1
|
Şenol ZM, Arslanoğlu H, Keskin ZS, Mehmeti V, El Messaoudi N. Biosorption of rhodamine B and sunset yellow dyes on cross-linked chitosan-alginate biocomposite beads: Experimental and theoretical studies. Int J Biol Macromol 2025; 298:139264. [PMID: 39824421 DOI: 10.1016/j.ijbiomac.2024.139264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 01/20/2025]
Abstract
This research explores the biosorption of Rhodamine B (Rd-B) and Sunset Yellow (SY) dyes using cross-linked chitosan-alginate (Ch-A) biocomposite beads, combining experimental investigations with theoretical studies to elucidate the biosorption mechanisms. The biocomposite beads were synthesized through an eco-friendly cross-linking method, and their structural properties were characterized using various characterization techniques. Complementary theoretical studies using Monte Carlo (MC) simulations and molecular dynamics (MD) calculations provided insights into the molecular interactions between the dyes and the biocomposite beads. Ch-A maximal biosorption capacity for Rd-B and SY was determined using the Langmuir model to be 43.6 mg g-1 and 25.1 mg g-1, respectively. Kinetic analysis elucidated that the biosorption process for Rd-B followed the pseudo first order (PFO) model and SY followed the pseudo second order (PSO) model. According to the thermodynamic characteristics, Rd-B and SY adsorb spontaneously and endothermically on Ch-A. In conjunction, MC and MD calculations were applied to probe the interactions between Rd-B and SY molecules and the Ch-A biocomposite beads, providing compelling evidence of robust binding interactions such as hydrogen bonds, electrostatic attractions, and π-π interactions. These theoretical insights were subsequently aligned with empirical observations, affirming a significant relation between the theoretical and experimental data. This study highlights the significance of combining experimental data with theoretical models to advance the development of environmentally friendly materials for water purification.
Collapse
Affiliation(s)
- Zeynep Mine Şenol
- Sivas Cumhuriyet University, Faculty of Health Sciences, Department of Nutrition and Diet, 58140 Sivas, Turkey.
| | - Hasan Arslanoğlu
- Çanakkale Onsekiz Mart University, Engineering Faculty, Chemical Engineering, Çanakkale, Turkey
| | - Zehra Seba Keskin
- Department of Pharmacy, Health Services Vocational School, Sivas Cumhuriyet University, 58140 Sivas, Turkey
| | - Valbonë Mehmeti
- University of Prishtina, Faculty of Agriculture and Veterinary, Prishtina, Kosovo
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr University, Agadir 80000, Morocco.
| |
Collapse
|
2
|
Atangana E, Ajiboye TO, Mafolasire AA, Ghosh S, Hakeem B. Adsorption of Organic Pollutants from Wastewater Using Chitosan-Based Adsorbents. Polymers (Basel) 2025; 17:502. [PMID: 40006164 PMCID: PMC11859431 DOI: 10.3390/polym17040502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Among the naturally occurring polysaccharides, chitosan is the second-most abundant polysaccharide. It is obtained from chitin through a process known as deacetylation. It is biodegradable, biocompatible, and non-toxic, which made it suitable for various environmental applications. In the present review, the structure, properties, and characteristics of chitosan were discussed. In addition, the modified forms of chitosan (including cross-linked, nanoparticles, functionalized, and grafted forms of chitosan) were enumerated. The applications of these modified forms of chitosan in the adsorption of organic pollutants (such as antibiotics, dyes, pesticides, microplastics, polyaromatic hydrocarbons, parabens, and polychlorobiphenyls) are comprehensively reviewed. Furthermore, the mechanism of adsorption, adsorption isotherm (Langmuir and Freundlich), and the kinetic models are highlighted. Finally, the economic viability assessment and environmental impact of processing tons of shrimp shells into chitosan annually were discussed.
Collapse
Affiliation(s)
- Ernestine Atangana
- Centre for Environmental Management, University of the Free State, Bloemfontein 9300, South Africa
| | | | | | - Soumya Ghosh
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa 616, Oman;
| | - Bello Hakeem
- Science Laboratory Department, Federal College of Fishery and Marine Technology, Lagos 106104, Nigeria;
| |
Collapse
|
3
|
Ji J, Wang Y, Li C, Xu F, Jiang M. Safe detoxification on acid-washed activated carbon combined with chitosan for aflatoxins from contaminated peanut oil. Mycotoxin Res 2024; 40:667-679. [PMID: 39256275 DOI: 10.1007/s12550-024-00559-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/26/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
Aflatoxins are one of the most toxic mycotoxins and can cause serious harm to humans and animals. Adsorption is a practical decontamination technique favored by the industry because of its advantages of low cost, speed and simplicity, and environmental friendliness. In this work, the adsorption features of activated carbon and chitosan were fabricated in a composite through chemical co-precipitation to improve its properties for adsorption. Furthermore, the capacity of the synthesized chitosan and acid-washed activated carbon composite (CS-AAC) to attenuate the aflatoxins in contaminated peanut oil and the adsorption capacity at different initial aflatoxins content, contact duration, and temperature were evaluated. The results showed a higher adsorption capacity (removal efficiency to 93.45% of AFB1, 94.05% of AFB2, 89.16% of AFG1, 83.26% of AFG2). The Freundlich isothermal and D-R model and the pseudo-second-order rate expression both implied a good correlation with the test data and explained the adsorption mechanism well. The adsorption mechanism was found to be accomplished primarily via ion exchange and chelation. According to thermodynamic results (△G < 0, △H > 0, △S > 0), the adsorption process was endothermic and spontaneous. Compared to acid-washed activated carbon, CS-AAC enhanced the retention of VE and sterols (especially VE by 23%), and the safety of CS-AAC adsorbent was explored by cellular experiments. In conclusion, CS-AAC is a promising adsorbent material for the removal of aflatoxins from edible oils.
Collapse
Affiliation(s)
- Junmin Ji
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China.
| | - Yan Wang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Changjiang Li
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Fengyao Xu
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| | - Miaomiao Jiang
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou, 450001, P. R. China
| |
Collapse
|
4
|
Long Z, Wang Z, Huang Q, Jia Y, Jiao Z, Wang Y, Du Y. High-performance adsorption of methylene blue using novel bio-adsorbent based on sargassum fusiforme. Heliyon 2024; 10:e37949. [PMID: 39381252 PMCID: PMC11458969 DOI: 10.1016/j.heliyon.2024.e37949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/07/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Abstract
Large specific surface area obtained by pyrolyzed biomass is considered as a vital factor in improving the dye adsorption performance. However, pyrolysis would cause the inevitable destruction of the surface functional groups of biomass. Herein, a biomass adsorbent based on sargassum fusiforme without pyrolysis was employed for the removal of methylene blue (MB). Combining the FTIR, XPS, SEM, and BET analysis, sargassum fusiforme bio-adsorbent (SFBA) was found to have low specific surface area whereas rich functional groups, including carboxyl, carbonyl and hydroxyl groups. SFBA presented high adsorption performance towards MB with a maximum adsorption capacity of 1154.05 mg/g, demonstrating that the high adsorption performance could be achieved by abundant functional groups rather than large specific surface area. In this paper, various adsorption parameters including pH, concentration, contact time, and temperature have also been discussed. The results indicated that the kinetic and isotherm models of SFBA followed the pseudo-secondary kinetic model and the Langmuir isotherm model, respectively. The negative thermodynamic parameters showed that the adsorption process is spontaneous and exothermic. The SFBA enriched with functional groups exhibited high adsorption performance as well as simple fabrication, and abundant sources that could provide a novel alternative for the treatment of dye wastewater.
Collapse
Affiliation(s)
- Zhutao Long
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Zicheng Wang
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Qiong Huang
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yulei Jia
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Zhiyong Jiao
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yudou Wang
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yonggang Du
- College of Science, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
5
|
Deng T, Li H, Ding S, Chen F, Fu J, Zhao J. Enhanced Adsorptivity of Hexavalent Chromium in Aqueous Solutions Using CTS@nZVI Modified Wheat Straw-Derived Porous Carbon. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:973. [PMID: 38869598 PMCID: PMC11173464 DOI: 10.3390/nano14110973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/31/2024] [Indexed: 06/14/2024]
Abstract
Using KOH-modified wheat straw as the precursor, wheat straw biochar was produced through carbonization at 500 °C. Subsequently, a synthetic material containing nano-zero-valent iron (nZVI) was prepared via liquid phase reduction (nZVI-WSPC). To enhance its properties, chitosan (CTS) was used by crosslinking to form the new adsorbent named CTS@nZVI-WSPC. The impact of CTS on parameters such as mass ratio, initial pH value, and adsorbent dosage on the adsorption efficiency of Cr(VI) in solution was investigated through one-factor experiments. Isotherm adsorption and thermodynamic analysis demonstrated that the adsorption of Cr(VI) by CTS@nZVI-WSPC conforms to the Langmuir model, with a maximum adsorption capacity of 147.93 mg/g, and the adsorption process is endothermic. Kinetic analysis revealed that the adsorption process follows a pseudo-second-order kinetic model. The adsorption mechanism, as elucidated by SEM, FTIR, XPS, and XRD, suggests that the process may involve multiple mechanisms, including pore adsorption, electrostatic adsorption, chemical reduction, and surface chelation. The adsorption capacity of Cr(VI) by CTS@nZVI-WSPC remains high after five cycles. The adsorbent is simple to operate, economical, efficient, and reusable, making it a promising candidate for the treatment of Cr(VI) in water.
Collapse
Affiliation(s)
- Tiantian Deng
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Hansheng Li
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
- Faculty of Health Sciences, University of Technology MARA, Puncak Alam Campus, Puncak Alam 42300, Malaysia
| | - Su Ding
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Feng Chen
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Jingbao Fu
- School of Environmental and Biological Engineering, Henan University of Engineering, Zhengzhou 451191, China; (H.L.); (S.D.); (F.C.); (J.F.)
| | - Junwei Zhao
- College of Resources and Environment, Yangtze University, Wuhan 434023, China;
| |
Collapse
|
6
|
Wang H, Chen C, Dai K, Xiang H, Kou J, Guo H, Ying H, Chen X, Wu J. Selective adsorption of anionic dyes by a macropore magnetic lignin-chitosan adsorbent. Int J Biol Macromol 2024; 269:131955. [PMID: 38692542 DOI: 10.1016/j.ijbiomac.2024.131955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
Dyes pollution is well known for their hazardous impacts on human health and the environment. The removal of dyes from wastewater has become an important issue. In this study, magnetic micrometer-sized particles AL-CTS@MNPs were synthesized from alkaline lignin (AL) and chitosan (CTS) by "one-pot method". The adsorbent presented higher selectivity adsorption effect on anionic dyes than amphoteric and cationic dyes, and even no adsorption effect on cationic methylene blue (MB), which showed that the anionic dyes could be better separated from the other two types of dyes. The adsorption isotherms of the dyes were highly consistent with the Langmuir model, and the maximum adsorption capacity was 329.50 mg/g for methyl orange (MO) and 20.00 mg/g for rhodamine B (RhB). AL-CTS@MNPs showed good adsorption of anionic dyes (MO) in the pH range of 3-9. Meanwhile, the adsorbent AL-CTS@MNPs were also characterized, showing rough surface with specific surface areas of 37.38 m2/g, pore diameter of 95.8 nm and porosity of 17.62 %. The particle sizes were ranged from 800 μm to 1300 μm. The electrostatic attraction and π-π* electron donor-acceptor interactions were the main forces between the adsorbent and anionic dyes. While the electrostatic repulsive force between the adsorbent and the cationic dyes resulted in the non-absorption of MB by AL-CTS@MNPs. Subsequently, the adsorbent maintained a removal rate of >95 % after five adsorption-desorption cycles, demonstrating its excellent stability and recoverability. Ultimately, the prepared AL-CTS@MNPs illuminated good prospect on complex components dyes wastewater treatment.
Collapse
Affiliation(s)
- Hui Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Chen Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Kun Dai
- School of Materials and Chemical Engineering, Chuzhou University, Chuzhou, China
| | - Houle Xiang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jingwei Kou
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Han Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hanjie Ying
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Xiaochun Chen
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| | - Jinglan Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China.
| |
Collapse
|
7
|
Tan J, Kong L, Huang Q, Gan Y, Lu S. Harnessing the power of polyethyleneimine in modifying chitosan surfaces for efficient anion dyes and hexavalent chromium removal. ENVIRONMENTAL RESEARCH 2024; 247:118192. [PMID: 38224939 DOI: 10.1016/j.envres.2024.118192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
In this investigation, synthesis of a surface-functionalized chitosan known as amino-rich chitosan (ARCH) was achieved by successful modification of chitosan by polyethyleneimine (PEI). The synthesized ARCH was characterized by a specific surface area of 8.35 m2 g-1 and a microporous structure, with pore sizes predominantly under 25 nm. The Zeta potential of ARCH maintained a strong positive charge across a wide pH range of 3-11. These characteristics contribute to its high adsorption efficiency in aqueous solutions, demonstrated by its application in removing various anionic dyes, including erioglaucine disodium salt (EDS), methyl orange (MO), amaranth (ART), tartrazine (TTZ), and hexavalent chromium ions (Cr(VI)). The adsorption capacities (Qe) for these contaminants were measured at 1301.15 mg g-1 for EDS, 1025.45 mg g-1 for MO, 940.72 mg g-1 for ART, 732.96 mg g-1 for TTZ, and 350.15 mg g-1 for Cr(VI). A significant observation was the rapid attainment of adsorption equilibrium, occurring within 10 min for ARCH. The adsorption behavior was well-described by the Pseudo-second-order and Langmuir models. Thermodynamic studies indicated that the adsorption process is spontaneous and endothermic in nature. Additionally, an increase in temperature was found to enhance the adsorption capacity of ARCH. The material demonstrated robust stability and selective adsorption capabilities in varied conditions, including different organic compounds, pH environments, sodium salt presence, and in the face of interfering ions. After five cycles of adsorption, ARCH maintained about 60% of its initial adsorption capacity. Due to its efficient adsorption performance, simple synthesis process, low biological toxicity, and cost-effectiveness, ARCH is a promising candidate for future water treatment technologies.
Collapse
Affiliation(s)
- Jisuan Tan
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China.
| | - Lingzhen Kong
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Qiaoxian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Yulin Gan
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, Beibu Gulf University, Qinzhou 515000, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
8
|
Qadir MF, Naveed M, Khan KS, Mumtaz T, Raza T, Mohy-Ud-Din W, Mustafa A. Divergent responses of phosphorus solubilizing bacteria with P-laden biochar for enhancing nutrient recovery, growth, and yield of canola (Brassica napus L.). CHEMOSPHERE 2024; 353:141565. [PMID: 38423145 DOI: 10.1016/j.chemosphere.2024.141565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 02/02/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
The growing global population has led to a heightened need for food production, and this rise in agricultural activity is closely tied to the application of phosphorus-based fertilizers, which contributes to the depletion of rock phosphate (RP) reserves. Considering the limited P reserves, different approaches were conducted previously for P removal from waste streams, while the adsorption of ions is a novel strategy with more applicability. In this study, a comprehensive method was employed to recover phosphorus from wastewater by utilizing biochar engineered with minerals such as calcium, magnesium, and iron. Elemental analysis of the wastewater following a batch experiment indicated the efficiency of the engineered biochar as an adsorbent. Subsequently, the phosphorus-enriched biochar, hereinafter (PL-BCsb), obtained from the wastewater, underwent further analysis through FTIR, XRD, and nutritional assessments. The results revealed that the PL-BCsb contained four times higher (1.82%) P contents which further reused as a fertilizer supplementation for Brassica napus L growth. PL-BCsb showed citric acid (34.03%), Olsen solution (10.99%), and water soluble (1.74%) P desorption. Additionally, phosphorous solubilizing bacteria (PSB) were incorporated with PL-BCsb along two P fertilizer levels P45 (45 kg ha-1) and P90 (90 kg ha-1) for evaluation of phosphorus reuse efficiency. Integrated application of PL-BCsb with half of the suggested amount of P45 (45 kg ha-1) and PSB increased growth, production, physiological, biochemical, and nutritional qualities of canola by almost two folds when compared to control. Similarly, it also improved soil microbial biomass carbon up to four times, alkaline and acid phosphatases activities both by one and half times respectively as compared to control P (0). Furthermore, this investigation demonstrated that waste-to-fertilizer technology enhanced the phosphorus fertilizer use efficiency by 55-60% while reducing phosphorus losses into water streams by 90%. These results have significant implications for reducing eutrophication, making it a promising approach for mitigating environmental pollution and addressing climate change.
Collapse
Affiliation(s)
- Muhammad Farhan Qadir
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, Xinjiang, China
| | - Muhammad Naveed
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan.
| | - Khuram Shehzad Khan
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environmental Sciences, National Academy of Agriculture Green Development, China Agricultural University, Beijing 100193, China
| | - Tooba Mumtaz
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan; College of Resources and Environment, Xinjiang Agricultural University, 311 Nongda East Road, Urumqi, 830052, Xinjiang, China
| | - Taqi Raza
- Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville-USA
| | - Waqas Mohy-Ud-Din
- Institute of Soil & Environmental Sciences, University of Agriculture Faisalabad, 38000 Pakistan
| | - Adnan Mustafa
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| |
Collapse
|
9
|
Gong D, Yang P, Zhao J, Jia X. Selective removal of thallium from water by MnO 2-doped magnetic beads: Performance and mechanism study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120147. [PMID: 38325278 DOI: 10.1016/j.jenvman.2024.120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/22/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Aqueous thallium has posed an increasing threat to environment as human's intensified activities in mining, refining, process and discharge. Remediation on thallium pollution has been of up-most importance to water treatment. In present work, MnO2 and magnetic Fe3O4 have been implanted to sodium alginate (SA) in presence of carboxyl methyl cellulose (CMC), and the resultant beads consisted of SA/CMC/MnO2/Fe3O4 were characterized. The materials were applied to treatment of Tl-contaminated water as adsorbent in lab. The removal results revealed that the adsorption capacity reached 38.8 mg (Tl)·g (beads)-1 and almost 100 % removal efficiency was achieved. The residual Tl was below 0.1 μg·L-1, meeting the discharge standard regulated in China. The kinetic adsorption was better described as a pseudo-second-order and three-step intra-particle diffusion model. Freundlich isotherm was well fitted the experimental data. The absorbent shown an excellent competitive specificity (KTl/M: ∼104!) over common hazardous ions Cu2+, Cd2+, Co2+, Pb2+ and Cr3+, as well as naturally abundant K+ and Na+ (KTl/M: 10-102) in mimic environmental conditions. Regeneration and reusability of the absorbent was also verified by five absorption-desorpotion cycles. XPS results revealed that a redox reaction between Mn4+ with Tl+, and an ion exchange of H+ (-O-Fe) and Tl+ were assumed to be main process for the specific capturing. This study provided an efficient SA/CMC/MnO2/Fe3O4 composite beads that could be a promising adsorbent for Tl-polluted water treatment.
Collapse
Affiliation(s)
- Dirong Gong
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Panpan Yang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Junyi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No.1799, Jimei Road, Xiamen, Fujian, 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315830, PR China
| | - Xiaoyu Jia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No.1799, Jimei Road, Xiamen, Fujian, 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo, 315830, PR China.
| |
Collapse
|
10
|
Agha HM, Abdulhameed AS, Jawad AH, Aazmi S, Sidik NJ, De Luna Y, Wilson LD, ALOthman ZA, Algburi S. Enhancing cationic dye removal via biocomposite formation between chitosan and food grade algae: Optimization of algae loading and adsorption parameters. Int J Biol Macromol 2024; 258:128792. [PMID: 38110162 DOI: 10.1016/j.ijbiomac.2023.128792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
Herein, a natural material including chitosan (CTS) and algae (food-grade algae, FGA) was exploited to attain a bio-adsorbent (CTS/FGA) for enhanced methyl violet 2B dye removal. A study of the FGA loading into CTS matrix showed that the best mixing ratio between CTS and FGA to be used for the MV 2B removal was 50 %:50 % (CTS/FGA; 50:50 w/w). The present study employed the Box-Behnken design (RSM-BBD) to investigate the impact of three processing factors, namely CTS/FGA-(50:50) dose (0.02-0.1 g/100 mL), pH of solution (4-10), and contact time (5-15 min) on the decolorization rate of MV 2B dye. The results obtained from the equilibrium and kinetic experiments indicate that the adsorption of MV 2B dye on CTS/FGA-(50:50) follows the Langmuir and pseudo-second-order models, respectively. The CTS/FGA exhibits an adsorption capacity of 179.8 mg/g. The characterization of CTS/FGA-(50:50) involves the proposed mechanism of MV 2B adsorption, which primarily encompasses various interactions such as electrostatic forces, n-π stacking, and H-bonding. The present study demonstrates that CTS/FGA-(50:50) synthesized material exhibits a distinctive structure and excellent adsorption properties, thereby providing a viable option for the elimination of toxic cationic dyes from polluted water.
Collapse
Affiliation(s)
- Hasan M Agha
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq; College of Engineering, University of Warith Al-Anbiyaa, Karbala, Iraq
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Advanced Biomaterials and Carbon Development Research Group, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah 64001, Iraq.
| | - Shafiq Aazmi
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Norrizah Jaafar Sidik
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Yannis De Luna
- Program of Chemistry, Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, PO Box 2713, Doha, Qatar
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon SK S7N 5C9, Canada
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sameer Algburi
- College of Engineering Technology, Al-Kitab University, Kirkuk, Iraq
| |
Collapse
|
11
|
Ren K, Fan Y, Xing G, Zhai M, Sheng J, Song Y. Rapid and convenient synthesis of "green" ammonium-modified chitosan composite sponge with the existence of ascorbic acid for highly efficient removal of Congo red (CR). Carbohydr Polym 2024; 324:121444. [PMID: 37985072 DOI: 10.1016/j.carbpol.2023.121444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/13/2023] [Accepted: 09/27/2023] [Indexed: 11/22/2023]
Abstract
In this study, a new green composite sponge made of chitosan and modified with ammonium ascorbate (ACS-CIT) was synthesized in just 10 min. Compared with CS-CIT (sponge prepared from acetic acid), ACS-CIT exhibits significantly enhanced adsorption performance for CR, with the saturated adsorption capacities increased from 353.667 to 1261.639 mg·g-1. The adsorption mechanism can be summarized as the generation of more hydrogen bonds, electrostatic attraction, and intra particle diffusion, revealing the addition of ascorbic acid introduced more hydroxyl groups, thereby enhancing the hydrogen bonding force, and the ammonium modification of chitosan improved the electrostatic attraction of the material, resulting in a significant increase in its adsorption capacity. Additionally, the prepared ACS-CIT showed excellent CR removal performance even in the presence of multiple interfering factors coexisting in the simulated wastewater, and the adsorption capacity remained stable after at least five cycles. Furthermore, the maximum bed capacity of ACS-CIT for CR is 1152.829 mg·g-1 under the given conditions of a flow rate of 1 mL·min-1, inlet concentration of 150 mg·L-1, a bed height of 1 cm respectively, and the breakthrough curve followed the Thomas model. The results indicated the eco-friendly and recyclable ACS-CIT is a promising adsorbent for CR dye removal in water.
Collapse
Affiliation(s)
- Keyu Ren
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Yanan Fan
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Guozheng Xing
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Mengge Zhai
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China
| | - Jie Sheng
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| | - Yishan Song
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, PR China; Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture and Rural Affairs, Shanghai 201306, China.
| |
Collapse
|
12
|
Xu K, He T, Li L, Iqbal J, Tong Y, Hua L, Tian Z, Zhao L, Li H. DOTA functionalized adsorbent DOTA@Sludge@Chitosan derived from recycled shrimp shells and sludge and its application for lead and chromium removal from water. Int J Biol Macromol 2024; 255:128263. [PMID: 37984580 DOI: 10.1016/j.ijbiomac.2023.128263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/22/2023]
Abstract
DOTA@Sludge@Chitosan was synthesized by a facile treatment using DOTA (1,4,7,10-tetraazacyclododecane-N,N',N,N'-tetraacetic acid) to modify dry sludge and chitosan in an acidic solution. The performance of developed DOTA@Sludge@Chitosan was investigated for the adsorptive removal of Cr6+ and Pb2+ from water. Characterization studies showed that the materials possess a large surface area (52.009 m2/g), pore volume (0.069 cm3/g), and abundant functional groups of amino and hydroxyl. The prepared material showed a synergetic effect due to carboxylic acid and sludge, effectively removing Cr6+ and Pb2+. It reached 329.4 mg/g (Pb2+) and 273.3 mg/g (Cr6+) at 20 °C, much higher than commercial activated carbon. The regeneration of the adsorbent was tested for six adsorption and desorption cycles. The results demonstrate that the DOTA@Sludge@Chitosan adsorbent well-maintained high adsorption capacity attributed to its stability, making it a promising adsorbent for heavy metals removal from industrial effluent.
Collapse
Affiliation(s)
- Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Ting He
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi, United Arab Emirates
| | - Yuping Tong
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Lin Hua
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Zhenbang Tian
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Liang Zhao
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hui Li
- School of Agronomy and Bioscience, Dehong Teachers' College, Dehong Prefecture 678499, China
| |
Collapse
|
13
|
Yu J, Tian S, Yao A, Hu H, Lan J, Yang L, Du X, Lin S. Compressible polydopamine modified pomelo peel powder/poly(ethyleneimine)/κ-carrageenan aerogel with pH-tunable charge for selective removal of anionic and cationic dyes. Carbohydr Polym 2024; 323:121377. [PMID: 37940273 DOI: 10.1016/j.carbpol.2023.121377] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/16/2023] [Accepted: 09/08/2023] [Indexed: 11/10/2023]
Abstract
In this work, a novel biomass-based aerogel, polydopamine decorated pomelo peel powder/polyethyleneimine/κ-carrageenan (PPEKC) aerogel, was developed for dye wastewater treatment. The as-prepared PPEKC aerogel possessed a robust structure and good compressible resilience. As expected, this aerogel presented remarkable efficacy in eliminating both anionic and cationic dyes. The experimental maximum adsorption capacities were 2016.7 mg g-1 for congo red (CR) at pH = 5 and 1176.6 mg g-1 for methylene blue (MEB) at pH = 11, following with ultra-fast adsorption rates. The adsorption kinetics followed the pseudo-second-order model. The adsorption isotherms exhibited a stronger alignment with the Langmuir isotherm model for CR at 308 K and MEB at 288, 298, 308 K. The Freundlich isotherm model yielded a suitable fit for the adsorption of CR at 288 and 298 K. Thermodynamic analyses indicated that the removal of CR and MEB was spontaneous and endothermic. The adsorption mechanisms involved electrostatic interactions, π-π interactions, and hydrogen bonds. Intriguingly, it could achieve bidirectional selective adsorption of anionic and cationic dyes in the designed pH values, due to pH-tunable surface charge. Additionally, it also exhibited favorable reusability and antibacterial activity. Therefore, the as-prepared PPEKC aerogel could be a promising biosorbent for dye wastewater treatment.
Collapse
Affiliation(s)
- Jincheng Yu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Siyao Tian
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Anrong Yao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Haoyi Hu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jianwu Lan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China
| | - Lin Yang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G1H9, Canada
| | - Xiaosheng Du
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China.
| | - Shaojian Lin
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China; National Engineering Laboratory for Clean Technology of Leather Manufacture, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
14
|
Obayomi KS, Yon Lau S, Danquah MK, Zhang J, Chiong T, Meunier L, Rahman MM. Selective adsorption of organic dyes from aqueous environment using fermented maize extract-enhanced graphene oxide-durian shell derived activated carbon composite. CHEMOSPHERE 2023; 339:139742. [PMID: 37562502 DOI: 10.1016/j.chemosphere.2023.139742] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/24/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
A secure aquatic environment is essential for both aquatic and terrestrial life. However, rising populations and the industrial revolution have had a significant impact on the quality of the water environment. Despite the implementation of strong and adapted environmental policies for water treatment worldwide, the issue of organic dyes in wastewater remains challenging. Thus, this study aimed to develop an efficient, cost-effective, and sustainable material to treat methylene blue (MB) in an aqueous environment. In this research, maize extract solution (MES) was utilized as a green cross-linker to induce precipitation, conjugation, and enhance the adsorption performance of graphene oxide (GO) cross-linked with durian shell activated carbon (DSAC), resulting in the formation of a GO@DSAC composite. The composite was investigated for its adsorptive performance toward MB in aqueous media. The physicochemical characterization demonstrated that the cross-linking method significantly influenced the porous structure and surface chemistry of GO@DSAC. BET analysis revealed that the GO@DSAC exhibited dominant mesopores with a surface area of 803.67 m2/g. EDX and XPS measurements confirmed the successful cross-linking of GO with DSAC. The adsorption experiments were well described by the Harkin-Jura model and they followed pseudo-second order kinetics. The maximum adsorption capacity reached 666.67 mg/g at 318 K. Thermodynamic evaluation indicated a spontaneous, feasible, and endothermic in nature. Regenerability and reusability investigations demonstrated that the GO@DSAC composite could be reused for up to 10 desorption-adsorption cycles with a removal efficiency of 81.78%. The selective adsorptive performance of GO@DSAC was examined in a binary system containing Rhodamine B (RhB) and methylene orange (MO). The results showed a separation efficiency (α) of 98.89% for MB/MO and 93.66% for MB/RhB mixtures, underscoring outstanding separation capabilities of the GO@DSAC composite. Overall, the GO@DSAC composite displayed promising potential for the effective removal of cationic dyes from wastewater.
Collapse
Affiliation(s)
- Kehinde Shola Obayomi
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia; Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia.
| | - Sie Yon Lau
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Michael K Danquah
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, 37996, United States
| | - Jianhua Zhang
- Institute for Sustainable Industries and Liveable Cities, Victoria University, Werribee, VIC, 3030, Australia
| | - Tung Chiong
- Department of Chemical Engineering, Curtin University, CDT 250, 98009, Miri, Sarawak, Malaysia
| | - Louise Meunier
- Department of Chemical Engineering, Queen's University, Kingston, K7L 3N6, Canada
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia; Department of General Educational Development, Faculty of Science and Information Technology, Daffodil International University, Birulia, Dhaka 1216, Bangladesh
| |
Collapse
|
15
|
He Q, Qi J, Liu X, Zhang H, Wang Y, Wang W, Guo F. Carbon-in-Silicate Nanohybrid Constructed by In Situ Confined Conversion of Organics in Rectorite for Complete Removal of Dye from Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2627. [PMID: 37836268 PMCID: PMC10574537 DOI: 10.3390/nano13192627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/17/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023]
Abstract
The complete removal of low concentration organic pollutants from wastewater to obtain clean water has always been a highly desired but challenging issue. In response to this, we proposed a new strategy to fabricate a carbon-in-silicate nanohybrid composite by recycling dye-loaded layered clay adsorbent and converting them to new heterogeneous carbon-in-silicate nanocomposite through an associated calcination-hydrothermal activation process. It has been confirmed that most of the dye molecules were present in waste rectorite adsorbent using an intercalation mode, which can be in situ converted to carbon in the confined interlayer spacing of rectorite. The further hydrothermal activation process may further improve the pore structure and increase surface active sites. As expected, the optimal composite shows extremely high removal rates of 99.6% and 99.5% for Methylene blue (MB) and Basic Red 14 (BR) at low concentrations (25 mg/L), respectively. In addition, the composite adsorbent also shows high removal capacity for single-component and two-component dyes in deionized water and actual water (i.e., Yellow River water, Yangtze River water, and seawater) with a removal rate higher than 99%. The adsorbent has good reusability, and the adsorption efficiency is still above 93% after five regeneration cycles. The waste clay adsorbent-derived composite adsorbent can be used as an inexpensive material for the decontamination of dyed wastewater.
Collapse
Affiliation(s)
| | | | | | | | | | - Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (Q.H.); (J.Q.); (X.L.); (H.Z.); (Y.W.)
| | - Fang Guo
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot 010021, China; (Q.H.); (J.Q.); (X.L.); (H.Z.); (Y.W.)
| |
Collapse
|
16
|
Arni LA, Hapiz A, Jawad AH, Abdulhameed AS, ALOthman ZA, Wilson LD. Fabrication of magnetic chitosan-grafted salicylaldehyde/nanoclay for removal of azo dye: BBD optimization, characterization, and mechanistic study. Int J Biol Macromol 2023; 248:125943. [PMID: 37482164 DOI: 10.1016/j.ijbiomac.2023.125943] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/13/2023] [Accepted: 07/20/2023] [Indexed: 07/25/2023]
Abstract
Herein, a novel nanohybrid composite of magnetic chitosan-salicylaldehyde/nanoclay (MCH-SAL/NCLA) was hydrothermally synthesized for removal of azo dye (acid red 88, AR88) from simulated wastewater. Response surface methodology combined with the Box-Behnken design (RSM-BBD) was applied with 29 experiments to assess the impact of adsorption variables, that include A: % NCLA loading (0-50), B: MCH-SAL/NCLA dose (0.02-0.1 g/100 mL), C: pH (4-10), and time D: (10-90 min) on AR88 dye adsorption. The highest AR88 removal (75.16 %) as per desirability function was attained at the optimum conditions (NCLA loading = 41.8 %, dosage = 0.06 g/100 mL, solution pH = 4, and time = 86. 17 min). The kinetic and equilibrium adsorption results of AR88 by MCH-SAL/NCLA reveal that the process follows the pseudo-first-order and Temkin models. The MCH-SAL/NCLA composite has a maximum adsorption capacity (173.5 mg/g) with the AR88 dye. The adsorption of AR88 onto the MCH-SAL/NCLA surface is determined by a variety of processes, including electrostatic, hydrogen bonding, n-π, and n-π interactions. This research revealed that MCH-SAL/NCLA can be used as a versatile and efficient bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| |
Collapse
|
17
|
Wei J, Yan L, Zhang Z, Hu B, Gui W, Cui Y. Carbon nanotube/Chitosan hydrogel for adsorption of acid red 73 in aqueous and soil environments. BMC Chem 2023; 17:104. [PMID: 37620928 PMCID: PMC10463536 DOI: 10.1186/s13065-023-01019-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023] Open
Abstract
Acid red 73 is an azo dye, and its residue can pollute the environment and seriously threaten human health and life. In this study, glutaraldehyde was used as the crosslinking agent, chitosan and polyvinyl alcohol were crosslinked under appropriate conditions to obtain a chitosan hydrogel film, and carbon nanotubes were dispersed in the chitosan hydrogel film. The FTIR, XRD, BET, SEM were applied to chatacterize the structure and the morphology of the absorbent and results showed that when the mass fraction of the carbon nanotubes was 1%, the structure was a three-dimensional network with microporous, and the water absorption reached to the maximum value of 266.07% and the elongation at break reached to a maximum of 98.87%. The ability to remove acid red 73 from aqueous and soil environments was evaluated by UV. In the aqueous samples, 70 mg of the adsorbent reached a saturated adsorption capacity of 101.07 mg/g and a removal rate of 92.23% at pH = 5. The thermodynamics conformed with the Langmuir adsorption isotherm and pseudo second-order adsorption kinetic models. In the soil samples, 100 mg of the adsorbent reached an adsorption capacity of 24.73 mg/g and removal rate of 49.45%. When the pH of the soil is between 4 and 7, the removal rate and adsorption capacity do not change much; hence, the pH should be maintained between 5.2 and 6.8, which is extremely suitable for the growth of general plants. Moreover, the experimental results demonstrated that the adsorbent maintained a good removal rate of acid red 73 over six adsorption cycles.
Collapse
Affiliation(s)
- Jia Wei
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Luchun Yan
- Gansu Henglu Traffic Survey and Design Institute, Lanzhou, Gansu, 730070 China
| | - Zhifang Zhang
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Wenjun Gui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| | - Yanjun Cui
- College of Science, Gansu Agricultural University, Lanzhou, Gansu, 730070 China
| |
Collapse
|
18
|
Zhao Y, Song Y, Li R, Lu F, Yang Y, Huang Q, Deng D, Wu M, Li Y. Enhanced Reactive Brilliant Blue Removal Using Chitosan-Biochar Hydrogel Beads. Molecules 2023; 28:6137. [PMID: 37630389 PMCID: PMC10458918 DOI: 10.3390/molecules28166137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/12/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023] Open
Abstract
To address the challenges associated with the weak affinity and difficult separation of biochar, we developed chitosan-biochar hydrogel beads (CBHBs) as an efficient solution for removing reactive brilliant blue (RBB KN-R) from wastewater. The adsorption behavior and mechanism of RBB KN-R onto CBHBs were extensively studied. Notably, the adsorption capacity of RBB KN-R showed pH-dependence, and the highest adsorption capacity was observed at pH 2. The adsorption process was well fitted with the pseudo-second-order kinetic model and the intraparticle diffusion model. Film diffusion and intraparticle diffusion were both responsible for the adsorption of RBB KN-R onto CBHBs. At 298.15 K, the maximum adsorption capacity qm was determined to be 140.74 mg/g, with higher temperatures favoring the adsorption process. A complex mechanism involving π-π interactions, electrostatic attraction, hydrophobic interaction, and hydrogen bonding was found to contribute to the overall adsorption process. The experimental data discovered the coexisting substances and elevated ionic strength hindered the adsorption capacity. Significantly, after three cycles of adsorption-desorption, the CBHBs maintained an adsorption capacity above 95% for RBB KN-R. These promising results imply that CBHBs are a durable and cost-effective adsorbent for efficient removal of dyes from wastewater.
Collapse
Affiliation(s)
- Yangyang Zhao
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Yang Song
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Rui Li
- School of Biological Science, Jining Medical University, No. 669 Xueyuan Road, Donggang District, Rizhao 276826, China;
| | - Fengfan Lu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Yibin Yang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Qiongjian Huang
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Dongli Deng
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Mingzhu Wu
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| | - Ying Li
- Chemical Pollution Control Chongqing Applied Technology Extension Center of Higher Vocational Colleges, Chongqing Industry Polytechnic College, Chongqing 401120, China; (Y.S.); (F.L.); (Y.Y.); (Q.H.); (D.D.); (M.W.)
| |
Collapse
|
19
|
Zhang D, Zhou D, Lu L, Zhang M, Lü T, Huang J, Zhao H, Zhou J, Rinklebe J. Preferential, synergistic sorption and reduction of Cr(VI) from chromium-rhodamine B mixed wastewater by magnetic porous biochar derived from wasted Myriophyllum aquaticum biomass. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121593. [PMID: 37030599 DOI: 10.1016/j.envpol.2023.121593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
Eradication of heavy metals and dyes simultaneously from wastewater is urgently needed to safeguard public and environmental health. In this study, magnetic porous biochar derived from wasted Myriophyllum aquaticum (MPMaB) was synthesized by KOH-activation and co-precipitation method to treat chromate and rhodamine B (RhB)-bearing wastewater. The KOH activation significantly improved the pore structure of biochar with a high specific surface area of 937.1 m2 g-1. The sorption performance of MPMaB for Cr(VI) and RhB in single and co-solutes conditions was evaluated. In single system, a pH-dependent sorption pattern for Cr(VI) by MPMaB was revealed and the estimated sorption capability reached 175.4 mg g-1, whereas the Langmuir-based sorption capacity of RhB was 175.4 mg g-1 pH-independently. MPMaB partially transformed Cr(VI) to less toxic Cr(III) (approximately 59.3%). Synergistic sorption of Cr(VI) with the coexistence of RhB was observed, where synergistic effect ranged from 119% to 527% depending on pH. For example, the sorption capacity of Cr(VI) on MPMaB, at pH 2, augmented from 175.4 mg g-1 (single system) to 208.3 mg g-1 (binary system). Preferential sorption of Cr(VI) was found and was further confirmed by the post-sorption of Cr(VI) (or RhB) by MPMaB pre-sorbed with RhB (or chromate). Chromate sorption mechanisms mainly include electrostatic interactions and complexation, while the sorption of RhB is ascribed to π-π interactions, pore filling and hydrogen bonding. Additionally, MPMaB showed excellent reusability and maintained high removal efficiency after 5 cycles. In short, MPMaB can efficiently treat chromium and dyes-containing wastewater as sustainable and environmentally friendly adsorbent.
Collapse
Affiliation(s)
- Dong Zhang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Danli Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Li Lu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, Zhejiang, China.
| | - Ming Zhang
- Department of Environmental Science and Engineering, China Jiliang University, Hangzhou, 310018, Zhejiang, China
| | - Ting Lü
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jingang Huang
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Hongting Zhao
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jie Zhou
- College of Materials and Environmental Engineering, Hangzhou Dianzi Univerisity, Hangzhou, 310018, Zhejiang, China
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water and Waste-Management, Laboratory of Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| |
Collapse
|
20
|
Hai X, Shi F, Zhu Y, Ma L, Wang L, Yin J, Li X, Yang Z, Yuan M, Xiong H, Gao Y. Development of magnetic dispersive micro-solid phase extraction of four phenolic compounds from food samples based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent. Food Chem 2023; 410:135338. [PMID: 36621335 DOI: 10.1016/j.foodchem.2022.135338] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/07/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022]
Abstract
A magnetic dispersive micro-solid phase extraction technique (CS@Fe3O4-MD-μSPE-DESP) based on magnetic chitosan nanoparticles and a deep eutectic supramolecular solvent was developed and applied to determinations of four phenolic compounds in food samples. To prevent environmental pollution and the introduction of toxic substances, deep eutectic supramolecular solvents (DESPs), which exhibited greater desorption capacities than conventional organic solvents and deep eutectic solvents, were used as novel green eluents for the first time. Some important parameters were screened by the Plackett-Burman method and then further optimized with response surface methodology (RSM). Under the optimal conditions, the proposed method showed excellent methodological indices with linearity over the range 0.1-200.0 µg·mL-1, R2 > 0.9988, extraction recoveries above 94.8 %, and precision (RSD%) below 2.9 %. The established method finishes the process of adsorption and desorption in approximately 3 min and enhances the efficiency for determination of phenolic compounds.
Collapse
Affiliation(s)
- Xiaoping Hai
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Feng Shi
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Yun Zhu
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lei Ma
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Lina Wang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Jinfang Yin
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Xiaofen Li
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Zhi Yang
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China
| | - Mingwei Yuan
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China
| | - Huabin Xiong
- School of Chemistry and Environment, Yunnan Minzu University, Kunming 650500, PR China.
| | - Yuntao Gao
- National and Local Joint Engineering Research Center for Green Preparation Technology of Biobased Materials, Yunnan Minzu University, Kunming 650500, PR China.
| |
Collapse
|
21
|
Arni LA, Hapiz A, Abdulhameed AS, Khadiran T, ALOthman ZA, Wilson LD, Jawad AH. Design of separable magnetic chitosan grafted-benzaldehyde for azo dye removal via a response surface methodology: Characterization and adsorption mechanism. Int J Biol Macromol 2023:125086. [PMID: 37247708 DOI: 10.1016/j.ijbiomac.2023.125086] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/20/2023] [Accepted: 05/23/2023] [Indexed: 05/31/2023]
Abstract
In this study, a magnetic chitosan grafted-benzaldehyde (CS-BD/Fe3O4) was hydrothermally prepared using benzaldehyde as a grafting agent to produce a promising adsorbent for the removal of acid red 88 (AR88) dye. The CS-BD/Fe3O4 was characterized by infrared spectroscopy, surface area analysis, scanning electron microscopy-energy dispersive X-ray, vibrating sample magnetometry, powder X-ray diffraction, CHN elemental analysis, and point of zero charge (pHPZC). The Box-Behnken design (BBD) was adopted to study the role of variables that influence AR88 dye adsorption (A: CS-BD/Fe3O4 dose (0.02-0.1 g), B: pH (4-10), and time C: (10-90 min)). The ANOVA results of the BBD model indicated that the F-value for the AR88 removal was 22.19 %, with the corresponding p-value of 0.0002. The adsorption profiles at equilibrium and dynamic conditions reveal that the Temkin model and the pseudo-first-order kinetics model provide an adequate description of the isotherm results, where the maximum adsorption capacity (qmax) with the AR88 dye was 154.1 mg/g. Several mechanisms, including electrostatic attraction, n-π interaction, π-π interaction, and hydrogen bonding, regulate the adsorption of AR88 dyes onto CS-BD/Fe3O4 surface. As a result, this research indicates that the CS-BD/Fe3O4 can be utilized as an effective and promising bio-adsorbent for azo dye removal from contaminated wastewater.
Collapse
Affiliation(s)
- Laili Azmiati Arni
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmad Hapiz
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
| | - Ahmed Saud Abdulhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Anbar, Ramadi, Iraq
| | - Tumirah Khadiran
- Forest Products Division, Forest Research Institute Malaysia (FRIM), 52109 Kepong, Selangor, Malaysia
| | - Zeid A ALOthman
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Lee D Wilson
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK S7N 5C9, Canada
| | - Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| |
Collapse
|
22
|
Deniz F, Tezel Ersanli E. An efficient biosorbent material for green remediation of contaminated water medium. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 26:1-10. [PMID: 37191258 DOI: 10.1080/15226514.2023.2191742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The discharge of large amounts of wastewater carrying various contaminants from many anthropogenic activities into the receiving water environment is a multidimensional issue negatively affecting the ecological system and natural balance in many ways. The removal of pollutants by the biologically-originated materials is an emerging area of interest due to profoundly their environmental friendliness, renewability, sustainability, readily availability, biodegradability, multiplicity, low (or no) economic cost, high affinity, capacity, and stability. In the present study, a popular ornamental plant, Pyracantha coccinea M. J. Roemer, was converted into a green sorbent material with the goal to effectively remove a widespread contaminant (synthetic dye, C. I. Basic Red 46) from synthetic wastewater. The physicochemical characteristics of the prepared biosorbent were determined by the instrumental analyses of FTIR and SEM. The batch experiments of various operational influence parameters were conducted to maximize the system efficiency. The wastewater remediation behavior by the material was investigated by the kinetics, thermodynamics, and isotherm experiments. The biosorbent had a non-uniform and rough surface architecture with a diversity of functional groups. The maximum remediation yield was achieved with the contact duration of 360 min, the pollutant load of 30 mg L-1, the pH of 8, and the biosorbent quantity of 10 mg (0.1 g L-1). The kinetics of the contaminant removal showed good agreement with the pseudo-second-order model. Thermodynamics study indicated that the treatment process was spontaneous and occurred by physisorption. Langmuir model fitted the isotherm data of the biosorption operation well and the maximum pollutant cleanup capacity of the material was determined to be 169.354 mg g-1. These outcomes showed that P. coccinea M. J. Roemer could be used as a promising material for low-cost and green treatment of wastewater.
Collapse
Affiliation(s)
- Fatih Deniz
- Environmental Protection Technologies Department, Vocational School of Bozova, University of Harran, Sanliurfa, Turkey
| | - Elif Tezel Ersanli
- Biology Department, Faculty of Arts and Science, University of Sinop, Sinop, Turkey
| |
Collapse
|
23
|
Liu W, Lou T, Wang X. Enhanced dye adsorption with conductive polyaniline doped chitosan nanofibrous membranes. Int J Biol Macromol 2023; 242:124711. [PMID: 37148947 DOI: 10.1016/j.ijbiomac.2023.124711] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 04/19/2023] [Accepted: 04/29/2023] [Indexed: 05/08/2023]
Abstract
Polyaniline is widely used in the field of electrochemistry due to its excellent electrical conductivity. However, its effectiveness and mechanism of enhancing adsorption property are unclear. Herein, chitosan/polyaniline nanofibrous composite membranes with average diameter ranging from 200 to 300 nm were fabricated by electrospinning technology. The as-prepared nanofibrous membranes exhibited significantly improved adsorption capacity of 814.9 mg/g and 618.0 mg/g towards acid blue 113 and reactive orange dyes, which were 121.8 % and 99.4 % higher than that of pure chitosan membrane. The doped polyaniline promoted the dye transfer rate and capacity due to the enhanced conductivity of the composite membrane. Kinetic data showed that chemisorption was the rate-limiting step, and thermodynamic data indicated the adsorption of the two anionic dyes was spontaneous monolayer adsorption. This study provides a feasible strategy to introduce conductive polymer into adsorbent to construct high performance adsorbents for wastewater treatment.
Collapse
Affiliation(s)
- Wenxia Liu
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China
| | - Tao Lou
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| | - Xuejun Wang
- College of Chemistry & Chemical Engineering, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
24
|
Zheng JY, He J, Han CB, Huang G, Sun BC, Zhao WK, Wang Y, Sun L, Si J, Yan H. Adsorption-enhanced catalytic oxidation for long-lasting dynamic degradation of organic dyes by porous manganese-based biopolymeric catalyst. Int J Biol Macromol 2023; 237:124152. [PMID: 36966855 DOI: 10.1016/j.ijbiomac.2023.124152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023]
Abstract
Improving the adsorption kinetics of metal-oxide catalysts is critical for the enhancement of catalytic performance in heterogeneous catalytic oxidation reactions. Herein, based on the biopolymer pomelo peels (PP) and metal-oxide catalyst manganese oxide (MnOx), an adsorption-enhanced catalyst (MnOx-PP) was constructed for catalytic organic dyes oxidative-degradation. MnOx-PP shows excellent methylene blue (MB) and total carbon content (TOC) removal efficiency of 99.5 % and 66.31 % respectively, and keeps the long-lasting stable dynamic degradation efficiency during 72 h based on the self-built continuous single-pass MB purification device. The chemical structure similarity and negative-charge polarity sites of the biopolymer PP improve the adsorption kinetics of organic macromolecule MB, and construct the adsorption-enhanced catalytic oxidation microenvironment. Meanwhile, the adsorption-enhanced catalyst MnOx-PP obtains lower ionization potential and O2 adsorption energy to promote the continuous generation of active substance (O2*, OH*) for the further catalytic oxidation of adsorbed MB molecules. This work explored the adsorption-enhanced catalytic oxidation mechanism for the degradation of organic pollutants, and provided a feasible technical idea for designing adsorption-enhanced catalysts for the long-lasting efficient removal of organic dyes.
Collapse
|
25
|
Shi TT, Jiang XY, Yu JG. Efficient and Selective Removal of Organic Cationic Dyes by Peel of Brassica juncea Coss. var. gemmifera Lee et Lin-Based Biochar. Molecules 2023; 28:molecules28083353. [PMID: 37110588 PMCID: PMC10143088 DOI: 10.3390/molecules28083353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/03/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
The design and preparation of cheaper, greener and more efficient adsorbents is essential for the removal of pollutants by adsorption. In this study, biochar was prepared from peel of Brassica juncea var. gemmifera Lee et Lin (PoBJ) using a facile, low-temperature and vacuum pyrolysis, and the adsorption mechanism toward organic dyes in aqueous solution was elucidated. The adsorbent was characterized by XPS, FT-IR and SEM, and zeta potential techniques. The adsorption ability of PoBJ biochar for cationic dyes (methylene blue, brilliant green, calcein-safranine, azure I, rhodamine B), anionic dyes (alizarin yellow R), and neutral dyes (neutral red) revealed that the biochar exhibited adsorption selectivity toward cationic dyes. The effects of different factors on the adsorption performance of PoBJ biochar, as well as the adsorption kinetics and thermodynamics, were further investigated by using methylene blue as the model adsorbate. These factors included temperature, pH, contact time and dye concentration. The experimental results showed that BJ280 and BJ160 (prepared at 280 °C and 160 °C, respectively) possessed relatively higher adsorption capacity of 192.8 and 167.40 mg g-1 for methylene blue (MB), respectively, demonstrating the possibility of utilization of PoBJ biochar as a superior bio-adsorbent. The experimental data of BJ160 toward MB were correlated with various kinetic and isothermal models. The results indicated that the adsorption process was consistent with the Langmuir isotherm model and nonlinear pseudo-second-order kinetic model. Thermodynamic parameters indicated that the adsorption of MB onto BJ160 was exothermic. Thus, the low-temperature prepared PoBJ biochar was an environmentally friendly, economic and efficient cationic dye adsorbent.
Collapse
Affiliation(s)
- Tao-Tao Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xin-Yu Jiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jin-Gang Yu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
26
|
Li P, Yang C, Wang Y, Su W, Wei Y, Wu W. Adsorption Studies on the Removal of Anionic and Cationic Dyes from Aqueous Solutions Using Discarded Masks and Lignin. Molecules 2023; 28:molecules28083349. [PMID: 37110584 PMCID: PMC10143327 DOI: 10.3390/molecules28083349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/07/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
The carbon materials derived from discarded masks and lignin are used as adsorbent to remove two types of reactive dyes present in textile wastewater: anionic and cationic. This paper introduces the results of batch experiments where Congo red (CR) and Malachite green (MG) are removed from wastewater onto the carbon material. The relationship between adsorption time, initial concentration, temperature and pH value of reactive dyes was investigated by batch experiments. It is discovered that pH 5.0-7.0 leads to the maximum effectiveness of CR and MG removal. The equilibrium adsorption capacities of CR and MG are found to be 232.02 and 352.11 mg/g, respectively. The adsorption processes of CR and MG are consistent with the Freundlich and Langmuir adsorption models, respectively. The thermodynamic processing of the adsorption data reveals the exothermic properties of the adsorption of both dyes. The results show that the dye uptake processes follow secondary kinetics. The primary adsorption mechanisms of MG and CR dyes on sulfonated discarded masks and alkaline lignin (DMAL) include pore filling, electrostatic attraction, π-π interactions and the synergistic interactions between the sulphate and the dyes. The synthesized DMAL with high adsorption efficiency is promising as an effective recyclable adsorbent for adsorbing dyes, especially MG dyes, from wastewater.
Collapse
Affiliation(s)
- Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chi Yang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanting Wang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wanting Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yumeng Wei
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
27
|
Amjlef A, Farsad S, Chaoui A, Hamou AB, Ezzahery M, Et-Taleb S, El Alem N. Effective adsorption of Orange G dye using chitosan cross-linked by glutaraldehyde and reinforced with quartz sand. Int J Biol Macromol 2023; 239:124373. [PMID: 37028622 DOI: 10.1016/j.ijbiomac.2023.124373] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
In this study, quartz sand (QS) incorporated into a crosslinked chitosan-glutaraldehyde matrix (QS@Ch-Glu) was prepared and employed as an efficient adsorbent for the elimination of Orange G (OG) dye from water. The sorption process is adequately described by the pseudo-second order kinetic model and the Langmuir isotherm model with maximum adsorption capacities of 172.65, 188.18, and 206.65mg/g at 25, 35, and 45 °C, respectively. A statistical physics model was adopted to elucidate the adsorption mechanism of OG on QS@Ch-Glu. Calculated thermodynamic factors revealed that the adsorption of OG is endothermic, spontaneous, and occurs via physical interactions. Overall, the proposed adsorption mechanism was based on electrostatic attractions, n-π stacking interaction, hydrogen bonding interaction, and Yoshida hydrogen bonding. The adsorption rate of QS@Ch-Glu was still above 95 % even after 6 cycles of adsorption and desorption. Furthermore, QS@Ch-Glu demonstrated high efficiency in real water samples. All these findings demonstrate that QS@Ch-Glu is qualified for practical applications.
Collapse
|
28
|
Thor SH, Ho LN, Ong SA, Abidin CZA, Heah CY, Yap KL. Disclosing the mutual influence of photocatalytic fuel cell and photoelectro-Fenton process in the fabrication of a sustainable hybrid system for efficient Amaranth dye removal and simultaneous electricity production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:34363-34377. [PMID: 36512276 DOI: 10.1007/s11356-022-24647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Photocatalytic fuel cell (PFC) was employed to provide renewable power sources to photoelectro-Fenton (PEF) process to fabricate a double-chambered hybrid system for the treatment of azo dye, Amaranth. The PFC-PEF hybrid system was interconnected by a circuit attached to the electrodes in PFC and PEF. Circuit connection is the principal channel for the electron transfer and mobility between PFC and PEF. Thus, different circuit connections were evaluated in the hybrid system for their influences on the Amaranth dye degradation. The PFC-PEF system under the complete circuit connection condition attained the highest decolourization efficiency of Amaranth (PFC: 98.85%; PEF: 95.69%), which indicated that the complete circuit connection was crucial for in-situ formation of reactive species in dye degradation. Besides, the pivotal role of ultraviolet (UV) light irradiation in the PFC-PEF system for both dye degradation and electricity generation was revealed through various UV light-illuminating conditions applied for PFC and PEF. A remarkable influence of UV light irradiation on the production of hydrogen peroxide and generation and regeneration of Fe2+ in PEF was demonstrated. This study provided a comprehensive mechanistic insight into the dye degradation and electricity generation by the PFC-PEF system.
Collapse
Affiliation(s)
- Shen-Hui Thor
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Li-Ngee Ho
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia.
| | - Soon-An Ong
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Che Zulzikrami Azner Abidin
- Water Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Faculty of Civil Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Cheng-Yong Heah
- Faculty of Mechanical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| | - Kea-Lee Yap
- Faculty of Chemical Engineering & Technology, Universiti Malaysia Perlis (UniMAP), Perlis, Malaysia
| |
Collapse
|
29
|
Yang P, Zhao J, Gong D, Jia X. Zwitterionic ammonium-sulfonato grafted cellulose for efficient thallium removal and adsorption mechanism study. Int J Biol Macromol 2023; 227:1059-1069. [PMID: 36460245 DOI: 10.1016/j.ijbiomac.2022.11.282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 11/08/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Thallium (Tl) has posed serious impacts on human being concerning increasingly serious pollution in aqueous environments. However, little information on removal method than conventional heavy metals have been available. In the present work, zwitterionic N-(3-sulfonato-1-propyl)-N,N-dimethylammonium grafted cellulose fibre (DMAE-PS) has been fabricated. The chemical component, thermal stability and surface properties of as-prepared materials are identified by FT-IR, elemental analysis, TGA, XRD, BET and SEM. DMAE-PS is shown to be very efficient for removing Tl(I) from water samples with a loading capacity of 274.7 mg (Tl(I))·g-1 (DMAE-PS), representing one of the best performances among bio-mass derived materials. The adsorption is consistent with the Freundlich model following a pseudo-second order (K2 = 4.36 × 10-4 g·mg-1·min-1, R2 = 0.999) and two-step intra-particle diffusion kinetics. The selectivity towards Tl(I) is also remarkably, 1-2 orders (distribution ratio KTl/M = 14.85-289.29) of magnitude larger than competing metals (Zn2+, Cr3+, Mn2+, Cu2+ and Cd2+). The SEM, XPS and UV-visible spectrum collectively reveal that -SO3--Tl(I) ionic interaction is probably the main driving force for specific adsorption, which shows a high stability against pH variation. The fabricated DMAE-PS is a sustainable bio-adsorbent with synthetic availability, high removing capacity and strong selectivity, therefore, potentially feasible in treatment of Tl(I) polluted environmental samples.
Collapse
Affiliation(s)
- Panpan Yang
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China
| | - Junyi Zhao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315830, PR China
| | - Dirong Gong
- Faculty of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, PR China.
| | - Xiaoyu Jia
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, No. 1799, Jimei Road, Xiamen, Fujian 361021, PR China; ZheJiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315830, PR China.
| |
Collapse
|
30
|
Diao Y, Shan R, Li M, Gu J, Yuan H, Chen Y. Efficient Adsorption of a Sulfonamide Antibiotic in Aqueous Solutions with N-doped Magnetic Biochar: Performance, Mechanism, and Reusability. ACS OMEGA 2023; 8:879-892. [PMID: 36643494 PMCID: PMC9835783 DOI: 10.1021/acsomega.2c06234] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Conventional biochar has limited effectiveness in the adsorption of sulfonamide antibiotics, while modified biochar exhibits greater adsorption potential. Residues of sulfamethoxazole (SMX) in the aquatic environment can threaten the safety of microbial populations as well as humans. In this study, iron-nitrogen co-doped modified biochar (Fe-N-BC) was prepared from palm fibers and doped with Fe and urea via synthesis at 500 °C. Fe-N-BC has a richer surface functional group based on elemental content, X-ray photoelectron spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The Brunauer-Emmett-Teller (BET) specific surface area test exhibited Fe-N-BC, which possessed a greater surface area (318.203 m2/g) and a better developed pore structure (0.149 cm3/g). The results of the hysteresis loop and the Raman spectrum show that Fe-N-BC has a higher degree of magnetization and graphitization. Fe-N-BC showed a remarkable adsorption capacity for SMX (42.9 mg/g), which could maintain 93.4% adsorption effect after four cycles, and 82.8% adsorption capacity in simulated piggery wastewater. The adsorption mechanism involves pore filling, surface complexation, electrostatic interactions, hydrogen bonding, and π-π EDA interactions. The results of this study show that Fe-N-BC prepared from palm fibers can be a stable, excellent adsorbent for SMX removal from wastewater and has promise in terms of practical applications.
Collapse
Affiliation(s)
- Yuan Diao
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Rui Shan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Mei Li
- School
of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong250000, China
| | - Jing Gu
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Haoran Yuan
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| | - Yong Chen
- Guangzhou
Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou510640, China
- CAS
Key Laboratory of Renewable Energy, Guangdong
Provincial Key Laboratory of New and Renewable Energy Research and
Development, Guangzhou510640, China
| |
Collapse
|
31
|
Ramírez-Rodríguez AE, Cristiani-Urbina E, Morales-Barrera L, Aranda-García E. Continuous successive cycles of biosorption and desorption of acid red 27 dye using water hyacinth leaves as an effective, economic, and ecofriendly biosorbent. Bioprocess Biosyst Eng 2023; 46:183-193. [PMID: 36437376 PMCID: PMC9879824 DOI: 10.1007/s00449-022-02822-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/18/2022] [Indexed: 11/28/2022]
Abstract
We investigated the capacity of water hyacinth leaves (LEC) to biosorb 75 mg/L acid red 27 (AR27) in a continuous system comprising 30 successive biosorption/desorption cycles in a packed-bed column at pH 2.0 and 56.5 L/m2·h volumetric flux. Using 0.025 M NaHCO3 eluent at 113 L/m2·h volumetric flux, all the dye was desorbed (100% desorption efficiency) from the loaded LEC biomass within 5-6 h. The same biosorbent was used for 147.5 consecutive days. The AR27 biosorption capacity, breakthrough time, and exhaustion time decreased from 69.4 to 34.5 mg/g, 74.81 to 14.1 h, and 101.1 to 34.1 h, respectively, and the critical bed height increased from 1.04 to 2.35 cm, as the number of biosorption/desorption cycles increased from 1 to 30. LEC life factor based on biosorption capacity predicted that the packed bed would be exhausted after 51.95 cycles. LEC is a promising biosorbent for bioremediation of AR27-laden wastewaters.
Collapse
Affiliation(s)
- Allan Eduardo Ramírez-Rodríguez
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Ciudad de México, 07738 México
| | - Eliseo Cristiani-Urbina
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Ciudad de México, 07738 México
| | - Liliana Morales-Barrera
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Ciudad de México, 07738 México
| | - Erick Aranda-García
- Departamento de Ingeniería Bioquímica, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Avenida Wilfrido Massieu S/N, Unidad Profesional Adolfo López Mateos, Delegación Gustavo A. Madero, Ciudad de México, 07738 México
| |
Collapse
|
32
|
Fang Y, Ali A, Gao Y, Zhao P, Li R, Li X, Liu J, Luo Y, Peng Y, Wang H, Liu H, Zhang Z, Pan J. Preparation and characterization of MgO hybrid biochar and its mechanism for high efficient recovery of phosphorus from aqueous media. BIOCHAR 2022; 4:40. [DOI: 10.1007/s42773-022-00171-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/29/2022] [Indexed: 08/20/2023]
Abstract
AbstractConversion of organic waste into engineered metal-biochar composite is an effective way of enhancing biochar’s efficiency for adsorptive capture of phosphorus (P) from aqueous media. Thus, various strategies have been created for the production of metal-biochar composites; however, the complex preparation steps, high-cost metal salt reagent application, or extreme process equipment requirements involved in those strategies limited the large-scale production of metal-biochar composites. In this study, a novel biochar composite rich in magnesium oxides (MFBC) was directly produced through co-pyrolysis of magnesite with food waste; the product, MFBC was used to adsorptively capture P from solution and bio-liquid wastewater. The results showed that compared to the pristine food waste biochar, MFBC was a uniformly hybrid MgO biochar composite with a P capture capacity of 523.91 mg/g. The capture of P by MFBC was fitted using the Langmuir and pseudo-first-order kinetic models. The P adsorptive capture was controlled by MgHPO4 formation and electrostatic attraction, which was affected by the coexisting F− and CO32− ions. MFBC could recover more than 98% of P from the solution and bio-liquid wastewater. Although the P-adsorbed MFBC showed very limited reusability but it can be substituted for phosphate fertiliser in agricultural practices. This study provided an innovative technology for preparing MgO-biochar composite against P recovery from aqueous media, and also highlighted high-value-added approaches for resource utilization of bio-liquid wastewater and food waste.
Graphical Abstract
Collapse
|
33
|
Ecofriendly and low-cost bio adsorbent for efficient removal of methylene blue from aqueous solution. Sci Rep 2022; 12:20580. [PMID: 36446817 PMCID: PMC9707192 DOI: 10.1038/s41598-022-22936-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/20/2022] [Indexed: 12/03/2022] Open
Abstract
A novel bio adsorbent was fabricated from turmeric, polyvinyl alcohol and carboxymethyl cellulose for MB dye removal. The physicochemical, antibacterial and biodegradable nature of the film was evaluated using scanning electron microscopy, optical microscopy, universal testing machine, water contact angle, thermogravimetric analysis, Fourier transform infrared spectroscopy, X-ray diffraction, agar disc diffusion method and soil degradability. The inclusion of turmeric into PVA/CMC film improves the biodegradability, antibacterial activity and thermomechanical property of the films. PVA/CMC/TUR film displayed good MB adsorption capacity (qe: 6.27 mg/g) and maximum dye adsorption (R%; 83%) and was achieved at initial dye concentration of 10 mg/L with contact time 170 min at room temperature. The adsorption data of MB on PVA/CMC/TUR film was evaluated using four models Langmuir, Freundlich, Temkin and D-R isotherms. The different kinetic of adsorption (pseudo-first order, pseudo-second order and intraparticle diffusion model) was also applied for adsorption of MB on the films. The experimental result suggests that PVA/CMC/TUR films are an alternate cheap adsorbent for water treatment.
Collapse
|
34
|
Xu K, Li L, Huang Z, Tian Z, Li H. Efficient adsorption of heavy metals from wastewater on nanocomposite beads prepared by chitosan and paper sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157399. [PMID: 35850330 DOI: 10.1016/j.scitotenv.2022.157399] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 07/03/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Chitosan was commonly used with inorganic salt and organic compounds to prepare adsorption material for water treatment. Different materials were mixed for the preparation, leading to a high cost for water treatment. Sludge from papermaking has abundant fiber and inorganic salt, which can reduce the addition of raw materials in preparing the adsorption material and thus lower the cost. This work used recycled industrial paper sludge to prepare adsorption material to remove heavy metals from wastewater. The adsorption properties of the prepared sludge-chitosan material for Cu2+ and Cr3+ in wastewater were investigated. The impacts of adsorption time, pH, and initial concentrations of Cu2+ and Cr3+ on adsorption amount were studied and optimized. The saturated adsorption capacity of sludge-chitosan material for Cu2+ and Cr3+ can reach 114.6 and 110.3 mg/g. The adsorption kinetics satisfied the pseudo-second-order model, indicating two modes, physical diffusion, and chem-sorption, in the heavy metal adsorption by the sludge-chitosan materials. Physical distribution has little Effect on chemical adsorption. The materials can be applied to treating Cu2+ and Cr3+ containing wastewater with the proposed cheap and readily available sludge-chitosan material. The results confirmed that sludge-chitosan material possessed good regeneration performance and was an ideal adsorbent.
Collapse
Affiliation(s)
- Kehan Xu
- School of Materials Science and Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450045, China
| | - Long Li
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China.
| | - Zuohua Huang
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Zhenbang Tian
- Institute of Chemistry, Henan Academy of Sciences, Zhengzhou 450002, China
| | - Hui Li
- School of Agronomy and Bioscience, Dehong Teachers' College, Dehong Prefecture 678499, China
| |
Collapse
|
35
|
Crystalline Violet Wastewater Treatment by Low-Temperature Plasma Combined with Industrial Solid Waste Red Mud. Catalysts 2022. [DOI: 10.3390/catal12080908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Low-temperature plasma (LTP) technology has been successfully used to treat persistent organic pollutants in water. Efforts have been devoted to combine catalysts and LTP to improve the degradation efficiency of pollutants and energy utilization efficiency. Herein, industrial solid waste red mud as a novel catalyst was added to an LTP system to treat crystalline violet (CV) wastewater. The energy yield at 50% CV decomposition and TOC after a 30 min reaction by the plasma treatment, red mud adsorption, and red mud/plasma treatment were compared. The effects of the main operating parameters, such as red mud dosing amount, initial pH, discharge voltage, and initial concentration of CV, on the removal efficiency of CV were investigated. The best degradation of CV was achieved with a red mud dosage of 2 g, a neutral environment, and a discharge voltage of 22 kV. When the red mud was recycled three times, the removal efficiency decreased a little in the red mud/plasma system. Hydroxyl radical plays an important role in the treatment of CV. The red mud was characterized by BET, SEM, XRD, and FT-IR, and the structure of the red mud was not greatly affected after being used in the red mud/plasma system.
Collapse
|
36
|
Balci B, Al Dafiry MHA, Erkurt FE, Basibuyuk M, Zaimoglu Z, Budak F, Yesiltas HK. Fe 2O 3-powder activated carbon/CaO 2 as an efficient hybrid process to remove a reactive dye from textile wastewater. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2107511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Behzat Balci
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - M. H. Ahmed Al Dafiry
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - F. Elcin Erkurt
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Mesut Basibuyuk
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Zeynep Zaimoglu
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - Fuat Budak
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| | - H. Kivanc Yesiltas
- Department of Environmental Engineering, Cukurova University, Balcali/Saricam, Adana, Turkey
| |
Collapse
|
37
|
Dobe N, Abia D, Tcheka C, Tejeogue JPN, Harouna M. Removal of amaranth dye by modified Ngassa clay: Linear and non-linear equilibrium, kinetics and statistical study. Chem Phys Lett 2022. [DOI: 10.1016/j.cplett.2022.139707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
38
|
Han B, Yan Q, Liu Q, Li D, Chen Y, He G. Bright green emission non-conjugated polymer dots: pH trigged hydrogel for specific adsorption of anionic dyes and visual detection of tert-butylhydroquinone. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
39
|
Al-Ghamdi YO. Immobilization of cellulose extracted from Robinia Pseudoacacia seed fibers onto chitosan: Chemical characterization and study of methylene blue removal. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Microbial Degradation of Azo Dyes: Approaches and Prospects for a Hazard-Free Conversion by Microorganisms. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19084740. [PMID: 35457607 PMCID: PMC9026373 DOI: 10.3390/ijerph19084740] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022]
Abstract
Azo dyes have become a staple in various industries, as colors play an important role in consumer choices. However, these dyes pose various health and environmental risks. Although different wastewater treatments are available, the search for more eco-friendly options persists. Bioremediation utilizing microorganisms has been of great interest to researchers and industries, as the transition toward greener solutions has become more in demand through the years. This review tackles the health and environmental repercussions of azo dyes and its metabolites, available biological approaches to eliminate such dyes from the environment with a focus on the use of different microorganisms, enzymes that are involved in the degradation of azo dyes, and recent trends that could be applied for the treatment of azo dyes.
Collapse
|
41
|
Gao N, Du W, Zhang M, Ling G, Zhang P. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. Int J Biol Macromol 2022; 209:31-49. [PMID: 35390400 DOI: 10.1016/j.ijbiomac.2022.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/13/2022] [Accepted: 04/02/2022] [Indexed: 12/29/2022]
Abstract
The chitosan-modified biochar composite, as a carbohydrate polymer, has received increasing attention and becomes a research hotspot. It is a promising impurity adsorption material, which has potential application value in the agricultural environment fields such as soil improvement and sewage purification. The composite can combine the advantages of biochar with chitosan, and the resulting composite usually exhibits a great improvement in its surface functional groups, adsorption sites, stability, and adsorption properties. In addition, compared to other adsorbents, the composite truly achieves the concept of "waste control by waste". In this paper, the preparation method, composite classification, adsorption mechanism, and models of biochar modified by chitosan are introduced, meanwhile, we also review and summarize their effects on the decontamination of wastewater and soil. In addition to common heavy metal ions, we also review the adsorption and removal of some other organic/inorganic pollutants, including (1) drug residues; (2) dyes; (3) phosphates; (4) radionuclides; (5) perfluorochemicals, etc. Moreover, challenges and prospects for the composite are presented and further studies are called for the chitosan-biochar composite. We believe that the composite will lead to further achievements in the field of environmental remediation.
Collapse
Affiliation(s)
- Nan Gao
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Wenzhen Du
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Manyue Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Guixia Ling
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| | - Peng Zhang
- Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China.
| |
Collapse
|