1
|
You C, Wang C, Ma Z, Yu Q, Liu S. Review on application of silk fibroin hydrogels in the management of wound healing. Int J Biol Macromol 2025; 298:140082. [PMID: 39832605 DOI: 10.1016/j.ijbiomac.2025.140082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 01/06/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
Wounds are regarded as disruptions in the integrity of human skin tissues, and the process of wound healing is often characterized as protracted and complex, primarily due to the potential infection or inflammation caused by microorganisms. The quest for innovative solutions that accelerate wound healing while prioritizing patient safety and comfort has emerged as a focal point. Within this pursuit, silkworm silk fibroin-a natural polymer extracted from silk cocoons-exhibits a distinctive combination of properties including biocompatibility, biodegradability, superior mechanical strength, water absorption, and low immunogenicity, which align closely with the demands of contemporary wound care. Its remarkable biocompatibility facilitates seamless integration with host tissues, thereby minimizing the risk of rejection or adverse reactions. Furthermore, its intrinsic degradability permits controlled release of therapeutic agents, promoting an optimal microenvironment conducive to healing. This review investigates the multifaceted potential of silk fibroin specifically as a wound dressing material and examines the intricate nuances associated with its application in hydrogels for wound healing, aiming to furnish a thorough overview for both researchers and clinicians. By scrutinizing underlying mechanisms, current applications, and prospective directions, we aspire to cultivate new insights and inspire innovative strategies within this rapidly evolving field.
Collapse
Affiliation(s)
- Chang You
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Changkun Wang
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Zhenghao Ma
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Qianhui Yu
- Westa college, Southwest University, Chongqing 400716, China; State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Phewchan P, Laoruengthana A, Lamlertthon S, Tiyaboonchai W. Injectable vancomycin-loaded silk fibroin/methylcellulose containing calcium phosphate-based in situ thermosensitive hydrogel for local treatment of osteomyelitis: Fabrication, characterization, and in vitro performance evaluation. J Biomed Mater Res A 2024; 112:2210-2224. [PMID: 38984391 DOI: 10.1002/jbm.a.37772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/21/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024]
Abstract
The conventional treatment of osteomyelitis with antibiotic-loaded nondegradable polymethylmethacrylate (ATB-PMMA) beads has certain limitations, including impeded bone reconstruction and the need for secondary surgery. To overcome this challenge, this study aimed to develop and characterize an injectable vancomycin-loaded silk fibroin/methylcellulose containing calcium phosphate-based in situ thermosensitive hydrogel (VC-SF/MC-CAPs). The VC-SF/MC-CAPs solution can be easily administered at room temperature with a low injectability force of ≤30 N and a high vancomycin (VC) content of ~96%. Additionally, at physiological temperature (37 °C), the solution could transform into a rigid hydrogel within 7 minutes. In vitro drug release performed under both physiological (pH 7.4) and infection conditions (pH 4.5) revealed a prolonged release pattern of VC-SF/MC-CAPs following the Peppas-Sahlin kinetic model. In addition, the released VC from VC-SF/MC-CAPs hydrogels exhibited antibacterial activity against Staphylococcus aureus for a period exceeding 35 days, as characterized by the disk diffusion assay. Furthermore, at pH 7.4, the VC-SF/MC-CAPs demonstrated >60% degradation within 35 days. Importantly, when exposed to physiological pH conditions, CAPs are transformed into bioactive hydroxyapatite, which benefits bone formation. Therefore, VC-SF/MC-CAPs showed significant potential as a local drug delivery system for treating osteomyelitis.
Collapse
Affiliation(s)
- Premchirakorn Phewchan
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Artit Laoruengthana
- Department of Orthopedics, Faculty of Medicine, Naresuan University, Phitsanulok, Thailand
| | - Supaporn Lamlertthon
- Department of Microbiology and Parasitology, Faculty of Medical Sciences, Naresuan University, Phitsanulok, Thailand
- The Center of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Waree Tiyaboonchai
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok, Thailand
- Center of Excellence for Innovation in Chemistry (PERCH-CIC), Department of Chemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
3
|
Liu J, Chen S, Zhang Z, Song X, Hou Z, Wang Z, Liu T, Yang L, Liu Y, Luo Z. The oxidized hyaluronic acid hydrogels containing paeoniflorin microspheres regulates the polarization of M1/M2 macrophages to promote wound healing. Int J Biol Macromol 2024; 282:137107. [PMID: 39515704 DOI: 10.1016/j.ijbiomac.2024.137107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Controlling excessive inflammation of acute wound is an effective means to shorten the healing time. Therefore, targeted control of the inflammatory response of the wound is a promising therapeutic strategy. In this study, paeoniflorin (Pae) was encapsulated in microspheres and combined with oxidized hyaluronic acid hydrogels to prepare the hydrogel loaded with Pae microspheres (Pae-MPs@OHA) to promote the healing of acute wounds in rats. The results demonstrated that the particle size of the Pae-MPs was 6.84 ± 0.51 μm, and the positive charge was 26.87 ± 1.51 mV. The uniform spherical structure of the Pae-MPs was observed by TEM. The Pae-MPs@OHA can maintain colloidal state in the range of 0.1-3.16 Hz. FTIR suggested that Pae could be effectively wrapped in MPs, and SEM indicated that the Pae-MPs@OHA had a uniform network pore structure. The Pae-MPs@OHA can realize the sustained release of Pae for 96 h. Biocompatibility experiments showed that the Pae-MPs@OHA hydrogels were safe and available. The Pae-MPs@OHA hydrogels can accelerate wound healing in rats. HE and masson staining suggested that the Pae-MPs@OHA could reduce inflammatory cell infiltration, promote re-epithelialization and collagen formation. The Pae-MPs@OHA could decrease the number of M1 and increase the number of M2 in macrophages, thus regulating the release of inflammatory factor TNF-α and IL-1β. The results of molecular docking and western blot results also confirmed that the Pae-MPs@OHA could reduce the expression of NF-κB, pNF-κB, NLRP3, ASC and pro-caspase-1. These findings suggest that the Pae-MPs@OHA has great potential for application in the treatment of inflammatory wound.
Collapse
Affiliation(s)
- Jiarui Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Siqi Chen
- School of Public Health, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zijing Zhang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Xitong Song
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Zhiquan Hou
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Ziyi Wang
- Graduate School, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China
| | - Tao Liu
- University of Michigan, Ann Arbor, School of Pharmacy, Integrated Pharmaceutical Sciences, 428 Church St, Ann Arbor, MI 48109, United States of America
| | - Liqun Yang
- Research Center for Biomedical Materials, Engineering Research Center of Ministry of Education for Minimally Invasive Gastrointestinal Endoscopic Techniques, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yunen Liu
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| | - Zhonghua Luo
- Shuren International College, Shenyang Medical College, No. 146, Huanghe North Street, Shenyang 110034, China.
| |
Collapse
|
4
|
Fernández-González A, de Lorenzo González C, Rodríguez-Varillas S, Badía-Laíño R. Bioactive silk fibroin hydrogels: Unraveling the potential for biomedical engineering. Int J Biol Macromol 2024; 278:134834. [PMID: 39154674 DOI: 10.1016/j.ijbiomac.2024.134834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Silk fibroin (SF) has received special attention from the scientific community due to its noteworthy properties. Its unique chemical structure results in an uncommon combination of macroscopically useful properties, yielding a strong, fine and flexible material which, in addition, presents good biodegradability and better biocompatibility. Therefore, silk fibroin in various formats, appears as an ideal candidate for supporting biomedical applications. In this review, we will focus on the hydrogels obtained from silk fibroin or in combination with it, paying special attention to the synthesis procedures, characterization methodologies and biomedical applications. Tissue engineering and drug-delivery systems are, undoubtedly, the two main areas where silk fibroin hydrogels find their place.
Collapse
Affiliation(s)
- Alfonso Fernández-González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Clara de Lorenzo González
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Sandra Rodríguez-Varillas
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain
| | - Rosana Badía-Laíño
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Av. Julian Claveria 8, 33006 Oviedo, Spain.
| |
Collapse
|
5
|
Gao W, Wang H, Liu R, Ba X, Deng K, Liu F. Simultaneous Regulation of the Mechanical/Osteogenic Capacity of Brushite Calcium Phosphate Cement by Incorporating with Poly(ethylene glycol) Dicarboxylic Acid. ACS Biomater Sci Eng 2024; 10:2062-2067. [PMID: 38466032 DOI: 10.1021/acsbiomaterials.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Brushite calcium phosphate cement (brushite CPC) is a prospective bone repair material due to its ideal resorption rates in vivo. However, the undesirable mechanical property and bioactivity limited its availability in clinic application. To address this issue, incorporating polymeric additives has emerged as a viable solution. In this study, poly(ethylene glycol) dicarboxylic acid, PEG(COOH), was synthesized and employed as the polymeric additive. The setting behavior, anti-washout ability, mechanical property, degradation rate, and osteogenic capacity of brushite CPC were regulated by incorporating PEG(COOH). The incorporation of PEG(COOH) with carboxylic acid groups demonstrated a positive effect on both mechanical properties and osteogenic activity in bone repair. This study offers valuable insights and suggests a promising strategy for the development of materials in bone tissue engineering.
Collapse
Affiliation(s)
- Wenshan Gao
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
- Affiliated Hospital of Hebei University, Hebei University, Baoding 071002, Hebei, China
| | - Hongjie Wang
- College of Basic Medicine, Hebei University, Baoding 071002, Hebei, China
- College of Clinical Medical, Hebei University, Baoding 071002, Hebei, China
| | - Rixu Liu
- College of Clinical Medical, Hebei University, Baoding 071002, Hebei, China
| | - Xinwu Ba
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
- Engineering Research Center for Nanomaterials, Henan University, Zhengzhou 450000, China
| | - Kuilin Deng
- College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei, China
| | - Feng Liu
- College of Basic Medicine, Hebei University, Baoding 071002, Hebei, China
| |
Collapse
|
6
|
Bao Y, Zhang HQ, Chen L, Cai HH, Liu ZL, Peng Y, Li Z, Dai FY. Artemisinin-Loaded Silk Fibroin/Gelatin Composite Hydrogel for Wound Healing and Tumor Therapy. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
|
7
|
Lu ZQ, Ren Q, Han SL, Ding LJ, Li ZC, Hu D, Wang LY, Zhang LL. Calcium Phosphate Functionalization and Applications in Dentistry. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The oral and maxillofacial hard tissues support the maxillofacial shape and serve as the foundation for functional activities. Defects in these tissues not only impair patients’ ability to perform their normal physiological functions but also have a significant negative impact
on their psychological well-being. Moreover, these tissues have a limited capacity for self-healing, necessitating the use of artificial materials to repair defects. Calcium phosphate is a fine-grained inorganic biomineral found in vertebrate teeth and bones that has a comparable composition
to human hard tissues. Calcium phosphate materials are biocompatible, bioactive, and osteogenic for hard tissue repair, despite drawbacks such as poor mechanical qualities, limiting their clinical efficacy and application. With the advancement of materials science and technology, numerous
techniques have been developed to enhance the characteristics of calcium phosphate, and one of them is functionalization. Calcium phosphate can be functionally modified by changing its size, morphology, or composition through various preparation processes to achieve multifunctionality and
improve physical and chemical properties, biocompatibility, and osteogenic potential. The purpose of this review is to provide new ideas for the treatment of oralmaxillofacial hard tissue defects and deficiencies by summarizing the functionalization strategies of calcium phosphate materials
and their applications in dentistry.
Collapse
Affiliation(s)
- Zi-qian Lu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Qian Ren
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Si-li Han
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Long-jiang Ding
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Zhong-cheng Li
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Die Hu
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Luo-yao Wang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| | - Ling-lin Zhang
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610044, People’s Republic of China
| |
Collapse
|
8
|
Li JX, Zhao SX, Zhang YQ. Silk Protein Composite Bioinks and Their 3D Scaffolds and In Vitro Characterization. Int J Mol Sci 2022; 23:910. [PMID: 35055092 PMCID: PMC8776115 DOI: 10.3390/ijms23020910] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
This paper describes the use of silk protein, including fibroin and sericin, from an alkaline solution of Ca(OH)2 for the clean degumming of silk, which is neutralized by sulfuric acid to create calcium salt precipitation. The whole sericin (WS) can not only be recycled, but completely degummed silk fibroin (SF) is also obtained in this process. The inner layers of sericin (ILS) were also prepared from the degummed silk in boiling water by 120 °C water treatment. When the three silk proteins (SPs) were individually grafted with glycidyl methacrylate (GMA), three grafted silk proteins (G-SF, G-WS, G-ILS) were obtained. After adding I2959 (a photoinitiator), the SP bioinks were prepared with phosphate buffer (PBS) and subsequently bioprinted into various SP scaffolds with a 3D network structure. The compressive strength of the SF/ILS (20%) scaffold added to G-ILS was 45% higher than that of the SF scaffold alone. The thermal decomposition temperatures of the SF/WS (10%) and SF/ILS (20%) scaffolds, mainly composed of a β-sheet structures, were 3 °C and 2 °C higher than that of the SF scaffold alone, respectively. The swelling properties and resistance to protease hydrolysis of the SP scaffolds containing sericin were improved. The bovine insulin release rates reached 61% and 56% after 5 days. The L929 cells adhered, stretched, and proliferated well on the SP composite scaffold. Thus, the SP bioinks obtained could be used to print different types of SP composite scaffolds adapted to a variety of applications, including cells, drugs, tissues, etc. The techniques described here provide potential new applications for the recycling and utilization of sericin, which is a waste product of silk processing.
Collapse
Affiliation(s)
| | | | - Yu-Qing Zhang
- School of Biology and Basic Medical Sciences, Medical College, Soochow University, RM702-2303, No. 199 Renai Road, Industrial Park, Suzhou 215123, China; (J.-X.L.); (S.-X.Z.)
| |
Collapse
|