1
|
Jawad AH, Maharani RA, Hapiz A, ALOthman ZA, Wilson LD. A comparison of freeze- and air-dried chitosan salicylaldehyde/calcium oxide biocomposites for optimized removal of acid red 88 dye. Int J Biol Macromol 2024; 292:139165. [PMID: 39732267 DOI: 10.1016/j.ijbiomac.2024.139165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 12/08/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Chitosan salicylaldehyde/calcium oxide nanoparticle (CS-SL/CaO) was synthesized by hydrothermal process and isolated via different drying processes, namely, air-drying (AD) and freeze-drying (FD). The physicochemical properties of freeze-dried CS-SL/CaO nanoparticle (CS-SL/CaO-FD) and air-dried CS-SL/CaO nanoparticle (CS-SL/CaO-AD) were compared. In particular, the adsorption properties reveal that the specific surface area of CS-SL/CaO-FD increased by ca. 6 times (BET SA = 7.28 m2/g) greater than CS-SL/CaO-FD (BET SA = 1.26 m2/g). Also, the adsorptive removal of acid red 88 dye (AR88) from aqueous media was optimized by employing the Box-Behnken design (BBD). The optimal adsorption conditions obtained from desirability functions test for the removal of AR88 dye employed a dosage of 0.09 g/100 mL of adsorbent dosage at a solution pH of 5.6 and 25 °C. The best AR88 dye removal was found for the adsorbents CS-SL/CaO-AD (38.2 %) and CS-SL/CaO-FD (86.1 %), which concur with differences in the adsorbent surface areas. Moreover, the adsorption kinetics and isotherm profiles for CS-SL/CaO-FD were described by the pseudo second order (PSO) and Temkin models, where the maximum adsorption capacity of AR88 by CS-SL/CaO-FD 175.4 was mg/g. These findings reveal the potential application of the CS-SL/CaO-FD towards removal of toxic cationic dye (AR88) from an aqueous environment.
Collapse
Affiliation(s)
- Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Rosika Armiyanti Maharani
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development (ABCD) Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
2
|
Al-Wasidi AS, Abdelrahman EA, Rehman KU, Saad FA, Munshi AM. Efficient removal of crystal violet and acid red 88 dyes from aqueous environments using easily synthesized copper ferrite nanoparticles. Sci Rep 2024; 14:29599. [PMID: 39609467 PMCID: PMC11605002 DOI: 10.1038/s41598-024-80681-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
This study details the synthesis and application of magnetic copper ferrite (CuFe2O4) nanoparticles for the efficient removal of acid red 88 and crystal violet dyes from aqueous solutions. Utilizing a combustion method, nanoparticles were synthesized with succinic and malic acids as fuels, yielding samples with crystallite sizes of 28.54 ± 0.90 nm for the sample synthesized with malic acid and 19.79 ± 0.75 nm for the sample synthesized with succinic acid. Optimum removal conditions were found at a pH of 2 for acid red 88 and pH 10 for crystal violet, with a contact time of 80 min and an adsorbent dosage of 0.05 g in a 100 mL solution. Under these conditions, the sample synthesized using succinic acid achieved sorptive capacities of 452.49 mg/g for acid red 88 and 446.43 mg/g for crystal violet, while the sample synthesized using malic acid reached 408.16 mg/g and 374.53 mg/g, respectively. Both adsorption processes followed the pseudo-second-order kinetic model and aligned with the Langmuir isotherm. Thermodynamic analysis confirmed the process as exothermic and spontaneous. Practical trials demonstrated removal efficiencies above 95% for both dyes in real wastewater samples, underscoring the method's practical potential in water purification applications.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, 11671, Riyadh, Saudi Arabia.
| | - Ehab A Abdelrahman
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), 11623, Riyadh, Saudi Arabia.
| | - Khalil Ur Rehman
- Institute of Chemical Sciences, Gomal University, Dera Ismail Khan 29111 KPK, Dera Ismail Khan, Pakistan
| | - Fawaz A Saad
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| | - Alaa M Munshi
- Department of Chemistry, Faculty of Science, Umm Al-Qura University, 21955, Makkah, Saudi Arabia
| |
Collapse
|
3
|
Anisimov YA, Yang H, Kwon J, Cree DE, Wilson LD. Chitosan-Polyaniline (Bio)Polymer Hybrids by Two Pathways: A Tale of Two Biocomposites. Polymers (Basel) 2024; 16:2663. [PMID: 39339127 PMCID: PMC11435797 DOI: 10.3390/polym16182663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024] Open
Abstract
Previous research highlights the potential of polyaniline-based biocomposites as unique adsorbents for humidity sensors. This study examines several preparative routes for creating polyaniline (PANI) and chitosan (CHT) composites: Type 1-in situ polymerization of aniline with CHT; Type 2-molecular association in acidic aqueous media; and a control, Type 3-physical mixing of PANI and CHT powders (without solvent). The study aims to differentiate the bonding nature (covalent vs. noncovalent) within these composites, which posits that noncovalent composites should exhibit similar physicochemical properties regardless of the preparative route. The results indicate that Type 1 composites display features consistent with covalent and hydrogen bonding, which result in reduced water swelling versus Type 2 and 3 composites. These findings align with spectral and thermogravimetric data, suggesting more compact structure for Type 1 materials. Dye adsorption studies corroborate the unique properties for Type 1 composites, and 1H NMR results confirm the role of covalent bonding for the in situ polymerized samples. The structural stability adopts the following trend: Type 1 (covalent and noncovalent) > Type 2 (possible trace covalent and mainly noncovalent) > Type 3 (noncovalent). Types 2 and 3 are anticipated to differ based on solvent-driven complex formation. This study provides greater understanding of structure-function relationships in PANI-biopolymer composites and highlights the role of CHT as a template that involves variable (non)covalent contributions with PANI, according to the mode of preparation. The formation of composites with tailored bonding modalities will contribute to the design of improved adsorbent materials for environmental remediation to versatile humidity sensor systems.
Collapse
Affiliation(s)
- Yuriy A. Anisimov
- Department of Chemical Engineering, McMaster University, Hamilton, ON L8S 4M6, Canada;
| | - Heng Yang
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Johnny Kwon
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| | - Duncan E. Cree
- Department of Mechanical Engineering, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Lee D. Wilson
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
4
|
Fila D, Kołodyńska D. Facile synthesis of eco-friendly alginate-chitosan bio-adsorbent for critical raw materials adsorption: A comprehensive study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 365:121609. [PMID: 38943744 DOI: 10.1016/j.jenvman.2024.121609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sustainable management of critical raw materials is of paramount importance to ensure a steady supply and reduce environmental impact. The application of newly synthesized and environmentally friendly ALG@CS material as a bio-adsorbent for the effective rare earth elements removal from aqueous solution has been presented. The synthesized material underwent FTIR, XPS, EDX, and SEM analysis to determine its suitability for metal uptake. To evaluate the adsorption capacity of ALG@CS for rare earth elements several factors were taken into consideration. These factors included alginate:chitosan ratios, bead size, pH level, composite mass, interaction time, metal ion concentration, and temperature, being all varied during the batch mode evaluation process. Under the optimal conditions, the maximum adsorption capacities were found to be 145.90 mg La(III)/g, 168.44 mg Ce(III)/g, 132.51 mg Pr(III)/g, 128.40 mg Nd(III)/g, 154.36 mg Sm(III)/g, and 165.10 mg Ho(III)/g. The equilibrium data fits well with non-linear three-parameter Sips and Redlich-Peterson isotherm models. The PSO model finds the highest process suitability. The synthesized ALG@CS bio-adsorbent showed excellent regenerative capacity in ten cycles, making it a suitable adsorbent for rare earth elements uptake. The unique bio-adsorbents combination allows for efficient critical raw materials adsorption providing a promising solution for their recovery and recycling.
Collapse
Affiliation(s)
- Dominika Fila
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland.
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031, Lublin, Poland
| |
Collapse
|
5
|
Romal JRA, Ong SK. Opportunity for a greener recovery of dysprosium(III) from secondary sources by a novel Mannich reaction-modified phosphorylated chitosan hydrogel. Int J Biol Macromol 2024; 267:131449. [PMID: 38599422 DOI: 10.1016/j.ijbiomac.2024.131449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/23/2024] [Accepted: 04/05/2024] [Indexed: 04/12/2024]
Abstract
The depleting supply of natural sources of rare earth elements (REE) is a concern to many nations as demand for advanced technology is becoming vital for national security. In this communication, the recovery of dysprosium(III) from aqueous systems was exemplified by a modified phosphorylated chitosan (PCs/MB) prepared by the C-Mannich reaction of phosphorylated chitosan, glutaraldehyde, and 4-hydroxycoumarin in ethanolic solution. Batch adsorption studies achieved a maximum adsorption capacity (qmax) of 34 mg/g at 25 °C and pH = 5.4 for 2 h. Fourier Transform-Infrared Spectroscopy, elemental mapping, and quantitative analyses revealed ion-exchange mechanism with C6-phosphate and a synergistic complexation with the amino group between two hexose units of the chitosan chain confirming the correlation provided by the pseudo-second order kinetics (R2 = 0.9996), extrapolated mean free energy of adsorption (Eads) of 12.9 kJ/mol from the corrected Dubinin-Radushkevich isotherm, and the extrapolated enthalpy of adsorption (ΔH0ads) of -42.4 kJ/mol from the linearized Van't Hoff plot. Competitive adsorption with iron(II), cerium(III), and neodymium(III) demonstrated preferential removal of dysprosium(III) and complete exclusion of iron(II), which illustrates potential application in the separation of REE from electronic wastes.
Collapse
Affiliation(s)
- John Rey Apostol Romal
- Department of Chemistry and Physics, Grand View University, Des Moines, IA 50316, USA; Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA.
| | - Say Kee Ong
- Department of Civil, Construction, and Environmental Engineering, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
6
|
Martínez-Rico O, Blanco L, Domínguez Á, González B. Accessible Eco-Friendly Method for Wastewater Removal of the Azo Dye Reactive Black 5 by Reusable Protonated Chitosan-Deep Eutectic Solvent Beads. Molecules 2024; 29:1610. [PMID: 38611889 PMCID: PMC11013712 DOI: 10.3390/molecules29071610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
A novel approach to enhance the utilization of low-cost and sustainable chitosan for wastewater remediation is presented in this investigation. The study centers around the modification of chitosan beads using a deep eutectic solvent composed of choline chloride and urea at a molar ratio of 1:2, followed by treatment with sulfuric acid using an impregnation accessible methodology. The effectiveness of the modified chitosan beads as an adsorbent was evaluated by studying the removal of the azo dye Reactive Black 5 (RB5) from aqueous solutions. Remarkably, the modified chitosan beads demonstrated a substantial increase in adsorption efficiency, achieving excellent removal of RB5 within the concentration range of 25-250 mg/L, ultimately leading to complete elimination. Several key parameters influencing the adsorption process were investigated, including initial RB5 concentration, adsorbent dosage, contact time, temperature, and pH. Quantitative analysis revealed that the pseudo-second-order kinetic model provided the best fit for the experimental data at lower dye concentrations, while the intraparticle diffusion model showed superior performance at higher RB5 concentration ranges (150-250 mg/L). The experimental data were successfully explained by the Langmuir isotherm model, and the maximum adsorption capacities were found to be 116.78 mg/g at 298 K and 379.90 mg/g at 318 K. Desorption studies demonstrated that approximately 41.7% of the dye could be successfully desorbed in a single cycle. Moreover, the regenerated adsorbent exhibited highly efficient RB5 removal (80.0-87.6%) for at least five consecutive uses. The outstanding adsorption properties of the modified chitosan beads can be attributed to the increased porosity, surface area, and swelling behavior resulting from the acidic treatment in combination with the DES modification. These findings establish the modified chitosan beads as a stable, versatile, and reusable eco-friendly adsorbent with high potential for industrial implementation.
Collapse
Affiliation(s)
| | | | | | - Begoña González
- Chemical Engineering Department, Universidade de Vigo, 36310 Vigo, Spain; (O.M.-R.); (L.B.); (Á.D.)
| |
Collapse
|
7
|
Wu R, Abdulhameed AS, Jawad AH, Yong SK, Li H, ALOthman ZA, Wilson LD, Algburi S. Development of a chitosan/nanosilica biocomposite with arene functionalization via hydrothermal synthesis for acid red 88 dye removal. Int J Biol Macromol 2023; 252:126342. [PMID: 37591432 DOI: 10.1016/j.ijbiomac.2023.126342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/25/2023] [Accepted: 08/12/2023] [Indexed: 08/19/2023]
Abstract
Herein, the polymer nanomatrix of chitosan/SiO2 (CHI/n-SiO2) was enriched with a π-π electron donor-acceptor system using diaromatic rings of benzil (BEZ) assisted via a hydrothermal process to obtain an effective adsorbent of chitosan-benzil/SiO2 (CHI-BEZ/n-SiO2). The polymer nanomatrix (CHI/n-SiO2) and the resulting adsorbent (CHI-BEZ/n-SiO2) were applied to remove the anionic acid red 88 (AR88) dye from aqueous media in a comparative mode. Box-Behnken design (BBD) was adopted to optimize AR88 adsorption onto CHI/n-SiO2 and CHI-BEZ/n-SiO2 with respect to variables that influence AR88 adsorption (adsorbent dose: 0.02-0.1 g/100 mL; pH: 4-10; and time: 10-90). The adsorption studies at equilibrium were conducted with a variety of initial AR88 dye concentrations (20-200 mg/L). The adsorption isotherm results reveal that the AR88 adsorption by CHI/n-SiO2 and CHI-BEZ/n-SiO2 are described by the Langmuir model. The kinetic adsorption profiles of AR88 with CHI/n-SiO2 and CHI-BEZ/n-SiO2 reveal that the pseudo-first-order model provides the best fit results. Interestingly, CHI-BEZ/n-SiO2 has a high adsorption capacity (261.2 mg/g), which exceeds the adsorption capacity of CHI/n-SiO2 (215.1 mg/g) that relates to the surface effects of SiO2 and the functionalization of chitosan with BEZ. These findings show that CHI-BEZ/n-SiO2 represents a highly efficient adsorbent for the removal of harmful pollutants from water, which outperforming the CHI/n-SiO2 system.
Collapse
Affiliation(s)
- Ruihong Wu
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Ali H Jawad
- Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Soon Kong Yong
- Soil Assessment and Remediation Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - He Li
- Department of Chemistry, Hengshui University, 053500, Hebei Province, Hengshui, China
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N5C9, Canada
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
8
|
Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD. Fabrication of magnetic chitosan-grafted salicylaldehyde/nanoclay for removal of azo dye: BBD optimization, characterization, and mechanistic study. Int J Biol Macromol 2023; 248:125943. [PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
9
|
Arni LA, Hapiz A, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Jawad AH. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism. Int J Biol Macromol 2023:125086. [PMID: 37247708 DOI: 10.1016/j.ijbiomac.2023.125086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
In this study, a magnetic chitosan grafted-benzaldehyde (CS-BD/Fe3O4) was hydrothermally prepared using benzaldehyde as a grafting agent to produce a promising adsorbent for the removal of acid red 88 (AR88) dye. The CS-BD/Fe3O4 was characterized by infrared spectroscopy, surface area analysis, scanning electron microscopy-energy dispersive X-ray, vibrating sample magnetometry, powder X-ray diffraction, CHN elemental analysis, and point of zero charge (pHPZC). The Box-Behnken design (BBD) was adopted to study the role of variables that influence AR88 dye adsorption (A: CS-BD/Fe3O4 dose (0.02-0.1 g), B: pH (4-10), and time C: (10-90 min)). The ANOVA results of the BBD model indicated that the F-value for the AR88 removal was 22.19 %, with the corresponding p-value of 0.0002. The adsorption profiles at equilibrium and dynamic conditions reveal that the Temkin model and the pseudo-first-order kinetics model provide an adequate description of the isotherm results, where the maximum adsorption capacity (qmax) with the AR88 dye was 154.1 mg/g. Several mechanisms, including electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding, regulate the adsorption of AR88 dyes onto CS-BD/Fe3O4 surface. As a result, this research indicates that the CS-BD/Fe3O4 can be utilized as an effective and promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
10
|
Oliveira Vargas G, Schnorr C, Bastista Nunes F, da Rosa Salles T, Zancan Tonel M, Binotto Fagan S, Zanella da Silva I, F. O. Silva L, Roberto Mortari S, Luiz Dotto G, Rodrigo Bohn Rhoden C. Highly Furosemide Uptake Employing Magnetic Graphene Oxide: DFT modeling Combined to Experimental Approach. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
|
11
|
Nunes FB, da Silva Bruckmann F, da Rosa Salles T, Rhoden CRB. Study of phenobarbital removal from the aqueous solutions employing magnetite-functionalized chitosan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12658-12671. [PMID: 36114403 DOI: 10.1007/s11356-022-23075-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/13/2022] [Indexed: 06/15/2023]
Abstract
Due to its wide use in anticonvulsant pharmacotherapy, phenobarbital (PHEN) is an aquatic contaminant with a high prevalence in the environment. In this adsorption study, chitosan and chitosan-based magnetic adsorbents containing different amounts of incorporated magnetite (CS, CS·Fe3O4 1:1, CS·Fe3O4 1:5, and CS·Fe3O4 1:10) were used for phenobarbital removal. The magnetic adsorbents were synthesized by co-precipitation method and characterized through FTIR, XRD, MEV, and VSM analysis. In PHEN adsorption, the equilibrium and adsorption kinetic were better adjusted by the Sips and pseudo-second-order model, respectively. Among the four nanoadsorbents used, the maximum phenobarbital adsorption capacity was 94.60 mg g-1 using 25 mg of CS·Fe3O4 1:5, with a concentration of PHEN (50 mg L-1), pH 7.0 at room temperature. The parameters of pH, adsorbent dosage, ionic strength, and thermodynamic study were tested for the adsorbent with the highest performance (CS·Fe3O4 1:5). The nanoadsorbent demonstrates efficiency in the removal of the contaminant for diverse adsorption cycles. Finally, the protocol employing magnetic adsorbents dispenses the subsequent steps of filtration and centrifugation.
Collapse
Affiliation(s)
- Franciane Batista Nunes
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Franciele da Silva Bruckmann
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
- Programa de Pós-Graduação Em Nanociências, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Theodoro da Rosa Salles
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil
| | - Cristiano Rodrigo Bohn Rhoden
- Laboratório de Materiais Magnéticos Nanoestruturados, LaMMaN, Universidade Franciscana - UFN, Santa Maria-RS, Brazil.
- Programa de Pós-Graduação Em Nanociências, Universidade Franciscana - UFN, Santa Maria-RS, Brazil.
| |
Collapse
|
12
|
Zhang B, Lan W, Xie J. Chemical modifications in the structure of marine polysaccharide as serviceable food processing and preservation assistant: A review. Int J Biol Macromol 2022; 223:1539-1555. [PMID: 36370860 DOI: 10.1016/j.ijbiomac.2022.11.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Marine polysaccharides are a kind of natural polysaccharides which isolated and extracted from marine organisms. Now some marine polysaccharides, such as chitosan, sodium alginate and agar, have been proven to exhibit antibacterial, antioxidant functions and biocompatibility, which are often used to preserve food or improve the physicochemical properties of food. However, they still have the defects of unsatisfactory preservation effect and biological activity, which can be remedied by its modification. Chemical modification is the most effective of all modification methods. The advances in common chemical modification methods of chitosan, sodium alginate, agar and other marine polysaccharides and research progress of modified products in food processing and preservation were summarized, and the influence of additional reaction conditions on the existence of chemical modification sites of polysaccharides was discussed. The modification of functional groups in natural marine polysaccharides leads to the change of molecular structure, which can improve the physical, chemical and biological properties of marine polysaccharides. Chemically modified products have been used in various fields of food applications, such as food preservatives, food additives, food packaging, and food processing aids. In general, chemical modification has excellent potential for food processing and preservation, which can improve the function of marine polysaccharides.
Collapse
Affiliation(s)
- Bingjie Zhang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Weiqing Lan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Shanghai Aquatic Products Processing and Storage Engineering Technology Research Center, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
13
|
Le Q, Cheng Z. Template-synthesized nano-Ag2O@HNTs-constructed hierarchical porous-structured PAN composite nanofiber membrane towards selective adsorption desulfurization. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
14
|
Zhang H, Gan S, Sun H, Yang H, Xie S. Fly‐Ash‐Based Hierarchical MCM‐41 Molecular Sieve as an Efficient Adsorbent for Methylene Blue Removal from Wastewater over a Wide pH. ChemistrySelect 2022. [DOI: 10.1002/slct.202203213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Huabing Zhang
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Simeng Gan
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Houxiang Sun
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Haiyan Yang
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| | - Sicai Xie
- School of Biology and Chemical Engineering Panzhihua University No. 10 Airport Road, East District Panzhihua Sichuan Province 617000 People's Republic of China
| |
Collapse
|
15
|
Yin T, Zhang X, Shao S, Xiang T, Zhou S. Covalently crosslinked sodium alginate/poly(sodium p-styrenesulfonate) cryogels for selective removal of methylene blue. Carbohydr Polym 2022; 301:120356. [DOI: 10.1016/j.carbpol.2022.120356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/31/2022] [Accepted: 11/12/2022] [Indexed: 11/18/2022]
|
16
|
Le Q, Xiang Y, Liu Z, Cheng Z. High mechanical performance submicron-sized Cu2O-derived necklace-shaped PAN nanofiber composite membrane towards adsorption desulfurization application. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Li Y, Dai Y, Tao Q, Gao Z, Xu L. Ultrahigh efficient and selective adsorption of U(VI) with amino acids-modified magnetic chitosan biosorbents: Performance and mechanism. Int J Biol Macromol 2022; 214:54-66. [PMID: 35714866 DOI: 10.1016/j.ijbiomac.2022.06.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/09/2022] [Accepted: 06/10/2022] [Indexed: 12/14/2022]
Abstract
Exploiting eco-friendly, highly controlled preparation and convenient solid-liquid separation adsorbent to separate uranium from aquatic medium is of importance and in demand. In this study, magnetic ferroferric oxide nanoparticles synthesized through a facile hydrothermal reaction was cross-linked with chitosan. The intermediate product was subsequently chemically grafting with four amino acids such as alanine, serine, glycine or L-cysteine to produce Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS. The resultants were verified by SEM, EDS, XRD, VSM, FT-IR and XPS. Adsorption of uranium with amino acids-modified magnetic chitosans were carried out. The parameters that affected the adsorption ability, selectivity toward uranium, and reusability have been illustrated. pH 6.5 was the most beneficial for the adsorption. The saturation adsorption capacity of Ala-MCS, Ser-MCS, Gly-MCS, Cys-MCS were found as 658.88 mg/g ± 1.0 %, 616.10 ± 0.3 % mg/g, 646.38 ± 1.8 % mg/g, 653.96 ± 3.4 % mg/g and 409.15 ± 4.6 % mg/g, respectively. The adsorption process was analyzed using kinetics (pseudo-first-order, pseudo-second-order and intraparticle diffusion models) and isotherms models (Langmuir and Freundlich models). The adsorption of uranium on Ala-MCS, Ser-MCS, Gly-MCS and Cys-MCS happened on monolayer and were controlled by chemisorption. The certified high adsorption amount and efficient solid-liquid separation proved amino acids-modified magnetic chitosan are promising adsorbents for removal of uranium from wastewater.
Collapse
Affiliation(s)
- Yan Li
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China
| | - Ying Dai
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China.
| | - Qinqin Tao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China.
| | - Zhi Gao
- Jiangxi Province Key Laboratory of Polymer Micro/Nano Manufacturing and Devices, School of Chemistry, Biology and Materials Science, East China University of Technology, Nanchang 330013, PR China
| | - Lei Xu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
18
|
Maliki S, Sharma G, Kumar A, Moral-Zamorano M, Moradi O, Baselga J, Stadler FJ, García-Peñas A. Chitosan as a Tool for Sustainable Development: A Mini Review. Polymers (Basel) 2022; 14:polym14071475. [PMID: 35406347 PMCID: PMC9003291 DOI: 10.3390/polym14071475] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/31/2022] [Accepted: 04/02/2022] [Indexed: 01/27/2023] Open
Abstract
New developments require innovative ecofriendly materials defined by their biocompatibility, biodegradability, and versatility. For that reason, the scientific society is focused on biopolymers such as chitosan, which is the second most abundant in the world after cellulose. These new materials should show good properties in terms of sustainability, circularity, and energy consumption during industrial applications. The idea is to replace traditional raw materials with new ecofriendly materials which contribute to keeping a high production rate but also reducing its environmental impact and the costs. The chitosan shows interesting and unique properties, thus it can be used for different purposes which contributes to the design and development of sustainable novel materials. This helps in promoting sustainability through the use of chitosan and diverse materials based on it. For example, it is a good sustainable alternative for food packaging or it can be used for sustainable agriculture. The chitosan can also reduce the pollution of other industrial processes such as paper production. This mini review collects some of the most important advances for the sustainable use of chitosan for promoting circular economy. Hence, the present review focuses on different aspects of chitosan from its synthesis to multiple applications.
Collapse
Affiliation(s)
- Soundouss Maliki
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Gaurav Sharma
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
- School of Science and Technology, Glocal University, Saharanpur 247001, India
- Correspondence: (G.S.); (A.G.-P.)
| | - Amit Kumar
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, India;
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - María Moral-Zamorano
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Omid Moradi
- Department of Chemistry, Shahr-e-Qods Branch, Islamic Azad University, Tehran 61349, Iran;
| | - Juan Baselga
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
| | - Florian J. Stadler
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, China;
| | - Alberto García-Peñas
- Departamento de Ciencia e Ingeniería de Materiales e Ingeniería Química (IAAB), Universidad Carlos III de Madrid, 28911 Leganés, Spain; (S.M.); (M.M.-Z.); (J.B.)
- Correspondence: (G.S.); (A.G.-P.)
| |
Collapse
|