M, Dwivedi J. Myrica esculenta Leaf Extract-Assisted Green Synthesis of Porous Magnetic Chitosan Composites for Fast Removal of Cd (II) from Water: Kinetics and Thermodynamics of Adsorption. Polymers (Basel) 2023; 15:4339. [PMID: 37960019 PMCID: PMC10649474 DOI: 10.3390/polym15214339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/29/2023] [Accepted: 10/07/2023] [Indexed: 11/15/2023] Open
Abstract
Heavy metal contamination in water resources is a major issue worldwide. Metals released into the environment endanger human health, owing to their persistence and absorption into the food chain. Cadmium is a highly toxic heavy metal, which causes severe health hazards in human beings as well as in animals. To overcome the issue, current research focused on cadmium ion removal from the polluted water by using porous magnetic chitosan composite produced from Kaphal (Myrica esculenta) leaves. The synthesized composite was characterized by BET, XRD, FT-IR, FE-SEM with EDX, and VSM to understand the structural, textural, surface functional, morphological-compositional, and magnetic properties, respectively, that contributed to the adsorption of Cd. The maximum Cd adsorption capacities observed for the Fe3O4 nanoparticles (MNPs) and porous magnetic chitosan (MCS) composite were 290 mg/g and 426 mg/g, respectively. Both the adsorption processes followed second-order kinetics. Batch adsorption studies were carried out to understand the optimum conditions for the fast adsorption process. Both the adsorbents could be regenerated for up to seven cycles without appreciable loss in adsorption capacity. The porous magnetic chitosan composite showed improved adsorption compared to MNPs. The mechanism for cadmium ion adsorption by MNPs and MCS has been postulated. Magnetic-modified chitosan-based composites that exhibit high adsorption efficiency, regeneration, and easy separation from a solution have broad development prospects in various industrial sewage and wastewater treatment fields.
Collapse
Affiliation(s)
- Anjali Yadav
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapna Raghav
- Department of Chemistry, Nirankari Baba Gurubachan Singh Memorial College, Sohna 122103, India
| | | | - Anamika Srivastava
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| | - Sapana Jadoun
- Departamento de Química, Facultad de Ciencias, Universidad de Tarapacá, Avda. General, Velásquez, Arica 1775, Chile;
| | - Manish Srivastava
- Department of Chemistry, University of Allahabad, Prayagraj 211002, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali 304022, India; (A.Y.)
| |
Collapse
|
11
|
Zhang Y, Mei B, Shen B, Jia L, Liao J, Zhu W. Preparation of biochar@chitosan-polyethyleneimine for the efficient removal of uranium from water environment. Carbohydr Polym 2023; 312:120834. [PMID: 37059560 DOI: 10.1016/j.carbpol.2023.120834] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 03/07/2023] [Accepted: 03/17/2023] [Indexed: 03/28/2023]
Abstract
A novel chitosan-based composite with rich active sites was synthesized by uniformly dispersing biochar into the cross-linked network structure formed by chitosan and polyethyleneimine. Due to the synergistic effect of biochar (minerals) and chitosan-polyethyleneimine interpenetrating network (amino and hydroxyl), the chitosan-based composite possessed an excellent adsorption performance for uranium(VI). It could rapidly (<60 min) achieve a high adsorption efficiency (96.7 %) for uranium(VI) from water and a high static saturated adsorption capacity (633.4 mg/g), which was far superior to other chitosan-based adsorbents. Moreover, the separation for uranium(VI) on the chitosan-based composite was suitable for a variety of actual water environments and the adsorption efficiencies all exceeded 70 % in different water bodies. The soluble uranium(VI) could be completely removed by the chitosan-based composite in the continuous adsorption process, which could meet the permissible limits of the World Health Organization. In sum, the novel chitosan-based composite could overcome the bottleneck of current chitosan-based adsorption materials and become a potential adsorbent for the remediation of actual uranium(VI) contaminated wastewater.
Collapse
Affiliation(s)
- Yong Zhang
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Bingyu Mei
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Binhao Shen
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Lingyi Jia
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China
| | - Jun Liao
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| | - Wenkun Zhu
- State Key Laboratory of Environment-friendly Energy Materials, Sichuan Co-Innovation Center for New Energetic Materials, National Co-innovation Center for Nuclear Waste Disposal and Environmental Safety, Nuclear Waste and Environmental Safety Key Laboratory of Defense, School of National Defence Science & Technology, Southwest University of Science and Technology, Mianyang 621010, China..
| |
Collapse
|
12
|
Tara N, Abomuti MA, Alshareef FM, Abdullah O, Allehyani ES, Chaudhry SA, Oh S. Nigella sativa-Manganese Ferrite-Reduced Graphene Oxide-Based Nanomaterial: A Novel Adsorbent for Water Treatment. Molecules 2023; 28:5007. [PMID: 37446669 PMCID: PMC10343191 DOI: 10.3390/molecules28135007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
In this study, a novel nanohybrid composite was fabricated via the incorporation of manganese ferrite (MnFe2O4) nanoparticles into the integrated surface of reduced graphene oxide (rGO) and black cumin seeds (BC). The nanohybrid composite was prepared by a simple co-precipitation method and characterized by several spectroscopic and microscopic techniques. The characterization analysis revealed that the rGO-BC surface was decorated with the MnFe2O4. The strong chemical interaction (via electrostatic and H-bonding) between the integrated surface of rGO-BC and MnFe2O4 nanoparticles has been reported. The prepared composite was highly porous with a heterogeneous surface. The average size of the prepared composite was reported in the ranges of 2.6-7.0 nm. The specific surface area of the prepared composite was calculated to be 50.3 m2/g with a pore volume of 0.061 cc/g and a half pore width of 8.4 Å. As well, many functional sites on the nanohybrid composite surface were also found. This results in the excellent adsorption properties of nanohybrid composite and the effectual elimination of methylene blue dye from water. The nanohybrid was tested for various linear isotherms, such as Langmuir and Freundlich, for the adsorption of methylene blue dye. The Freundlich isotherm was the well-fitted model, proving the adsorption is multilayer. The maximum Langmuir adsorption capacity of nanohybrid composite for methylene blue was reported to be 74.627 mg/g at 27 °C. The adsorption kinetics followed the pseudo-second-order recommended surface interaction between the dye and nanohybrid composite. The interaction between methylene blue and the nanohybrid composite was also confirmed from the FTIR spectrum of the methylene blue-loaded adsorbent. The rate-determining step for the present study was intraparticle diffusion. Temperature-dependent studies of methylene blue adsorption were also carried out to estimate adsorption's free energy, enthalpy, and entropy. The methylene blue adsorption was feasible, spontaneous, and endothermic. A comparison study revealed that the present materials could be successfully prepared and used for wastewater treatment.
Collapse
Affiliation(s)
- Nusrat Tara
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India;
| | - May Abdullah Abomuti
- Department of Chemistry, Faculty of Science and Humanities, Shaqra University, Dawadmi 17472, Saudi Arabia;
| | - F. M. Alshareef
- Chemistry Department, Faculty of Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Esam S. Allehyani
- Department of Chemistry, University College in Al-Jamoum, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| | - Saif Ali Chaudhry
- Environmental Chemistry Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi 110025, India;
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, Gyeonggi-do, Yongin-si 17104, Republic of Korea
| |
Collapse
|
13
|
Patel PK, Pandey LM, Uppaluri RVS. Cyclic desorption based efficacy of polyvinyl alcohol-chitosan variant resins for multi heavy-metal removal. Int J Biol Macromol 2023; 242:124812. [PMID: 37178895 DOI: 10.1016/j.ijbiomac.2023.124812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
The simultaneous removal of Cu, Pb and Fe from water bodies has been targeted in this work with polyvinyl alcohol (PVA) and chitosan (low, medium, and high molecular weight) derivative and with cyclic desorption efficacy target. For a varied range of adsorbent loading (0.2-2 g L-1), initial concentration (187.7-563.1 mg L-1 for Cu, 5.2-15.6 mg L-1 for Pb, and 61.85-185.55 mg L-1 for Fe), and resin contact time (5 to 720 min), batch adsorption-desorption studies were conducted. After first adsorption-desorption cycle, the optimum absorption capacity was 6.85 mg g-1 for Pb, 243.90 mg g-1 for Cu, and 87.72 mg g-1 for Fe for the high molecular weight chitosan grafted polyvinyl alcohol resin (HCSPVA). The alternate kinetic and equilibrium models were analyzed along with the interaction mechanism between metal ions and functional groups. The cyclic desorption studies were carried out with simple eluent systems such as HCl, HNO3, H2SO4, KOH, and NaOH. The experiments revealed that the HCSPVA derivative has been an impressive, reusable, and effective sorbent for the mitigation of Pb, Fe, and Cu in complex wastewater systems. This is due to its easy synthesis, excellent adsorption capacity, quick sorption rate, and remarkable regeneration capabilities.
Collapse
Affiliation(s)
- Prabhat Kumar Patel
- Centre for the Environment, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Lalit Mohan Pandey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India
| | - Ramagopal V S Uppaluri
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, North Guwahati 781039, Assam, India.
| |
Collapse
|
14
|
Rout DR, Jena HM, Baigenzhenov O, Hosseini-Bandegharaei A. Graphene-based materials for effective adsorption of organic and inorganic pollutants: A critical and comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160871. [PMID: 36521616 DOI: 10.1016/j.scitotenv.2022.160871] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/06/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Water scarcity has been felt in many countries and will become a critical issue in the coming years. The release of toxic organic and inorganic contaminants from different anthropogenic activities, like mining, agriculture, industries, and domestic households, enters the natural waterbody and pollutes them. Keeping this in view in combating the environmental crises, removing pollutants from wastewater is one of the ongoing environmental challenges. Adsorption technology is an economical, fast, and efficient physicochemical method for removing both organic and inorganic pollutants, even at low concentrations. In the last decade, graphene and its composite materials have become the center of attraction for numerous applications, including wastewater treatment, due to the large surface area, highly active surface, and exclusive physicochemical properties, which make them potential adsorbents with unique physicochemical properties, like low density, chemical strength, structural variability, and the possibility of large-scale fabrications. This review article provides a thorough summary/critical appraisal of the published literature on graphene-, GO-, and rGO-based adsorbents for the removal of organic and inorganic pollutants from wastewater. The synthesis methods, experimental parameters, adsorption behaviors, isotherms, kinetics, thermodynamics, mechanisms, and the performance of the regeneration-desorption processes of these substances are scrutinized. Finally, the research challenges, limitations, and future research studies are also discussed. Certainly, this review article will benefit the research community by getting substantial information on suitable techniques for synthesizing such adsorbents and utilizing them in water treatment and designing water treatment systems.
Collapse
Affiliation(s)
- Dibya Ranjan Rout
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | - Hara Mohan Jena
- Department of Chemical Engineering, National Institute of Technology, Rourkela 769008, Orissa, India.
| | | | | |
Collapse
|
15
|
Queiroz RN, da Silva MGC, Mastelaro VR, Prediger P, Vieira MGA. Adsorption of naphthalene polycyclic aromatic hydrocarbon from wastewater by a green magnetic composite based on chitosan and graphene oxide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:27603-27621. [PMID: 36383320 DOI: 10.1007/s11356-022-24198-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
A green magnetic composite mCS/GO was synthesized using water hyacinth extract, as a reducing agent, and proanthocyanidin, as a crosslinking agent, for the adsorption of naphthalene from effluents. The green composite was evaluated using different characterization techniques to determine its thermal (TG/DTG), structural (BET, XPS and FTIR), crystallographic (XRD), and textural (SEM) properties in natura and post-adsorption. The results obtained through a central composite design (CCD) experiment indicated that the initial concentration of NAP and the adsorbent dosage are significant for the adsorption capacity. The adsorption assays indicated that physisorption, through π-π and hydrophobic interactions, were the main mechanism involved in the NAP adsorption. However, the adjustment to the PSO and Freundlich models, obtained through kinetic and equilibrium studies, indicated that chemisorption also influences the adsorptive process. The thermodynamic study indicated physisorption as the mechanism responsible for the NAP adsorption. Also, the adsorbent has high affinity for the adsorbate and the process is spontaneous and endothermic. The maximum adsorption capacity (qmax) of the green mCS/GO was 334.37 mg g-1 at 20 °C. Furthermore, the green mCS/GO was effectively regenerated with methanol and reused for five consecutive cycles, the percentage of NAP recovery went from approximately 91 to 75% after the fifth cycle. The green composite was also applied in the adsorption of NAP from river water samples, aiming to evaluate the feasibility of the method in real applications. The adsorption efficiency was approximately 70%. From what we know, this it is the first time that a green adsorbent was recycled after the polycyclic aromatic hydrocarbon (PAHs) adsorption process.
Collapse
Affiliation(s)
- Ruth Nóbrega Queiroz
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil
| | - Valmor Roberto Mastelaro
- São Carlos Institute of Physics, University of São Paulo, Av. Trabalhador São Carlense, São Carlos, SP, 40013566-590, Brazil
| | - Patricia Prediger
- School of Technology, University of Campinas - UNICAMP, Limeira, São Paulo, 13484-332, Brazil
| | - Melissa Gurgel Adeodato Vieira
- Process and Product Development Department, School of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Avenue, Campinas, São Paulo, 50013083-852, Brazil.
| |
Collapse
|
16
|
Synthesis and characterization of hydrogel-based magnetite nanocomposite adsorbents for the potential removal of Acid Orange 10 dye and Cr(VI) ions from aqueous solution. Int J Biol Macromol 2023; 227:27-44. [PMID: 36528140 DOI: 10.1016/j.ijbiomac.2022.12.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/25/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Magnetic responsive hydrogels (CMX-cl-P4VP/M-NPs) were successfully synthesized through in situ co-precipitation procedure and investigated using various techniques. The surface morphology analysis revealed that the M-NPs were uniformly distributed within the hydrogel matrix and had average sizes ranging from 4.98 to 15.02 nm. The graft copolymer containing nanoparticles exhibited a sensitive magnetic response, and their recovery could be facilitated by applying a magnetic field. The purpose of this research is to study the ability of the prepared magnetic hydrogel to remove AO-10 dye and hexavalent chromium ions (Cr(VI)) from the aqueous solution under various factors, namely contact time, pH, amount of adsorbent, coexisting ions and AO-10 and Cr(VI) concentrations. The outcomes of the batch adsorption demonstrated that the adsorbent hydrogel incorporated with a low percentage (10 %) of M-NPs had a strong affinity for the removal of AO-10 dye and Cr(VI) ions at an optimum pH = 3, and the removal percentage reached 99.3 and 97.4 % for 500 mg L-1 and 300 mg L-1 of AO-10 dye and Cr(VI) ions within 90, 50 min, respectively. The data were well-fitted by pseudo-first-order kinetics. The maximum adsorption capacities of AO-10 dye and Cr(VI) ions onto adsorbent were 2448 and 574.7 mg g-1 at 298 K, calculated from the Langmuir model.
Collapse
|
17
|
Nhung NTH, Long VD, Fujita T. A Critical Review of Snail Shell Material Modification for Applications in Wastewater Treatment. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1095. [PMID: 36770102 PMCID: PMC9919195 DOI: 10.3390/ma16031095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/23/2022] [Accepted: 01/03/2023] [Indexed: 06/18/2023]
Abstract
Sea material is becoming increasingly popular and widely used as an adsorbent in wastewater treatment. Snail shell, a low-cost and natural animal waste material, has been shown to have a high calcium content (>99%) and a large potential surface area for the development of sustainable adsorbents. This paper presents a novel synthesis of methods for using snail shell absorbent materials in the treatment of wastewater containing heavy metals, textile dyes, and other organic substances. Modified biochar made from snail shells has gained popularity in recent years due to its numerous benefits. This paper discusses and analyzes modification methods, including impregnating with supplements, combining other adsorbents, synthesis of hydroxyapatite, co-precipitation, and the sol-gel method. The analysis of factors influencing adsorption efficiency revealed that pH, contact time, temperature, initial concentration, and adsorbent dose all have a significant impact on the adsorption process. Future research directions are also discussed in this paper as a result of presenting challenges for current snail adsorbents.
Collapse
Affiliation(s)
- Nguyen Thi Hong Nhung
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Vo Dinh Long
- Institute of Environmental Science, Engineering and Management, Industrial University of Ho Chi Minh City, Ho Chi Minh City 700000, Vietnam
| | - Toyohisa Fujita
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
18
|
Ge H, Ding K, Guo F, Wu X, Zhai N, Wang W. Green and Superior Adsorbents Derived from Natural Plant Gums for Removal of Contaminants: A Review. MATERIALS (BASEL, SWITZERLAND) 2022; 16:179. [PMID: 36614516 PMCID: PMC9821582 DOI: 10.3390/ma16010179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/16/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The ubiquitous presence of contaminants in water poses a major threat to the safety of ecosystems and human health, and so more materials or technologies are urgently needed to eliminate pollutants. Polymer materials have shown significant advantages over most other adsorption materials in the decontamination of wastewater by virtue of their relatively high adsorption capacity and fast adsorption rate. In recent years, "green development" has become the focus of global attention, and the environmental friendliness of materials themselves has been concerned. Therefore, natural polymers-derived materials are favored in the purification of wastewater due to their unique advantages of being renewable, low cost and environmentally friendly. Among them, natural plant gums show great potential in the synthesis of environmentally friendly polymer adsorption materials due to their rich sources, diverse structures and properties, as well as their renewable, non-toxic and biocompatible advantages. Natural plant gums can be easily modified by facile derivatization or a graft polymerization reaction to enhance the inherent properties or introduce new functions, thus obtaining new adsorption materials for the efficient purification of wastewater. This paper summarized the research progress on the fabrication of various gums-based adsorbents and their application in the decontamination of different types of pollutants. The general synthesis mechanism of gums-based adsorbents, and the adsorption mechanism of the adsorbent for different types of pollutants were also discussed. This paper was aimed at providing a reference for the design and development of more cost-effective and environmentally friendly water purification materials.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Ke Ding
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| | - Xianli Wu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Naihua Zhai
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
19
|
Ghiorghita CA, Dinu MV, Lazar MM, Dragan ES. Polysaccharide-Based Composite Hydrogels as Sustainable Materials for Removal of Pollutants from Wastewater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238574. [PMID: 36500664 PMCID: PMC9736407 DOI: 10.3390/molecules27238574] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Nowadays, pollution has become the main bottleneck towards sustainable technological development due to its detrimental implications in human and ecosystem health. Removal of pollutants from the surrounding environment is a hot research area worldwide; diverse technologies and materials are being continuously developed. To this end, bio-based composite hydrogels as sorbents have received extensive attention in recent years because of advantages such as high adsorptive capacity, controllable mechanical properties, cost effectiveness, and potential for upscaling in continuous flow installations. In this review, we aim to provide an up-to-date analysis of the literature on recent accomplishments in the design of polysaccharide-based composite hydrogels for removal of heavy metal ions, dyes, and oxyanions from wastewater. The correlation between the constituent polysaccharides (chitosan, cellulose, alginate, starch, pectin, pullulan, xanthan, salecan, etc.), engineered composition (presence of other organic and/or inorganic components), and sorption conditions on the removal performance of addressed pollutants will be carefully scrutinized. Particular attention will be paid to the sustainability aspects in the selected studies, particularly to composite selectivity and reusability, as well as to their use in fixed-bed columns and real wastewater applications.
Collapse
|
20
|
Sun W, Ou H, Chen Z. Study on Preparation of Chitosan/Polyvinyl Alcohol Aerogel with Graphene-Intercalated Attapulgite(GO-ATP@CS-PVA) and Adsorption Properties of Crystal Violet Dye. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3931. [PMID: 36432217 PMCID: PMC9692565 DOI: 10.3390/nano12223931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Adsorption is one of the effective methods of treating dye wastewater. However, the selection of suitable adsorbent materials is the key to treating dye wastewater. In this paper, GO-ATP was prepared by an intercalation method by inserting graphene oxide (GO) into the interlayer of alabaster attapulgite (ATP), and GO-ATP@CS-PVA aerogel was prepared by co-blending-crosslinking with chitosan (CS) and polyvinyl alcohol (PVA) for the adsorption and removal of crystalline violet dye from the solution. The physicochemical properties of the materials are characterized by various methods. The results showed that the layer spacing of the GO-ATP increased from 1.063 nm to 1.185 nm for the ATP, and the specific surface area was 187.65 m2·g-1, which was 45.7% greater than that of the ATP. The FTIR results further confirmed the success of the GO-ATP intercalation modification. The thermogravimetric analysis (TGA) results show that the aerogel has good thermal stability properties. The results of static adsorption experiments show that at 302 K and pH 9.0, the adsorption capacity of the GO-ATP@CS-PVA aerogel is 136.06 mg·g-1. The mass of the aerogel after adsorption-solution equilibrium is 11.4 times that of the initial mass, with excellent adsorption capacity. The quasi-secondary kinetic, Freundlich, and Temkin isotherm models can better describe the adsorption process of the aerogel. The biobased composite aerogel GO-ATP@CS-PVA has good swelling properties, a large specific surface area, easy collection and a low preparation cost. The good network structure gives it unique resilience. The incorporation of clay as a nano-filler can also improve the mechanical properties of the composite aerogel.
Collapse
Affiliation(s)
| | - Hongxiang Ou
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | | |
Collapse
|
21
|
Highly efficient adsorption of Hg2+ from aqueous solutions by amino-functionalization alkali lignin. Int J Biol Macromol 2022; 222:3034-3044. [DOI: 10.1016/j.ijbiomac.2022.10.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/30/2022] [Accepted: 10/09/2022] [Indexed: 11/05/2022]
|
22
|
Wang Q, Cui L, Xu J, Dong F, Xiong Y. Ionic liquid decorated MXene/Poly (N-isopropylacrylamide) composite hydrogel with high strength, chemical stability and strong adsorption. CHEMOSPHERE 2022; 303:135083. [PMID: 35618063 DOI: 10.1016/j.chemosphere.2022.135083] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/16/2022] [Accepted: 05/20/2022] [Indexed: 06/15/2023]
Abstract
Organic phenolic pollutants in industrial wastewater cause severe environmental pollution and physiological damage. Poly (N-isopropylacrylamide) (PNIPAM) hydrogels generally have poor mechanical strength and are also intrinsically frangible, limiting their widespread applications in wastewater treatment. Combining them with 2-dimensional materials can also only improve the mechanical properties of hydrogels. Here, we report a high-strength, chemical stability and strong adsorption MXene/poly (N-isopropylacrylamide) (PNIPAM) thermosensitive composite hydrogel for efficient removal of phenolic pollutants from industrial wastewater. Ionic liquids (ILs) were grafted onto the surface of MXenes and introduced into NIPAM monomer solution to obtain composite hydrogels by in-situ polymerization for improved mechanical strength and adsorption capacity of the composite hydrogel. Compared with the MXene/PNIPAM composite hydrogel, the introduction of ILs simultaneously improves the mechanical and adsorption properties of the composite hydrogel. The ILs bind to the surface of MXene flakes through electrostatic interactions, which improved the thermal stability and oxidation resistance of MXenes while maintaining its good dispersion. Using 1-Ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) modified MXene (MXene-EMIMBF4) did not change significantly were observed after aging for 45 days. As-prepared composite hydrogels demonstrated excellent mechanical properties, reusability, and high adsorption capacity for p-Nitrophenol (4-NP). The MXene-EMIMBF4/PNIPAM hydrogel could recover after ten 95% strain compression cycles under the synergistic effect of chemical bonding and electrostatic attraction. Its maximum adsorption capacity for 4-NP was 200.29 mg g-1 at room temperature, and the adsorption capacity maintained at ∼90% of its initial value after five adsorption cycles, which was related to the introduction of EMIMBF4 to form a denser network structure. The adsorption data followed the pseudo-second-order kinetics and Freundlich models.
Collapse
Affiliation(s)
- Qian Wang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Lingfeng Cui
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Jing Xu
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Fuping Dong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
23
|
Removal of Cr(VI) from Wastewater Using Graphene Oxide Chitosan Microspheres Modified with α-FeO(OH). MATERIALS 2022; 15:ma15144909. [PMID: 35888374 PMCID: PMC9319010 DOI: 10.3390/ma15144909] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022]
Abstract
Graphene oxide and chitosan microspheres modified with α−FeO(OH) (α−FeO(OH)/GOCS) are prepared and utilized to investigate the performance and mechanism for Cr(VI) removal from aqueous solutions and the possibility of Fe secondary pollution. Batch experiments were carried out to identify the effects of pH, mass, and volume ratio (m/v), coexisting ions, time (t), temperature (T), and Cr(VI) initial concentration (C0) on Cr(VI) removal, and to evaluate adsorption kinetics, equilibrium isotherm, and thermodynamics, as well as the possibility of Fe secondary pollution. The results showed that Cr(VI) adsorption increased with C0, t, and T but decreased with increasing pH and m/v. Coexisting ions inhibited Cr(VI) adsorption, and this inhibition increased with increasing concentration. The influence degrees of anions and cations on the Cr(VI) adsorption in descending order were SO42− > PO42− > NO3− > Cl− and Ca2+ > Mg2+ > Mn2+, respectively. The equilibrium adsorption capacity of Cr(VI) was the highest at 24.16 mg/g, and the removal rate was 97.69% under pH = 3, m/v = 1.0 g/L, T = 298.15 K, and C0 = 25 mg/L. Cr(VI) adsorption was well fitted to a pseudo-second-order kinetic model and was spontaneous and endothermic. The best fit of Cr(VI) adsorption with the Langmuir and Sips models indicated that it was a monolayer and heterogeneous adsorption. The fitted maximum adsorption capacity was 63.19 mg/g using the Sips model under 308.15 K. Cr(VI) removal mainly included electrostatic attraction between Cr(VI) oxyanions with surface Fe−OH2+, and the adsorbed Cr(VI) was partially reduced to Cr(III) and then precipitated on the surface. In addition, there was no Fe secondary pollution during Cr(VI) adsorption.
Collapse
|
24
|
Recent advances of chitosan-based polymers in biomedical applications and environmental protection. JOURNAL OF POLYMER RESEARCH 2022. [PMCID: PMC9167648 DOI: 10.1007/s10965-022-03121-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interest in polymer-based biomaterials such as chitosan and its modifications and also the methods of their application in various fields of science is uninterruptedly growing. Owing to unique physicochemical, biological, ecological, physiological properties, such as biocompatibility, biodegradability, stability in the natural environment, non-toxicity, high biological activity, economic affordability, chelating of metal ions, high sorption properties, chitosan is used in various biomedical and industrial processes. The reactivity of the amino and hydroxyl groups in the structure makes it more interesting for diverse applications in drug delivery, tissue engineering, wound healing, regenerative medicine, blood anticoagulation and bone, tendon or blood vessel engineering, dentistry, biotechnology, biosensing, cosmetics, water treatment, agriculture. Taking into account the current situation in the world with COVID-19 and other viruses, chitosan is also active in the form of a vaccine system, it can deliver antibodies to the nasal mucosa and load gene drugs that prevent or disrupt the replication of viral DNA/RNA, and deliver them to infected cells. The presented article is an overview of the nowaday state of the application of chitosan, based on literature of recent years, showing importance of fundamental and applied studies aimed to expand application of chitosan-based polymers in many fields of science.
Collapse
|
25
|
Effective adsorptive removal of dyes and heavy metal using graphene oxide based Pre-treated with NaOH / H2SO4 rubber seed shells synthetic graphite Precursor: Equilibrium Isotherm, kinetics and thermodynamic studies. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120730] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
26
|
Effects of carboxymethyl chitosan adsorption on bioactive components of Antarctic krill oil. Food Chem 2022; 388:132995. [PMID: 35453014 DOI: 10.1016/j.foodchem.2022.132995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/03/2023]
Abstract
High acid value (AV) and fluorine content of Antarctic krill oil (AKO) extracted from frozen krill by ethanol limit its product development. In this study, a method was proposed to reduce the AV and fluorine content of AKO by carboxymethyl chitosan (CMCS) adsorption. The optimal adsorption condition was 12.5% (w/v) of CMCS at 30℃ for 15 min. At this condition, AV and fluorine content decreased by 78.0% and 61.4%, respectively. It is interesting that CMCS adsorption showed specificity to particular substances. Although free fatty acids content showed a significant reduction, free EPA and DHA, phospholipid and astaxanthin remained almost constant. Moreover, CMCS adsorption showed no influence on neuroprotective activity of AKO against H2O2-induced neuro-damage of PC12 cells. The reclaimed CMCS showed an undiminished antimicrobial activity against both Gram-positive and Gram-negative bacteria. The CMCS adsorption shows a potential development for refining AKO and other oils in food industry.
Collapse
|
27
|
Taheri N, Dinari M. Amino-Functionalized Magnetic Porous Organic Polymer for Selective Removal of Toxic Cationic Dyes from Textile Wastewater. NEW J CHEM 2022. [DOI: 10.1039/d2nj01754g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous organic polymers (POPs) with fascinating porous properties are promising candidates for the removal of organic dyes from textile wastewater. In this research work, an amino-functionalized magnetic POP (FC-POP-EDA@Fe3O4) containing...
Collapse
|
28
|
Gulati S, Lingam B HN, Baul A, Kumar S, Wadhwa R, Trivedi M, Varma RS, Amar A. Recent progress, synthesis, and applications of chitosan-decorated magnetic nanocomposites in remediation of dye-laden wastewaters. NEW J CHEM 2022. [DOI: 10.1039/d2nj03558h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Over the past several decades, the disposal of dyes from the industrial manufacturing sector has had an inadvertent impact on water ecology as polluted water bodies with these hazardous dyes...
Collapse
|
29
|
Rathinam K, Kou X, Hobby R, Panglisch S. Sustainable Development of Magnetic Chitosan Core-Shell Network for the Removal of Organic Dyes from Aqueous Solutions. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7701. [PMID: 34947299 PMCID: PMC8706649 DOI: 10.3390/ma14247701] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022]
Abstract
The wide use of alizarin red S (ARS), a typical anthraquinone dye, has led to its continued accumulation in the aquatic environment, which causes mutagenic and carcinogenic effects on organisms. Therefore, this study focused on the removal of ARS dye by adsorption onto a magnetic chitosan core-shell network (MCN). The successful synthesis of the MCN was confirmed by ATR-FTIR, SEM, and EDX analysis. The influence of several parameters on the removal of ARS dye by the MCN revealed that the adsorption process reached equilibrium after 60 min, pH played a major role, and electrostatic interactions dominated for the ARS dye removal under acidic conditions. The adsorption data were described well by the Langmuir isotherm and a pseudo-second order kinetic model. In addition to the preferable adsorption of hydrophobic dissolved organic matter (DOM) fractions onto the MCN, the electrostatic repulsive forces between the previously adsorbed DOM onto MCN and ARS dye resulted in lower ARS dye removal. Furthermore, the MCN could easily be regenerated and reused for up to at least five cycles with more than 70% of its original efficiency. Most importantly, the spent MCN was pyrolytically converted into N-doped magnetic carbon and used as an adsorbent for various dyes, thus establishing a waste-free adsorption process.
Collapse
Affiliation(s)
- Karthik Rathinam
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Xinwei Kou
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Ralph Hobby
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
| | - Stefan Panglisch
- Chair for Mechanical Process Engineering and Water Technology, University of Duisburg-Essen, Lotharstr. 1, 47057 Duisburg, Germany; (X.K.); (R.H.)
- IWW Water Centre, Moritzstraße 26, 45476 Mülheim an der Ruhr, Germany
- DGMT German Society for Membrane Technology e.V., Universitätsstr. 2, 45141 Essen, Germany
- Centre for Water and Environmental Research (ZWU), Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|