1
|
Gu Z, He L, Liu T, Xing M, Feng L, Luo G. Exploring strategies for kitchen waste treatment and remediation from the perspectives of microbial ecology and genomics. CHEMOSPHERE 2025; 370:143925. [PMID: 39657855 DOI: 10.1016/j.chemosphere.2024.143925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 11/15/2024] [Accepted: 12/07/2024] [Indexed: 12/12/2024]
Abstract
Nowadays, the rapid growth of population has led to a substantial increase in kitchen waste and wasted sludge. Kitchen waste is rich in organic matter, including lignocellulose. Synergistic treatment involving kitchen waste and wasted sludge can enhance treatment process. Vermicomposting can facilitate microbial activities on organic matter. Nevertheless, the underlying mechanisms remain unclear. In this study, metagenomics was used to analyze microbial functional genes in vermicomposting. Redundancy analysis found that TOC, TN and DTN adversely affect earthworm growth and reproduction. The relative abundance of Bacteroidetes and Firmicutes increased with earthworms, thereby potentially augmenting lignocellulose degradation. The predominant functional genes included amino acid, carbohydrate, and inorganic ion conversion and metabolism. Metagenomics analysis demonstrated that GH1, GH3, GH5, GH6, GH9, GH12, GH44, GH48 and GH74, GT41, GT4, GT2, and GT51 were dominant. Furthermore, there was higher abundance of carbohydrate-active enzymes in the vermicomposting, particularly during the later phases (30-45 days). Co-occurrence network revealed that Cellvibrio in the vermicomposting exhibited a relatively dense positive correlation with other microbial groups. The findings elucidated the mechanism of vermicomposting as a promising approach for managing kitchen waste and wasted sludge.
Collapse
Affiliation(s)
- Zheyu Gu
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lei He
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Tao Liu
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Meiyan Xing
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Leiyu Feng
- Key Laboratory of Yangtze Water Environment for Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Guilin Luo
- College of Science and Chemical Engineering, Ningxia Institute of Science and Technology, Ningxia, 753000, China
| |
Collapse
|
2
|
Zhou PR, Zheng XP, Du YP, Chai Y, Zhang YC, Zheng YZ. Effective pretreatment of tea stem via poly-deep eutectic solvent for promoting platform molecule production and obtaining fluorescent lignin. Int J Biol Macromol 2025; 297:139922. [PMID: 39824418 DOI: 10.1016/j.ijbiomac.2025.139922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/20/2025]
Abstract
In this study, polyethylene glycol 200 (PEG200) was employed as hydrogen bond acceptor, while organic acids served as hydrogen bond donors, to formulate poly-deep eutectic solvents (PDESs), which were utilized to pretreat tea stem. Specially, combining PEG200 and oxalic acid (OA) exhibited a notably high cellulose retention (82.03 %) and most efficient hemicellulose (97.02 %) and lignin removal (70.89 %). The removal of amorphous lignin enhanced the crystallinity of the residues and improved the conversion efficiency of cellulose into levulinic acid. Additionally, the structural alterations in lignin samples were analyzed in comparison to milled wood lignin (MWL). The PEG200-OA system facilitated the cleavage of β-O-4 and β-5 linkages and resulted in the degradation of S-type lignin, accompanied by increased condensation of G units. The resulting lignin displayed a reduced molecular weight (Mw of 1283 g/mol, Mn value 531 g/mol) and nanoscale particle size (D50 212 nm). Furthermore, fluorescent lignin was synthesized through simple oxidation and was used to detect metal ions. Density functional theory (DFT) calculations supported that both PEG200 and OA played a significant role in lignin dissolution, with the weak interactions between DES and lignin primarily driven by hydrogen bonding (characterized as weak, closed-shell, and electrostatic) and van der Waals forces.
Collapse
Affiliation(s)
- Pei-Ru Zhou
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Ping Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Ya-Peng Du
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu Chai
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Yu-Cang Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China
| | - Yan-Zhen Zheng
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China; Fujian Provincial Key Laboratory of Food Microbiology and Enzyme Engineering, Xiamen 361021, China; Research center of food biotechnology of Xiamen city, Xiamen, Fujian 361021, China.
| |
Collapse
|
3
|
Bu Y, Xiao H, Wang Z, Chen A, Huang Q. Improved enzymatic hydrolysis of corn stover by a low-temperature and low-pressure holding post-treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123702. [PMID: 39700930 DOI: 10.1016/j.jenvman.2024.123702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 09/28/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Lignocellulose is one of the world's most abundant and underutilized biomass resources, and its proper treatment and utilization are critical to environmental issues and sustainable development. However, lignocellulose's inherently compact and intricate structure reduces enzymatic hydrolysis's efficiency, which is still an obstacle to overcome. A new pretreatment method with relatively low-temperature and low-pressure holding (LTLPH) after the traditional extrusion, pulp refining instrument (PFI), and instant catapult steam explosion (ICSE) was proposed to obtain a better output of corn stover saccharification. The chemical composition, SEM, swelling capacity of corn stover before and after treatment, and types and contents of mixed sugars were examined to explore the mechanism for the diversity of the enzymatic hydrolysis effect. It was found that the highest reducing sugar in the optimized compounding pretreatment method of ICSE-LTLPH (LTLPH: 70 kPa, 115 °C, 30 min) could reach 27.96 g/L, promoting more than 50%. The cultured single-cell protein content was 8.19% and 7.73% higher than those with glucose and simulated mixed sugar medium, respectively, promisingly replacing commercial sugars for Candida utilis (C. utilis) growth. Therefore, the developed pretreatment method of ICSE-LTLPH could exert better effects on the enzymatic hydrolysis of corn stover, providing a potential for cultivating C. utilis without detoxification of enzymatic hydrolysate.
Collapse
Affiliation(s)
- Yifan Bu
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Hang Xiao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Zhenzhen Wang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China
| | - Aqiang Chen
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Qingshan Huang
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao New Energy Shandong Laboratory, Shandong Energy Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, 266101, China; University of Chinese Academy of Sciences, Beijing, 100080, China.
| |
Collapse
|
4
|
Xue H, Xia H, Li H, Ge F, Xu W, Yang X, Zhou M. Fabrication of lignin-MOF derived spherical carbon supported NiCo-bimetallic catalysts for selective hydrogenolysis lignin derived ether. Int J Biol Macromol 2024; 289:138874. [PMID: 39701232 DOI: 10.1016/j.ijbiomac.2024.138874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 10/13/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The conversion of abundant lignin was of great significance for the utilization of biomass resources. In this study, lignin sulfonate (LS) was selected as a carbon-based support, which was successfully introduced into the NiCo-MOF structure. A series of lignin and MOF hybrid catalysts (NinCo-MOF-LS) with varying metal ratios of Ni and Co were synthesized via the hydrothermal method. Subsequently, the catalytic hydrogenolysis of lignin-derived dimers was conducted over a range of NinCo-MOF-LS, with the impact of calcination temperature and lignin addition in the catalysts taken into account. The selective conversion of benzyl phenyl ether (BPE) and other lignin dimers was achieved over the NinCo-MOF-LS catalyst with isopropanol serving as the hydrogen donor solvent in a nitrogen atmosphere. The Ni/Co metal ratio and calcination temperature were found to have a significant impact on the catalytic performance. Through a comprehensive investigation of various reaction parameters, including temperature, pressure, reaction time, and reaction solvent, it was determined that the catalyst exhibited excellent catalytic activity in the selective hydrogenolysis of BPE to cycloalkane and cyclohexanol. The optimal reaction conditions (240 °C, 4 h, 3 MPa N2) were found to be conducive to the effective conversion of BPE into methylcyclohexane and cyclohexanol. The combination of lignin and metal-organic framework represented a novel approach to the utilization of lignin resources and the upgrading of biomass-derived chemicals.
Collapse
Affiliation(s)
- Haonan Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Haihong Xia
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Hui Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Fei Ge
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| | - Wenlin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaohui Yang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China.
| | - Minghao Zhou
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China.
| |
Collapse
|
5
|
Kuang Z, Yan X, Yuan Y, Wang R, Zhu H, Wang Y, Li J, Ye J, Yue H, Yang X. Advances in stress-tolerance elements for microbial cell factories. Synth Syst Biotechnol 2024; 9:793-808. [PMID: 39072145 PMCID: PMC11277822 DOI: 10.1016/j.synbio.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Microorganisms, particularly extremophiles, have evolved multiple adaptation mechanisms to address diverse stress conditions during survival in unique environments. Their responses to environmental coercion decide not only survival in severe conditions but are also an essential factor determining bioproduction performance. The design of robust cell factories should take the balance of their growing and bioproduction into account. Thus, mining and redesigning stress-tolerance elements to optimize the performance of cell factories under various extreme conditions is necessary. Here, we reviewed several stress-tolerance elements, including acid-tolerant elements, saline-alkali-resistant elements, thermotolerant elements, antioxidant elements, and so on, providing potential materials for the construction of cell factories and the development of synthetic biology. Strategies for mining and redesigning stress-tolerance elements were also discussed. Moreover, several applications of stress-tolerance elements were provided, and perspectives and discussions for potential strategies for screening stress-tolerance elements were made.
Collapse
Affiliation(s)
- Zheyi Kuang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofang Yan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Yanfei Yuan
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Ruiqi Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Haifan Zhu
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Youyang Wang
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Jianfeng Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Jianwen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Haitao Yue
- School of Intelligence Science and Technology, Xinjiang University, Urumqi, 830017, China
- Laboratory of Synthetic Biology, School of Life Science and Technology, Xinjiang University, Urumqi, 830017, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| |
Collapse
|
6
|
Wang S, Li MF. Efficient extraction of light-colored lignin from bamboo by p-toluenesulfonic acid assisted tetrahydrofurfuryl alcohol aqueous solution. Int J Biol Macromol 2024; 282:136723. [PMID: 39437955 DOI: 10.1016/j.ijbiomac.2024.136723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/25/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Acidic hydrotropes exhibit effective performance in fractionating the constituents of lignocellulosic biomass owing to their amphiphilic characteristics. However, the requirement for excessively high concentrations may lead to the condensation and aggregation of lignin. In this case, bamboo was extracted with 70 % (w/v) tetrahydrofurfuryl alcohol (THFA) aqueous solution containing 5-20 % (w/v) p-toluenesulfonic acid (pTsOH) at 90-120 °C for 1-4 h. Results indicated that 91 % of lignin was efficiently removed from bamboo, with subsequent recovery of 73.5 % achieved through extraction with 10 % pTsOH at 110 °C for 4 h. Furthermore, the resulting lignin exhibited a relative content of β-O-4 bonds of 64.1 %, displayed a light color (L*: 70.48), boasted a purity of 99.64 %, and possessed a moderate molecular weight. These attributes position it as a valuable candidate in functional material production. The aqueous solution provides an ideal medium for efficient extraction of uncondensed, light-colored lignin, thereby furnishing insights for advancing the utilization.
Collapse
Affiliation(s)
- Shuai Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Zhang P, Long L, Ding S. Insight into lignin-carbohydrate ester change in pretreated corn bran and its enzymatic hydrolysis by three glucuronoyl esterases from Sordaria brevicollis. Int J Biol Macromol 2024; 282:137308. [PMID: 39510460 DOI: 10.1016/j.ijbiomac.2024.137308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/15/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Lignin-carbohydrate esters (LC-esters) formed by glucuronoarabinoxylan and lignin are a key factor for the recalcitrance of corn bran, understanding LC-esters change during pretreatment and enzymatic hydrolysis by glucuronoyl esterases (GEs) is essential to the sustainable utilization of corn bran. Herein, hydrolysis performances of three GEs, SbGE15A, SbGE15B, and SbGE15C from Sordaria brevicollis with different subclades and modularity, and changes in enzyme-reachable LC-esters during different pretreatments of corn bran have been comprehensively compared. FB enzymes, SbGE15B and SbGE15C showed higher catalytic activity towards model and natural substrates than FA enzyme, SbGE15A. Particularly, SbGE15C harboring carbohydrate-binding module 1 (CBM1) exhibited much superior catalytic performance and synergistic effect with GH10 endo-xylanase EpXYN1 from Eupenicillium parvum on pretreated residues than SbGE15A and SbGE15B without CBM1. Autohydrolysis and DES (ChCl-LA) pretreatment could decrease the content of enzyme-reachable LC-esters and depolymerize its structure, transitioning from Lignin-(Me)GlcA-Xylan to Lignin-(Me)GlcA-XOS, and eventually to Lignin-(Me)GlcA with increasing pretreatment time. These changes consequently cause a decrease in synergy between SbGE15s and EpXYN1 or commercial enzyme cocktails on pretreated residues. The findings provide new insights into significant changes in enzyme-reachable LC-esters depending on the pretreatment method and intensity and the consequent influence of these changes on the catalytic action of GEs.
Collapse
Affiliation(s)
- Peiyu Zhang
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Liangkun Long
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Shaojun Ding
- The Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
8
|
Bi S, Ao J, Jiang T, Zhu X, Zhu Y, Yang W, Zheng B, Ji M. Imaging Metabolic Flow of Water in Plants with Isotope-Traced Stimulated Raman Scattering Microscopy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407543. [PMID: 39301930 PMCID: PMC11558102 DOI: 10.1002/advs.202407543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/31/2024] [Indexed: 09/22/2024]
Abstract
Water plays a vital role in the life cycle of plants, participating in various critical biochemical reactions during both non-photosynthetic and photosynthetic processes. Direct visualization of the metabolic activities of water in plants with high spatiotemporal resolution is essential to reveal the functional utilization of water. Here, stimulated Raman scattering (SRS) microscopy is applied to monitor the metabolic processes of deuterated water (D2O) in model plant Arabidopsis thaliana (A. thaliana). The work shows that in plants uptaking D2O/water solution, proton-transfer from water to organic metabolites results in the formation of C-D bonds in newly synthesized biomolecules (lipid, protein, and polysaccharides, etc.) that allow high-resolution detection with SRS. Reversible metabolic pathways of oil-starch conversion between seed germination and seed development processes are verified. Spatial heterogeneity of metabolic activities along the vertical axis of plants (root, stem, and tip meristem), as well as the radial distributions of secondary growth on the horizontal cross-sections are quantified. Furthermore, metabolic flow of protons from plants to animals is visualized in aphids feeding on A. thaliana. Collectively, SRS microscopy has potential to trace a broad range of matter flows in plants, such as carbon storage and nutrition metabolism.
Collapse
Affiliation(s)
- Simin Bi
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Jianpeng Ao
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| | - Ting Jiang
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Xianmiao Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Yimin Zhu
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Weibing Yang
- National Key Laboratory of Plant Molecular GeneticsCAS Center for Excellence in Molecular Plant SciencesInstitute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
- CAS‐JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS)Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghai200032China
| | - Binglian Zheng
- State Key Laboratory of Genetic EngineeringInstitute of Plant BiologySchool of Life SciencesFudan UniversityShanghai200438China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of PhysicsAcademy for Engineering and TechnologyHuman Phenome InstituteKey Laboratory of Micro and Nano Photonic Structures (Ministry of Education)Shanghai Key Laboratory of Metasurfaces for Light ManipulationFudan UniversityShanghai200433China
| |
Collapse
|
9
|
Biswa Sarma J, Mahanta S, Tanti B. Maximizing microbial activity and synergistic interaction to boost biofuel production from lignocellulosic biomass. Arch Microbiol 2024; 206:448. [PMID: 39470782 DOI: 10.1007/s00203-024-04172-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/01/2024]
Abstract
Addressing global environmental challenges and meeting the escalating energy demands stand as two pivotal issues in the current landscape. Lignocellulosic biomass emerges as a promising renewable bio-energy source capable of fulfilling the world's energy requirements on a large scale. One of the most important steps in lowering reliance on fossil fuel and lessening environmental effect is turning lignocellulosic biomass into biofuel. As carbon-neutral substitutes for traditional fuel, biofuel offer a solution to environmental concerns compared to conventional fuel. Effective utilization of lignocellulosic biomass is imperative for sustainable development. Ongoing research focuses on exploring the potential of various microorganisms and their co-interactions to synthesize diverse biofuels from different starting materials, including lignocellulosic biomass. Co-culture techniques demonstrate resilience to nutrient scarcity and environmental fluctuations. By utilising a variety of carbon sources, microbes can enhance their adaptability to environmental stressors and potentially increase productivity through their symbiotic interactions. Furthermore, compared to single organism involvement, co-interactions allow faster execution of multistep processes. Lignocellulosic biomass serves as a primary substrate for pre-treatment, fermentation, and enzymatic hydrolysis processes. This review primarily delves into the pretreatment, enzymatic hydrolysis process and the biochemical pathways involved in converting lignocellulosic biomass into bioenergy.
Collapse
Affiliation(s)
- Janayita Biswa Sarma
- Department of Energy Engineering, Assam Science and Technology University, Jalukbari, Tetelia, Guwahati, 781011, Assam, India
| | - Saurov Mahanta
- National Institute of Electronics and Information Technology, Guwahati, 781022, Assam, India.
| | - Bhaben Tanti
- Department of Botany, Gauhati University, Jalukbari, Guwahati, 781014, Assam, India
| |
Collapse
|
10
|
Wang Y, Sun XF, Chen J, Hu S, Sun R. Efficient Extraction and Analysis of Wheat Straw Lignin by Response Surface Methodology. Polymers (Basel) 2024; 16:2935. [PMID: 39458763 PMCID: PMC11511024 DOI: 10.3390/polym16202935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
To enhance the high-value utilization of straw waste and achieve efficient lignin extraction, wheat straw was selected as the feedstock for investigating the effects of reaction temperature, reaction time, solid-liquid ratio, and formic acid concentration on lignin yield using a formic acid/acetic acid solvent system. A single-factor experimental design was initially employed, followed by optimization using the response surface methodology. Additionally, a kinetic model was developed to describe lignin extraction kinetics in the formic acid/acetic acid system. The structural characteristics and thermal stability of the extracted lignin were analyzed via FTIR, UV spectroscopy, and TGA. The findings indicate that increasing reaction temperature, reaction time, solid-liquid ratio, and formic acid content all significantly enhanced lignin extraction yield from wheat straw, with the primary influencing factors being reaction temperature > solid-liquid ratio > reaction time > formic acid content. The optimal extraction conditions were identified at a reaction temperature of 90 °C, a reaction time of 3.5 h, a solid-liquid ratio of 1:16.5, and a formic acid content of 86.2 wt.%, yielding a lignin content of 79.83%. The analytical results demonstrated that the extracted lignin preserved the structural integrity of the original lignin and exhibited good thermal stability.
Collapse
Affiliation(s)
- Yongke Wang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
| | - Xiao-Feng Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Jiayi Chen
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
| | - Sihai Hu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| | - Ran Sun
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China; (Y.W.); (J.C.); (R.S.)
- Research & Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen 518063, China
| |
Collapse
|
11
|
Ruhaimi AH, Aziz MAA. Tailoring tea residue-derived nitrogen-doped activated carbon for CO 2 adsorption: influence of activation temperature and activating agents. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:60426-60450. [PMID: 39379654 DOI: 10.1007/s11356-024-35154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024]
Abstract
Embracing CO2 mitigation strategies, such as state-of-the-art CO2 capture technologies, is essential for effectively reducing atmospheric carbon levels and advancing global efforts toward a more sustainable future. In this context, adsorption sequestering techniques utilising carbon materials have emerged as promising candidates for CO2 capture. These materials have been extensively researched with a range of tuning methods to optimise their physicochemical features. In this study, an alteration of the N-doped activated carbon was successfully performed, utilizing tea residue as the carbon precursor and ammonia as the nitrogen source, facilitated through an impregnation procedure. With the objective of discovering the effect of diverse activation parameters on prepared adsorbent physicochemical properties, several selections of activating agents (AA) were investigated: KOH, H3PO4, ZnCl2, and NaOH, together with broad thermal activation temperature from 873 to 1173 K. The best-performed adsorbents from the respective AC group were subjected to several characterisation analyses and found to the enhanced structural features, heteroatom doped-rich surface (i.e. N and O); together with AA-induced metal/mineral functionalization, the NaOH-used AC (NAC-N-1173) was the optimum-performed adsorbent with a promising 4.12 mmol/g CO2 uptake capacity, higher than other prepared adsorbent including N-doped tea residue-derived char and commercialized AC with 175 and 325% higher, respectively.
Collapse
Affiliation(s)
- Amirul Hafiiz Ruhaimi
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia
| | - Muhammad Arif Ab Aziz
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia.
- Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia (UTM), Johor Bahru, 81310 UTM, Johor, Malaysia.
| |
Collapse
|
12
|
Hu N, Liu X, Wei S, Yao J, Wang W, Liu B, Tang T, Jiang J, Wang L. Current status and future prospects of pretreatment for tobacco stalk lignocellulose. Front Bioeng Biotechnol 2024; 12:1465419. [PMID: 39205854 PMCID: PMC11349660 DOI: 10.3389/fbioe.2024.1465419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
With the growing demand for sustainable development, tobacco stalks, as a resource-rich and low-cost renewable resource, hold the potential for producing high-value chemicals and materials within a circular economy. Due to the complex and unique structure of tobacco stalk biomass, traditional methods are ineffective in its utilization, making the pretreatment of tobacco stalk lignocellulose a crucial step in obtaining high-value products. This paper reviews recent advancements in various pretreatment technologies for tobacco stalk lignocellulosic biomass, including hydrothermal, steam explosion, acid, alkaline, organic solvent, ionic liquid, and deep eutectic solvent pretreatment. It emphasizes the impact and efficiency of these pretreatment methods on the conversion of tobacco stalk biomass and discusses the advantages and disadvantages of each technique. Finally, the paper forecasts future research directions in the pretreatment of tobacco stalk lignocellulose, providing new insights and methods for enhancing its efficient utilization.
Collapse
Affiliation(s)
- Nianwu Hu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Xiongbin Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Shuoguo Wei
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Jianwu Yao
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Wanxia Wang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Ben Liu
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Tianming Tang
- China Tobacco Hubei Industrial Co., Ltd., Wuhan, China
- Hubei Xinye Reconstituted Tobacco Development Co. Ltd., Wuhan, China
- Applied Technology Research of Reconstituted Tobacco Hubei Province Key Laboratory, Wuhan, China
| | - Jungang Jiang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Lei Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| |
Collapse
|
13
|
Bai Y, Zhang XF, Yu M, Yao J. A designed ZrOCl 2/ethylene glycol deep eutectic solvent for efficient lignocellulose valorization. Int J Biol Macromol 2024; 275:133507. [PMID: 38944082 DOI: 10.1016/j.ijbiomac.2024.133507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/04/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Deep eutectic solvents (DESs) hold great potential in biorefining because they can efficiently deconstruct the recalcitrant structure of lignocellulose. In particular, inorganic salts with Lewis acids have been proven to be effective at cleaving lignin-carbohydrate complexes. Herein, a Zr-based DES system composed of metal chloride hydrate (ZrOCl2·8H2O) and ethylene glycol (EG) was designed and used for poplar powder pretreatment. Zr4+-based salts provide sufficient acidity for lignocellulose depolymerization. The acidity of the DES was analysed by the Kamlet-Taft solvatochromic parameter, and the results demonstrated that the acidity can be regulated by the DES composition. Under the optimum conditions (ZrOCl2·8H2O:EG molar ratio of 1:2), the DES pretreatment removes nearly 100 % hemicellulose and 94.7 % lignin. The recovered lignin exhibited a low polydispersity of 1.7. The cellulose residues deliver an efficiency of 94.4 % upon enzymatic digestion. Moreover, the DES can be easily recovered with high yield and purity, and the recycled DES still maintains high delignification and enzymatic hydrolysis efficiencies. The proposed DES pretreatment technology is promising for biomass valorization.
Collapse
Affiliation(s)
- Yunhua Bai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiong-Fei Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Mengjiao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
14
|
Namli A, Akca MO, Perendeci NA, Yilmaz V, Ertit Tastan B. Effect of pretreated and anaerobically digested microalgae on the chemical and biochemical properties of soil and wheat grown on fluvisol. ENVIRONMENTAL TECHNOLOGY 2024; 45:2833-2846. [PMID: 36919910 DOI: 10.1080/09593330.2023.2192364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of the potential application of digestate as an agricultural fertiliser obtained from anaerobically digested microalgae treated by three pretreatment methods, namely alkaline hydrogen peroxide (AHP), high temperature and pressure (HTP), and hydrodynamic cavitation (HC) on some properties of soil, and wheat growth and yield were investigated. For this purpose, pretreated and anaerobically digested microalgae digestates alone or together with diammonium phosphate (DAP) as a chemical fertiliser were applied to soil for wheat growth. The highest dosage of AHP pretreated digestate combined with a half dose of DAP applied to soil was rich in nutrients as 0.25%N and 7.19 mg kg-1 compared to all groups. The properties of the soils were enhanced by applying the highest dosage (0.06 g kg-1) of microalgae digestate combined with a half dose of DAP. 0.02 g kg-1 dosage of HC pretreated digestate combined with a half dose of DAP also greatly improved nitrogen use efficiency indices by up to 104%. The soils' enzyme activities increased in wheat growth experiments by applying either raw or pretreated microalgae digestates. The soils' β-glycosidase, alkaline phosphatase, and urease enzyme activities increased to 1.38 mg pNP g-1 soil, 4.91 mg pNP g-1 soil, and 2.27 mg NH4-N 100 g-1 soil respectively by the application of highest dosage of HC pretreated digestate. The digestates did not have a toxic effect on wheat growth, it was determined that applied pretreatment processes did not cause significant changes in wheat plant height or wet and dry weight.
Collapse
Affiliation(s)
- Ayten Namli
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ankara University, Ankara, Turkey
| | - Muhittin Onur Akca
- Faculty of Agriculture, Department of Soil Science and Plant Nutrition, Ankara University, Ankara, Turkey
| | - Nuriye Altinay Perendeci
- Engineering Faculty, Department of Environmental Engineering, Akdeniz University, Antalya, Turkey
| | - Vedat Yilmaz
- Engineering Faculty, Department of Environmental Engineering, Artvin Çoruh University, Artvin, Turkey
| | - Burcu Ertit Tastan
- Health Services Vocational School, Gazi University, Ankara, Turkey
- Life Sciences Application and Research Center, Gazi University, Ankara, Turkey
| |
Collapse
|
15
|
Wang Y, Cai D, Jiang Y, Mei X, Ren W, Sun M, Su C, Cao H, Zhang C, Qin P. Rapid fractionation of corn stover by microwave-assisted protic ionic liquid [TEA][HSO 4] for fermentative acetone-butanol-ethanol production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:62. [PMID: 38715100 PMCID: PMC11077788 DOI: 10.1186/s13068-024-02499-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/02/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The use of ionic liquids (ILs) to fractionate lignocelluloses for various bio-based chemicals productions is in the ascendant. On this basis, the protic ILs consisting of triethylammonium hydrogen sulfate ([TEA][HSO4]) possessed great promise due to the low price, low pollution, and high efficiency. In this study, the microwave-assistant [TEA][HSO4] fractionation process was established for corn stover fractionation, so as to facilitate the monomeric sugars production and supported the downstream acetone-butanol-ethanol (ABE) fermentation. RESULTS The assistance of microwave irradiation could obviously shorten the fractionation period of corn stover. Under the optimized condition (190 W for 3 min), high xylan removal (93.17 ± 0.63%) and delignification rate (72.90 ± 0.81%) were realized. The mechanisms for the promotion effect of the microwave to the protic ILs fractionation process were ascribed to the synergistic effect of the IL and microwaves to the depolymerization of lignocellulose through the ionic conduction, which can be clarified by the characterization of the pulps and the isolated lignin specimens. Downstream valorization of the fractionated pulps into ABE productions was also investigated. The [TEA][HSO4] free corn stover hydrolysate was capable of producing 12.58 g L-1 of ABE from overall 38.20 g L-1 of monomeric sugars without detoxification and additional nutrients supplementation. CONCLUSIONS The assistance of microwave irradiation could significantly promote the corn stover fractionation by [TEA][HSO4]. Mass balance indicated that 8.1 g of ABE and 16.61 g of technical lignin can be generated from 100 g of raw corn stover based on the novel fractionation strategy.
Collapse
Affiliation(s)
- Yankun Wang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Di Cai
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Yongjie Jiang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Xueying Mei
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Wenqiang Ren
- Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| | - Mingyuan Sun
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changsheng Su
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Hui Cao
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Changwei Zhang
- National Energy R&D Center for Biorefinery, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Peiyong Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
16
|
Zhang L, Shao G, Jin Y, Yang N, Xu X. Efficient hemicellulose removal from lignocellulose by induced electric field-aided dilute acid pretreatment. Int J Biol Macromol 2024; 261:129839. [PMID: 38309397 DOI: 10.1016/j.ijbiomac.2024.129839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/19/2024] [Accepted: 01/27/2024] [Indexed: 02/05/2024]
Abstract
This study evaluated the effectiveness of induced electric field (IEF) as a novel electrotechnology to assist dilute acid pretreatment of wheat straw (WS) at atmospheric pressure and low temperature (90 °C). The effects of acid concentration and duration on cellulose recovery, hemicellulose and lignin removal were investigated. Meanwhile, the differences between IEF pretreatment and hydrothermal pretreatment were compared by quantitative and qualitative analysis. The optimal pretreatment condition was acid concentration 1 % with the period of 5 h. Under the parameters, the hemicellulose removal of WS after IEF pretreatment was up to 73.6 %, and the enzymatic efficiency was 55.8 %. In addition, the irregular surface morphology, diminished functional groups associated with hemicellulose, increased specific surface area and pore volume, as well as improved thermal stability of the residual WS support the remarkable effect of IEF pretreatment. The feasibility of IEF pretreatment is might be due to the fact that the magneto-induced electric field promotes ionization of H+ and formation of hydrated hydrogen ions, increasing the acidity of the medium. Secondly, electroporation disrupts the anti-degradation structure of WS and increases the accessibility of cellulose to cellulases. It indicated that IEF is a green and efficient strategy for assisting the separation of hemicellulose from lignocellulose.
Collapse
Affiliation(s)
- Lingtao Zhang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Guoqiang Shao
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yamei Jin
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Na Yang
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xueming Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China; Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
17
|
Song Y, Hou Y, Mu L, Chen G, Zeng Y, Yan B. Effect of heterogeneous fenton-like pretreatment on semi-permeable membrane-covered co-composting: Humification and microbial community succession. BIORESOURCE TECHNOLOGY 2024; 393:130112. [PMID: 38013034 DOI: 10.1016/j.biortech.2023.130112] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/24/2023] [Indexed: 11/29/2023]
Abstract
This study focused on the impacts of heterogeneous Fenton-like pretreatment on the humification and bacterial community during co-composting of wheat straw with cattle dung covered with a semi-permeable membrane. In this study, FeOCl and low concentration of H2O2 were used for pretreatment and composting, which lasted for 39 days. The results showed that the pretreatment promoted the humification process, with degree of polymerization and percentage of humic acid increasing by 53.2 % and 7.3 %, respectively. Furthermore, the diversity and structure of bacterial communities were altered by pretreatment. During the thermophilic phase, pretreatment considerably promoted the metabolism of carbohydrate. According to redundancy analysis, C/N, moisture and organic matter were the key environmental factors that dominated the microbial community. In summary, heterogeneous Fenton-like pretreatment provided a novel idea for improving the humic acid content and maturity of the compost pile.
Collapse
Affiliation(s)
- Yingjin Song
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yu Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Lan Mu
- School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Mechanical Engineering, Tianjin University of Commerce, Tianjin 300134, China.
| | - Yamei Zeng
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Beibei Yan
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Double Carbon Research Institute, Tianjin 300350, China
| |
Collapse
|
18
|
Tian B, Mao J, Zu M, Wu R, Xiao C. Study of the Mechanism of Hydrolysis of Hemicellulose from Lignocellulose during Alkali Thermal Pretreatment by Density Functional Theory and Experiment. J Org Chem 2024. [PMID: 38191296 DOI: 10.1021/acs.joc.3c01668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
The covalent bond fracture of hemicellulose leads to hemicellulose hydrolysis during lignocellulosic alkali thermal pretreatment, which has not previously been reported. Density functional theory was used to study the mechanism of hydrolysis of the hemicellulose model compounds under alkali conditions. There are four reaction paths for xylose formation, among which the reaction path with the lowest energy barrier is that in which the nucleophile captures H30 to generate water. The deprotonated hydroxyl group attacks the carbon on the glycoside bond, resulting in the cleavage of the glycoside bond and the formation of a new carbon-oxygen covalent bond, with an energy barrier of 154.2 kJ/mol. The nucleophile further attacks the glycosidic bond to form a new xylose residue with an energy barrier of 111.9 kJ/mol. When the glycosidic bond breaks, the orbital interaction with the largest proportion causes the transfer of ∼0.511 electron from the glycosidic bond oxygen to the deprotonated hydroxy oxygen. In situ Fourier transform infrared spectroscopy is used for the identification of functional groups during the alkali thermal pretreatment. As the temperature increases, the feasibility of the reaction increases. This study lays a theoretical foundation for the development of the alkali thermal pretreatment of lignocellulose.
Collapse
Affiliation(s)
- Bobing Tian
- Department of Energy and Power Engineering, College of Electrical Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Jiahua Mao
- Department of Energy and Power Engineering, College of Electrical Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Mingfu Zu
- Department of Energy and Power Engineering, College of Electrical Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Ruilin Wu
- Department of Energy and Power Engineering, College of Electrical Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Chao Xiao
- Department of Energy and Power Engineering, College of Electrical Engineering, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
19
|
Tanis MH, Wallberg O, Galbe M, Al-Rudainy B. Lignin Extraction by Using Two-Step Fractionation: A Review. Molecules 2023; 29:98. [PMID: 38202680 PMCID: PMC10779531 DOI: 10.3390/molecules29010098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Lignocellulosic biomass represents the most abundant renewable carbon source on earth and is already used for energy and biofuel production. The pivotal step in the conversion process involving lignocellulosic biomass is pretreatment, which aims to disrupt the lignocellulose matrix. For effective pretreatment, a comprehensive understanding of the intricate structure of lignocellulose and its compositional properties during component disintegration and subsequent conversion is essential. The presence of lignin-carbohydrate complexes and covalent interactions between them within the lignocellulosic matrix confers a distinctively labile nature to hemicellulose. Meanwhile, the recalcitrant characteristics of lignin pose challenges in the fractionation process, particularly during delignification. Delignification is a critical step that directly impacts the purity of lignin and facilitates the breakdown of bonds involving lignin and lignin-carbohydrate complexes surrounding cellulose. This article discusses a two-step fractionation approach for efficient lignin extraction, providing viable paths for lignin-based valorization described in the literature. This approach allows for the creation of individual process streams for each component, tailored to extract their corresponding compounds.
Collapse
Affiliation(s)
| | | | | | - Basel Al-Rudainy
- Department of Chemical Engineering, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden; (M.H.T.); (O.W.); (M.G.)
| |
Collapse
|
20
|
Jia Z, Wang S, Yu H, Li W, Ye J, Hu Y, Liu C, Ye Z, Sun Y, Xu X. Novel supramolecular deep eutectic solvent pretreatment for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. BIORESOURCE TECHNOLOGY 2023; 388:129780. [PMID: 37739185 DOI: 10.1016/j.biortech.2023.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
In this study, β-CD was used as a receptor to prepare three novel SDES, which were used to pretreat corn stalks for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. It was found that GA-residue had a high cellulose retention ratio (94.63%) and the highest lignin removal ratio (61.78%). Besides, the yield of carbohydrates in bio-oil was increased from 0.63% to 49.37%, and fluorescent lignin was prepared for explosion detection, fluorescent film, and information encryption. It was confirmed that the weak interaction between β-CD and HBDs or dimer was mainly performed by hydrogen bond and van der Waals force. The minimum frontier orbital energy difference ΔEU (0.1976 a.u.) and high binding energy (-5456.71 kJ/mol) between molecules were calculated by DFT. Moreover, the mechanism of biomass pretreatment was explored. The green and efficient SDES developed in this study were of great significance for biomass pretreatment and efficient utilization of components.
Collapse
Affiliation(s)
- Zhiwen Jia
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Shiyang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Wanyu Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Jiamin Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Yihao Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Cong Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zijian Ye
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China; Lingnan Modern Agricultural Science and Technology Maoming Branch of Guangdong Provincial Laboratory, Maoming 525032, Guangdong, China.
| |
Collapse
|
21
|
Tang W, Huang C, Tang Z, He YC. Employing deep eutectic solvent synthesized by cetyltrimethylammonium bromide and ethylene glycol to advance enzymatic hydrolysis efficiency of rape straw. BIORESOURCE TECHNOLOGY 2023; 387:129598. [PMID: 37532057 DOI: 10.1016/j.biortech.2023.129598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/04/2023]
Abstract
An efficient deep eutectic solvent (DES) was synthesized by cetyltrimethylammonium bromide (CTAB) and ethylene glycol (EG) and employed to treat rape straw (RS) for advancing enzymatic saccharification in this work. By optimizing the pretreatment parameters, the results displayed that the novel DES was strongly selective towards removing lignin and xylan while preserving cellulose. Under optimum conditions with 1:6 of CTAB: EG in DES, 180 °C and 80 min, the enzymatic hydrolysis efficiency of RS was enhanced by 46.0% due to the 62.2% of delignification and 53.2% of xylan removal during CTAB: EG pretreatment. In terms of the recalcitrant structure of RS, DES pretreatment caused the increment of cellulosic accessibility, reduction of hydrophobicity and surface area of lignin, and migration of cellulosic crystalline structure, which was associated with its enzymatic hydrolysis efficiency. Overall, this study presented an emerging method for the effective fractionation and valorization of lignocellulosic biomass within biorefinery technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
22
|
Kumar JA, Sathish S, Prabu D, Renita AA, Saravanan A, Deivayanai VC, Anish M, Jayaprabakar J, Baigenzhenov O, Hosseini-Bandegharaei A. Agricultural waste biomass for sustainable bioenergy production: Feedstock, characterization and pre-treatment methodologies. CHEMOSPHERE 2023; 331:138680. [PMID: 37119925 DOI: 10.1016/j.chemosphere.2023.138680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/04/2023] [Accepted: 04/11/2023] [Indexed: 05/06/2023]
Abstract
The worldwide trend in energy production is moving toward circular economy systems and sustainable availability of sources. Some advanced methods support the economic development of energy production by the utilization of waste biomass, while limiting ecological effects. The use of agro waste biomass is viewed as a major alternative energy source that expressively lowers greenhouse gas emissions. Agricultural residues produced as wastes after each step of agricultural production are used as sustainable biomass assets for bioenergy production. Nevertheless, agro waste biomass needs to go through a few cyclic changes, among which biomass pre-treatment contributes to the removal of lignin and has a significant role in the efficiency and yield of bioenergy production. As a result of rapid innovation in the utilization of agro waste for biomass-derived bioenergy, a comprehensive overview of the thrilling highlights and necessary advancements, in addition to a detailed analysis of feedstock, characterization, bioconversion, and contemporary pre-treatment procedures, appear to be vital. To this end, the current status in the generation of bioenergy from agro biomass through various pre-treatment procedures was examined in this study, along with presenting relevant challenges and a perspective for future investigations.
Collapse
Affiliation(s)
- J Aravind Kumar
- Department of Energy and Environmental Engineering, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India.
| | - S Sathish
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - D Prabu
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - A Annam Renita
- Department of Chemical Engineering, Sathyabama Institute of Science and Technology, Chennai, 600119, Tamilnadu, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| | - V C Deivayanai
- Department of Biotechnology, Saveetha School of Engineering, SIMATS, Chennai, 602105, Tamilnadu, India
| | - M Anish
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, 13, Chennai, 600119, Tamilnadu, India.
| | - J Jayaprabakar
- Department of Mechanical Engineering, Sathyabama Institute of Science and Technology, 13, Chennai, 600119, Tamilnadu, India
| | | | | |
Collapse
|
23
|
de Cássia Spacki K, Novi DMP, de Oliveira-Junior VA, Durigon DC, Fraga FC, dos Santos LFO, Helm CV, de Lima EA, Peralta RA, de Fátima Peralta Muniz Moreira R, Corrêa RCG, Bracht A, Peralta RM. Improving Enzymatic Saccharification of Peach Palm ( Bactris gasipaes) Wastes via Biological Pretreatment with Pleurotus ostreatus. PLANTS (BASEL, SWITZERLAND) 2023; 12:2824. [PMID: 37570978 PMCID: PMC10420912 DOI: 10.3390/plants12152824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
The white-rot fungus Pleurotus ostreatus was used for biological pretreatment of peach palm (Bactris gasipaes) lignocellulosic wastes. Non-treated and treated B. gasipaes inner sheaths and peel were submitted to hydrolysis using a commercial cellulase preparation from T. reesei. The amounts of total reducing sugars and glucose obtained from the 30 d-pretreated inner sheaths were seven and five times higher, respectively, than those obtained from the inner sheaths without pretreatment. No such improvement was found, however, in the pretreated B. gasipaes peels. Scanning electronic microscopy of the lignocellulosic fibers was performed to verify the structural changes caused by the biological pretreatments. Upon the biological pretreatment, the lignocellulosic structures of the inner sheaths were substantially modified, making them less ordered. The main features of the modifications were the detachment of the fibers, cell wall collapse and, in several cases, the formation of pores in the cell wall surfaces. The peel lignocellulosic fibers showed more ordered fibrils and no modification was observed after pre-treatment. In conclusion, a seven-fold increase in the enzymatic saccharification of the Bactris gasipaes inner sheath was observed after pre-treatment, while no improvement in enzymatic saccharification was observed in the B. gasipaes peel.
Collapse
Affiliation(s)
- Kamila de Cássia Spacki
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Danielly Maria Paixão Novi
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Verci Alves de Oliveira-Junior
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Daniele Cocco Durigon
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (D.C.D.); (R.A.P.)
| | - Fernanda Cristina Fraga
- Departamento de Engenharia Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (F.C.F.); (R.d.F.P.M.M.)
| | - Luís Felipe Oliva dos Santos
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | | | | | - Rosely Aparecida Peralta
- Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Brazil; (D.C.D.); (R.A.P.)
| | | | - Rúbia Carvalho Gomes Corrêa
- Programa de Pós-Graduação em Tecnologias Limpas, Instituto Cesumar de Ciência, Tecnologia e Inovação—ICETI, Universidade Cesumar—UNICESUMAR, Maringá 87050-900, Brazil;
| | - Adelar Bracht
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| | - Rosane Marina Peralta
- Departamento de Bioquímica, Universidade Estadual de Maringá, Maringá 87020-900, Brazil; (K.d.C.S.); (D.M.P.N.); (V.A.d.O.-J.); (L.F.O.d.S.); (A.B.)
| |
Collapse
|
24
|
Guo Z, Zheng HY, Huang ZY, Liu YZ, Liu YH, Chen Y, Gao J, Hu Y, Huang C. Solvothermal synthesis of bifunctional carbon dots for tartrazine and Fe(III) detection from chamomile residue by ternary DES pretreatment. Food Chem 2023; 426:136604. [PMID: 37348402 DOI: 10.1016/j.foodchem.2023.136604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/28/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
A ternary deep eutectic solvent (DES) consisting of choline chloride, lactic acid, and urea in a molar ratio of 1:2:2 was used to pretreat chamomile residue, followed by carbon dots (CDs) preparation using a one-pot solvothermal method. The CDs prepared under the suitable conditions had a high quantum yield of 47.34% and could be used as a bifunctional fluorescent probe for the detection of tartrazine and Fe(III). The concentration of tartrazine or Fe(III) had a good linear relationship with the fluorescence intensity of CDs that the determination coefficient (R2) was 0.9957 and 0.9943, and the limit of detection (LOD) was 40 nM and 119 nM, respectively. After verifying the different fluorescence quenching mechanisms of CDs by these two substances, a quantitative analysis was performed on real samples with recoveries of 90.70%∼104.29%. Overall, this study provided a promising technology for chemical conversion from low-cost chamomile residue to attractive bifunctional fluorescent probe.
Collapse
Affiliation(s)
- Zheng Guo
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Han-Yi Zheng
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Zhong-Ying Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yue-Zhen Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yao-Hua Liu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China
| | - Yun Chen
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Jing Gao
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China
| | - Yong Hu
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| | - Chao Huang
- School of Food Science, Guangdong Pharmaceutical University, Zhongshan 528458, People's Republic of China; GDPU-HKU Zhongshan Biomedical Innovation Platform, Zhongshan 528437, People's Republic of China.
| |
Collapse
|
25
|
Yang JY, Yu QF, Li MF. Freeze-thaw assisted maleic acid pretreatment of eucalyptus to prepare cellulose nanocrystals and degraded lignin. BIORESOURCE TECHNOLOGY 2023:129365. [PMID: 37343804 DOI: 10.1016/j.biortech.2023.129365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 06/23/2023]
Abstract
A green and effective method is proposed for the pretreatment of eucalyptus by freeze-thaw assisted maleic acid tactic, wherein the effects of freeze-thaw, maleic acid concentration, reaction time, and temperature on the fractionation were examined. Results showed that under optimal conditions (60% maleic acid, 120 °C, and 2 h), a remarkable removal of 74.5% lignin and 95.2% hemicellulose was achieved after freeze-thaw treatment. The resulting cellulose-rich solid residues were further processed with maleic acid to prepare cellulose nanocrystals, which displayed uniform sized rod-like structures and high crystallinity (62.51%). Moreover, maleic acid pretreatment resulted in lignin with low molecular weight (2110-2530) and excellent homogeneity (PDI ≤ 1.86), while maintaining a relatively intact structure. The lignin had high β-O-4 aryl ether bond contents (≥77.5%) and abundant phenolic hydroxyl contents (2.33-3.63 mmol/g). Overall, the process exhibits notable benefits in effectively separating lignocellulose for high valorization.
Collapse
Affiliation(s)
- Jia-Yu Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Qiong-Fen Yu
- Yunnan Provincial Rural Energy Engineering Key Laboratory, Yunnan 650550, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Yunnan Provincial Rural Energy Engineering Key Laboratory, Yunnan 650550, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
26
|
Zhu X, Liu X, Wang B, Wang X. Sodium hydroxide or tetramethylammonium hydroxide modified corncob combined with biodegradable polymers to prepare slow-release carbon source for wastewater denitrification. BIORESOURCE TECHNOLOGY 2023; 384:129304. [PMID: 37311524 DOI: 10.1016/j.biortech.2023.129304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023]
Abstract
This study proposed a method to improve the bioavailability of artificially prepared carbon sources for the purpose of wastewater denitrification. This carbon source (named SPC) was prepared by mixing corncobs with poly(3-hydroxybutyrate-3-hydroxyvalerate) (PHBV), where the corncobs were pretreated by NaOH or TMAOH. The results of compositional analysis and FTIR showed that both NaOH and TMAOH degraded lignin, hemicellulose and their connection bonds in corncob, thus increased the cellulose content from 39% to 53% and 55%, respectively. The cumulative carbon release from SPC was about 9.3 mg/g and was consistent with both the first-order kinetic and Ritger-Peppas equation. The released organic matters contained low concentration of refractory components. Correspondingly, it showed excellent denitrification performance in simulated wastewater, and the total nitrogen (TN) removal rate was above 95% (influent NO3--N was 40 mg/L) and effluent residual chemical oxygen demand (COD) was less than 50 mg/L.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xinting Liu
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Bin Wang
- Qinhuangdao Bohai Biological Research Institute, Beijing University of Chemical Technology, Qinhuangdao 066004, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
27
|
Karuppasamy K, Theerthagiri J, Selvaraj A, Vikraman D, Parangusan H, Mythili R, Choi MY, Kim HS. Current trends and prospects in catalytic upgrading of lignocellulosic biomass feedstock into ultrapure biofuels. ENVIRONMENTAL RESEARCH 2023; 226:115660. [PMID: 36913997 DOI: 10.1016/j.envres.2023.115660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Eco-friendly renewable energy sources have recommended as fossil fuel alternatives in recent years to reduce environmental pollution and meet future energy demands in various sectors. As the largest source of renewable energy in the world, lignocellulosic biomass has received considerable interest from the scientific community to advance the fabrication of biofuels and ultrafine value-added chemicals. For example, biomass obtained from agricultural wastes could catalytically convert into furan derivatives. Among furan derivatives, 5-hydroxymethylfurfural (HMF) and 2, 5-dimethylfuran (DMF) are considered the most useful molecules that can be transformed into desirable products such as fuels and fine chemicals. Because of its exceptional properties, e.g., water insolubility and high boiling point, DMF has studied as the ideal fuel in recent decades. Interestingly, HMF, a feedstock upgraded from biomass sources can easily hydrogenate to produce DMF. In the present review, the current state of the art and studies on the transformation of HMF into DMF using noble metals, non-noble metals, bimetallic catalysts, and their composites have discussed elaborately. In addition, comprehensive insights into the operating reaction conditions and the influence of employed support over the hydrogenation process have demonstrated.
Collapse
Affiliation(s)
- K Karuppasamy
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Jayaraman Theerthagiri
- Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Aravindhan Selvaraj
- Department of Chemistry, B.S. Abdur Rahman Cresent Institute of Science and Technology, Chennai, 600048, India
| | - Dhanasekaran Vikraman
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hemalatha Parangusan
- Qatar University Young Scientists Center (QUYSC), Qatar University, Doha, 2713, Qatar
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, 600077, Chennai, India
| | - Myong Yong Choi
- Core-Facility Center for Photochemistry and Nanomaterials, Department of Chemistry (BK21 FOUR), Research Institute of Natural Sciences, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| |
Collapse
|
28
|
Xu D, Ma C, Wu M, Deng Y, He YC. Improved production of adipic acid from a high loading of corn stover via an efficient and mild combination pretreatment. BIORESOURCE TECHNOLOGY 2023; 382:129196. [PMID: 37207697 DOI: 10.1016/j.biortech.2023.129196] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Adipic acid is one kind of important organic dibasic acid, which has crucial role in manufacturing plastics, lubricants, resins, fibers, etc. Using lignocellulose as feedstock for producing adipic acid can reduce production cost and improve bioresource utilization. After pretreated in the mixture of 7 wt% NaOH and 8 wt% ChCl-PEG10000 at 25 oC for 10 min, the surface of corn stover became loose and rough. The specific surface area was increased after the removal of lignin. A high loading of pretreated corn stover was enzymatically hydrolyzed by cellulase (20 FPU/g substrate) and xylanase (15 U/g substrate), and the yield of reducing sugars was as high as 75%. Biomass-hydrolysates obtained by enzymatic hydrolysis were efficiently fermented to produce adipic acid, and the yield was 0.45 g adipic acid per g reducing sugar. A sustainable approach for manufacturing adipic acid from lignocellulose via a room temperature pretreatment has great potential in future.
Collapse
Affiliation(s)
- Daozhu Xu
- School of Pharmacy, Changzhou University, Changzhou, PR China
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Mengjia Wu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China
| | - Yu Deng
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, PR China
| | - Yu-Cai He
- School of Pharmacy, Changzhou University, Changzhou, PR China; State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei University, Wuhan, PR China.
| |
Collapse
|
29
|
Tang W, Tang Z, Qian H, Huang C, He Y. Implementing dilute acid pretreatment coupled with solid acid catalysis and enzymatic hydrolysis to improve bioconversion of bamboo shoot shells. BIORESOURCE TECHNOLOGY 2023; 381:129167. [PMID: 37182678 DOI: 10.1016/j.biortech.2023.129167] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/16/2023]
Abstract
Exploiting bamboo shoot shells (BSS) as feedstocks for biorefining is a crucial scheme to advance the bioavailability of bamboo shoots. This work applied traditional dilute sulfuric acid pretreatment (DAP) to treat BSS and simultaneously prepared the solid-acid-catalyst by using BSS as carbon-based carriers. The biocatalysis of the prehydrolysate from DAP and enzymatic hydrolysis of pretreated BSS was subsequently performed to achieve efficient bioconversion of its carbohydrates. The results displayed that 0.1 g/L H2SO4 employed in DAP was the optimal condition for furfural conversion of BSS during biocatalysis, reaching the maximum of 41%. Meanwhile, the enzymatic hydrolysis efficiency of the pretreated BSS also reached the maximum of 97%. This increment of efficiency was ascribed to the enhancement of accessibility and cellulosic crystal size, and also the reduction of surface area of lignin in BSS. Ultimately, the efficient bioutilization of BSS and bioconversion of its carbohydrates were realized by DAP technology.
Collapse
Affiliation(s)
- Wei Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhengyu Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Haojie Qian
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yucai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, Jiangsu Province, China.
| |
Collapse
|
30
|
Shan W, Yan Y, Li Y, Hu W, Chen J. Microbial tolerance engineering for boosting lactic acid production from lignocellulose. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:78. [PMID: 37170163 PMCID: PMC10173534 DOI: 10.1186/s13068-023-02334-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/28/2023] [Indexed: 05/13/2023]
Abstract
Lignocellulosic biomass is an attractive non-food feedstock for lactic acid production via microbial conversion due to its abundance and low-price, which can alleviate the conflict with food supplies. However, a variety of inhibitors derived from the biomass pretreatment processes repress microbial growth, decrease feedstock conversion efficiency and increase lactic acid production costs. Microbial tolerance engineering strategies accelerate the conversion of carbohydrates by improving microbial tolerance to toxic inhibitors using pretreated lignocellulose hydrolysate as a feedstock. This review presents the recent significant progress in microbial tolerance engineering to develop robust microbial cell factories with inhibitor tolerance and their application for cellulosic lactic acid production. Moreover, microbial tolerance engineering crosslinking other efficient breeding tools and novel approaches are also deeply discussed, aiming to providing a practical guide for economically viable production of cellulosic lactic acid.
Collapse
Affiliation(s)
- Wenwen Shan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongli Yan
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Yongda Li
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, People's Republic of China
| | - Wei Hu
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| | - Jihong Chen
- Department of Biophysics, Institute of Modern Physics, Chinese Academy of Sciences, 509 Nanchang Road, Lanzhou, 730000, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
31
|
Lu M, Guo R, Feng Q, Qin K, Zhang F, Shi X. Effect of calcium peroxide assisted microwave irradiation pretreatment on humus formation and microbial community in straw and dairy manure composting. BIORESOURCE TECHNOLOGY 2023; 374:128780. [PMID: 36828220 DOI: 10.1016/j.biortech.2023.128780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
In this study, the effects of four pretreatment methods on the crystallinity of maize straw were compared, and the CaO2 assisted microwave pretreatment was selected for straw and dairy manure composting. The humification and microbial community were investigated. Results showed that the pretreatment increased the initial water-soluble carbon, which favored the microbial activity, and the CO2 release increased by 15.71%. Pretreatment promoted the lignocellulose degradation, with total degradation ratio of 37.06%. The final humic acid content was 11.39 g/kg higher than the control. Spearman correlation analysis indicated that polyphenols and amino acids were significantly related to humus formation. In addition, pretreatment rendered the Firmicutes the most dominant phylum, and increased the metabolic intensity of reducing sugar metabolism, aromatic amino acid biosynthesis and carbon fixation pathways. Redundancy analysis revealed that the dominant genus of Firmicutes was significantly positively correlated with humus, while that of Actinobacteriota was correlated with CO2 release.
Collapse
Affiliation(s)
- Mingyi Lu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Quan Feng
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Kang Qin
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Fengyuan Zhang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China; Shandong Energy Institute, Qingdao 266101, PR China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, PR China.
| |
Collapse
|
32
|
Effect of Laccase Detoxification on Bioethanol Production from Liquid Fraction of Steam-Pretreated Olive Tree Pruning. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
During lignocellulosic bioethanol production, the whole slurry obtained by steam explosion is filtered, generating a water-insoluble fraction rich in cellulose which is used for saccharification and ethanol fermentation, as well as a liquid fraction containing solubilised glucose and xylose but also some inhibitory by-products (furan derivatives, weak acids and phenols), which limits its use for this purpose. Since utilization of this liquid fraction to ethanol is essential for an economically feasible cellulosic ethanol process, this work studied a laccase from Myceliophthora thermophila to detoxify the liquid fraction obtained from steam-pretreated olive tree pruning (OTP) and to overcome the effects of these inhibitors. Then, the fermentation of laccase-treated liquid fraction was evaluated on ethanol production by different Saccharomyces cerevisiae strains, including the Ethanol Red, with the capacity to ferment glucose but not xylose, and the xylose-fermenting recombinant strain F12. Laccase treatment reduced total phenols content by 87% from OTP liquid fraction, not affecting furan derivatives and weak acids concentration. Consequently, the fermentative behavior of both Ethanol Red and F12 strains was improved, and ethanol production and yields were increased. Moreover, F12 strain was capable of utilizing some xylose, which increased ethanol production (10.1 g/L) compared to Ethanol Red strain (8.6 g/L).
Collapse
|
33
|
Wang M, Qiao J, Sheng Y, Wei J, Cui H, Li X, Yue G. Bioconversion of corn fiber to bioethanol: Status and perspectives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 157:256-268. [PMID: 36577277 DOI: 10.1016/j.wasman.2022.12.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/17/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Due to the rising demand for green energy, bioethanol has attracted increasing attention from academia and industry. Limited by the bottleneck of bioethanol yield in traditional corn starch dry milling processes, an increasing number of studies focus on fully utilizing all corn ingredients, especially kernel fiber, to further improve the bioethanol yield. This mini-review addresses the technological challenges and opportunities on the way to achieving the efficient conversion of corn fiber. Significant advances during the review period include the detailed characterization of different forms of corn kernel fiber and the development of off-line and in-situ conversion strategies. Lessons from cellulosic ethanol technologies offer new ways to utilize corn fiber in traditional processes. However, the commercialization of corn kernel fiber conversion may be hampered by enzyme cost, conversion efficiency, and overall process economics. Thus, future studies should address these technical limitations.
Collapse
Affiliation(s)
- Minghui Wang
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Jie Qiao
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Yijie Sheng
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Junnan Wei
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China
| | - Haiyang Cui
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany.
| | - Xiujuan Li
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China.
| | - Guojun Yue
- College of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210009, People's Republic of China; SDIC Biotech Investment Co., Ltd., Beijing 100034, China
| |
Collapse
|
34
|
Zhang B, Liu X, Bao J. High solids loading pretreatment: The core of lignocellulose biorefinery as an industrial technology - An overview. BIORESOURCE TECHNOLOGY 2023; 369:128334. [PMID: 36403909 DOI: 10.1016/j.biortech.2022.128334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/08/2022] [Accepted: 11/11/2022] [Indexed: 06/16/2023]
Abstract
Pretreatment is the first and most determinative, yet the least mature step of lignocellulose biorefinery chain. The current stagnation of biorefinery commercialization indicates the barriers of the existing pretreatment technologies are needed to be unlocked. This review focused on one of the core factors, the high lignocellulose solids loading in pretreatment. The high solids loading of pretreatment significantly reduces water input, energy requirement, toxic compound discharge, solid/liquid separation costs, and carbon dioxide emissions, improves the titers of sugars and biproducts to meet the industrial requirements. Meanwhile, lignocellulose feedstock after high solids loading pretreatment is compatible with the existing logistics system for densification, packaging, storage, and transportation. Both the technical-economic analysis and the cellulosic ethanol conversion performance suggest that the solids loading in the pretreatment step need to be further elevated towards an industrial technology and the effective solutions should be proposed to the technical barriers in high solids loading pretreatment operations.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
35
|
Gallego-García M, Moreno AD, Manzanares P, Negro MJ, Duque A. Recent advances on physical technologies for the pretreatment of food waste and lignocellulosic residues. BIORESOURCE TECHNOLOGY 2023; 369:128397. [PMID: 36503833 DOI: 10.1016/j.biortech.2022.128397] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
The complete deployment of a bio-based economy is essential to meet the United Nations' Sustainable Development Goals from the 2030 Agenda. In this context, food waste and lignocellulosic residues are considered low-cost feedstocks for obtaining industrially attractive products through biological processes. The effective conversion of these raw materials is, however, still challenging, since they are recalcitrant to bioprocessing and must be first treated to alter their physicochemical properties and ease the accessibility to their structural components. Among the full pallet of pretreatments, physical methods are recognised to have a high potential to transform food waste and lignocellulosic residues. This review provides a critical discussion about the recent advances on milling, extrusion, ultrasound, and microwave pretreatments. Their mechanisms and modes of application are analysed and the main drawbacks and limitations for their use at an industrial scale are discussed.
Collapse
Affiliation(s)
- María Gallego-García
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain; Alcalá de Henares University, Spain
| | - Antonio D Moreno
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - Paloma Manzanares
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| | - María José Negro
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain.
| | - Aleta Duque
- Advanced Biofuels and Bioproducts Unit, Department of Energy, CIEMAT, Av. Complutense 40, 28040 Madrid, Spain
| |
Collapse
|
36
|
Zhang R, Gao H, Wang Y, He B, Lu J, Zhu W, Peng L, Wang Y. Challenges and perspectives of green-like lignocellulose pretreatments selectable for low-cost biofuels and high-value bioproduction. BIORESOURCE TECHNOLOGY 2023; 369:128315. [PMID: 36414143 DOI: 10.1016/j.biortech.2022.128315] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulose represents the most abundant carbon-capturing substance that is convertible for biofuels and bioproduction. Although biomass pretreatments have been broadly applied to reduce lignocellulose recalcitrance for enhanced enzymatic saccharification, they mostly require strong conditions with potential secondary waste release. By classifying all major types of pretreatments that have been recently conducted with different sources of lignocellulose substrates, this study sorted out their distinct roles for wall polymer extraction and destruction, leading to the optimal pretreatments evaluated for cost-effective biomass enzymatic saccharification to maximize biofuel production. Notably, all undigestible lignocellulose residues are also aimed for effective conversion into value-added bioproduction. Meanwhile, desired pretreatments were proposed for the generation of highly-valuable nanomaterials such as cellulose nanocrystals, lignin nanoparticles, functional wood, carbon dots, porous and graphitic nanocarbons. Therefore, this article has proposed a novel strategy that integrates cost-effective and green-like pretreatments with desirable lignocellulose substrates for a full lignocellulose utilization with zero-biomass-waste liberation.
Collapse
Affiliation(s)
- Ran Zhang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Hairong Gao
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Yongtai Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Boyang He
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Jun Lu
- Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China
| | - Wanbin Zhu
- Center of Biomass Engineering, College of Agronomy & Biotechnology, China Agricultural University, Beijing 100193, China
| | - Liangcai Peng
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China; Key Laboratory of Fermentation Engineering, National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yanting Wang
- Biomass & Bioenergy Research Centre, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan 430070, China; Laboratory of Biomass Engineering & Nanomaterial Application in Automobiles, College of Food Science & Chemical Engineering, Hubei University of Arts & Science, Xiangyang 441003, China.
| |
Collapse
|
37
|
Ge H, Zheng J, Xu H. Advances in machine learning for high value-added applications of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2023; 369:128481. [PMID: 36513310 DOI: 10.1016/j.biortech.2022.128481] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Lignocellulose can be converted into biofuel or functional materials to achieve high value-added utilization. Biomass utilization process is complex and multi-dimensional. This paper focuses on the biomass conversion reaction conditions, the preparation of biomass-based functional materials, the combination of biomass conversion and traditional wet chemistry, molecular simulation and process simulation. This paper analyzes the mechanism, advantages and disadvantages of important machine learning (ML) methods. The application examples of ML in different aspects of high value utilization of lignocellulose are summarized in detail. The challenges and future prospects of ML in this field are analyzed.
Collapse
Affiliation(s)
- Hanwen Ge
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jun Zheng
- Munich University of Technology, Arcisstraße 21, 80333, München, Germany
| | - Huanfei Xu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Pulp and Paper Science & Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China; Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, PR China.
| |
Collapse
|
38
|
Tang S, Yu YL, Liu R, Wei S, Zhang Q, Zhao J, Li S, Dong Q, Li YB, Wang Y. Enhancing ethylene glycol and ferric chloride pretreatment of rice straw by low-pressure carbon dioxide to improve enzymatic saccharification. BIORESOURCE TECHNOLOGY 2023; 369:128391. [PMID: 36435418 DOI: 10.1016/j.biortech.2022.128391] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Ethylene glycol and ferric chloride pretreatment assisted by low-pressure carbon dioxide (1 MPa CO2) realized the targeted deconstruction of lignocelluloses at 170 °C for 5 min, achieving 98 % cellulose recovery with removal of 92 % lignin and 90 % hemicellulose. After the pretreatment, the formation of stable platform mono-phenol components would be with the destruction of the lignin-carbohydrate complexes structure, and the surface of rice straw became rough, with a less negative charge and higher specific surface area, while the enzyme adsorption rate increased by 8.1 times. Furthermore, the glucose yield of pretreated straw was remarkably increased by 5.6 times that of the untreated straw, reaching 91 % after hydrolyzed for 48 h. With Tween 80 added in concentrated solid (12 %) hydrolysis at low cellulase loading (3 FPU/g dry substrate), half of the hydrolysis time was shortened than that without Tween 80, with 45 % higher glucose yield.
Collapse
Affiliation(s)
- Song Tang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China; Biomass Group, College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
| | - Yan-Ling Yu
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China; State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan 410004, China
| | - Shenghua Wei
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qin Zhang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Jie Zhao
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Song Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| | - Qian Dong
- Biomass Group, College of Engineering, Nanjing Agricultural University, Nanjing, Jiangsu 210031, China
| | - Yan-Bin Li
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China.
| | - Yuanli Wang
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui 241000, China
| |
Collapse
|
39
|
Zhou S, Zhang M, Zhu L, Zhao X, Chen J, Chen W, Chang C. Hydrolysis of lignocellulose to succinic acid: a review of treatment methods and succinic acid applications. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:1. [PMID: 36593503 PMCID: PMC9806916 DOI: 10.1186/s13068-022-02244-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 12/08/2022] [Indexed: 01/03/2023]
Abstract
Succinic acid (SA) is an intermediate product of the tricarboxylic acid cycle (TCA) and is one of the most significant platform chemicals for the production of various derivatives with high added value. Due to the depletion of fossil raw materials and the demand for eco-friendly energy sources, SA biosynthesis from renewable energy sources is gaining attention for its environmental friendliness. This review comprehensively analyzes strategies for the bioconversion of lignocellulose to SA based on the lignocellulose pretreatment processes and cellulose hydrolysis and fermentation principles and highlights the research progress on acid production and SA utilization under different microbial culture conditions. In addition, the fermentation efficiency of different microbial strains for the production of SA and the main challenges were analyzed. The future application directions of SA derivatives were pointed out. It is expected that this research will provide a reference for the optimization of SA production from lignocellulose.
Collapse
Affiliation(s)
- Shuzhen Zhou
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Miaomiao Zhang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
| | - Linying Zhu
- College of Management Engineering, Zhengzhou University, Zhengzhou, China
| | - Xiaoling Zhao
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China.
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China.
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China.
| | - Junying Chen
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| | - Wei Chen
- Henan Key Laboratory of Green Manufacturing of Biobased Chemicals, Puyang, China
| | - Chun Chang
- College of Chemical Engineering, Zhengzhou University, Zhengzhou, China
- State Key Laboratory of Motor Vehicle Biofuel Technology, Nanyang, China
- Henan Center for Outstanding Overseas Scientists, Zhengzhou, China
| |
Collapse
|
40
|
Qian H, Fan Y, Chen J, He L, Sun Y, Li L. Enabling the complete valorization of hybrid Pennisetum: Directly using alkaline black liquor for preparing UV-shielding biodegradable films. Front Bioeng Biotechnol 2022; 10:1027511. [PMID: 36545683 PMCID: PMC9760701 DOI: 10.3389/fbioe.2022.1027511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/14/2022] [Indexed: 12/07/2022] Open
Abstract
The conversion of lignocellulosic biomass into various high-value chemicals has been a rapid expanding research topic in industry and agriculture. Among them, alkaline removal and utilization of lignin are important for the accelerated degradation of biomass. Modern biorefinery has been focusing the vision on the advancement of economical, green, and environmentally friendly processes. Therefore, it is indispensable to develop cost-effective and simple biomass conversion technologies to obtain high-value products. In this study, the black liquor (BL) obtained from the alkaline pretreatment of biomass was added to polyvinyl alcohol (PVA) solution and used to prepare degradable ultraviolet (UV) shielding films, achieving direct and efficient utilization of the aqueous phase from alkaline pretreatment. This method avoids the extraction step of lignin fraction from black liquor, which can be directly utilized as the raw materials of films preparation. In addition, the direct use of alkaline BL results in films with similar UV-shielding properties, higher physical strength, and similar thermal stability compared with films made by commercial alkaline lignin. Therefore, this strategy is proposed for alkaline-pretreated biorefineries as a simple way to convert waste BL into valuable products and partially recover unconsumed sodium hydroxide to achieve as much integration of biomass and near zero-waste biorefineries as possible.
Collapse
Affiliation(s)
- Haojiang Qian
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Yafeng Fan
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China
| | - Jiazhao Chen
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Linsong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China
| | - Yongming Sun
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China
| | - Lianhua Li
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, China,Nano Science and Technology Institute, University of Science and Technology of China, Suzhou, China,Guangzhou Institute of Energy Conversion, CAS Key Laboratory of Renewable Energy, Chinese Academy of Sciences, Guangzhou, China,Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, China,*Correspondence: Lianhua Li,
| |
Collapse
|
41
|
Yu C, Lu Q, Fu C, Jiang Z, Huang J, Jiang F, Wei Z. Exploring the internal driving mechanism underlying bacterial community-induced organic component conversion and humus formation during rice straw composting with tricarboxylic acid cycle regulator addition. BIORESOURCE TECHNOLOGY 2022; 365:128149. [PMID: 36265785 DOI: 10.1016/j.biortech.2022.128149] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The aim of this study was to investigate the effect of tricarboxylic acid (TCA) cycle regulators on CO2 emissions, the conversion of organic components and humus formation during composting. The addition of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide (NADH) reduced CO2 emissions during rice straw composting. According to co-occurrence networks results, ATP enhanced the connectivity and complexity of the network; NADH enhanced microbial interactions. The different kind of TCA cycle regulators had different effect on humus formation pathway. The structural equation model showed that ATP might promote lignin transformation into humus via the sugar-amine condensation pathway and lignin-protein pathway while NADH may promote cellulose degradation into soluble sugar and organic matter, which are transformed into humus. This work will provide valuable guidance for exploring the mechanism of TCA cycle regulators in promoting organic carbon fixation and reducing inorganic carbon mineralization.
Collapse
Affiliation(s)
- Chunjing Yu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Qian Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Chang Fu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Ziwei Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Jiayue Huang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Fangzhi Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Zimin Wei
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; College of Life Sciences, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
42
|
Huang Y, Xu Y, Zhu Y, Huang R, Kuang Y, Wang J, Xiao W, Lin J, Liu Z. Improved glucose yield and concentration of sugarcane bagasse by the pretreatment with ternary deep eutectic solvents and recovery of the pretreated liquid. BIORESOURCE TECHNOLOGY 2022; 366:128186. [PMID: 36307025 DOI: 10.1016/j.biortech.2022.128186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this study, a novel ternary deep eutectic solvents (DES) consisting of choline chloride/PEG/hydroxyethyl sulfonic acid (HSA) was developed to effectively improve glucose yield and concentration of sugarcane bagasse, and the conditions of the pretreatment were optimized by response surface method (RSM). Under the optimal conditions, the maximum glucose concentration (GC) could reach 12.39 g/L (HSA concentration 1.34 %, PEG400, 2.3 h, 150 °C), and the maximum glucose yield (GY) was 0.2497 g/g (HSA concentration 1.41 %, PEG400, 2.1 h, 150 °C). Hemicellulose was completely removed, and the maximum lignin removal rate was 86.89 %. After pretreatment, 95 % of the pretreated liquid can be recycled. Finally, the structural and morphological changes of bagasse before and after pretreatment were investigated by scanning electron microscopy (SEM), Fourier Transform infrared analyzer (FT-IR) and X-ray diffraction (XRD).
Collapse
Affiliation(s)
- Yanmin Huang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yuan Xu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yunlong Zhu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Run Huang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Yujie Kuang
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jue Wang
- Institute of Life Medicine, Hunan University, Changsha 410012, PR China
| | - Wenjuan Xiao
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Jianghai Lin
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China
| | - Zehuan Liu
- Research Center for Molecular Biology, Institutes of Life and Health Engineering, College of Life Science and Technology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
43
|
Xu C, Li J, Zhang X, Wang P, Deng B, Liu N, Yuan Q. Effects of segmented aerobic and anaerobic fermentation assisted with chemical treatment on comprehensive properties and composition of wheat straw. BIORESOURCE TECHNOLOGY 2022; 362:127772. [PMID: 35964920 DOI: 10.1016/j.biortech.2022.127772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/06/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Traditional aerobic composting used for straw treatment shows limited regulation effects and unstable properties, and it is necessary to introduce some co-processing methods to optimize its performance. Herein, segmented aerobic/anaerobic fermentation, combined with chemical treatment with wood vinegar/NaOH, was used to treat wheat straw. The results showed that anaerobic fermentation when used as the first stage could stabilize the wheat straw pH between 5.19 and 6.13 and improve nutrient contents. All treatments had greater effects on substrate aeration porosities (range of 14%) than on total porosity (range of 6%), and the water-holding porosities were improved to a greater extent by NaOH than by wood vinegar. The hemicellulose degradation rate of aerobic-anaerobic treatment was higher than that achieved with anaerobic-aerobic treatment, while the latter method was more effective at removing the neutral detergent-soluble as well as remaining organic matter, which was generated due to a higher KCl content in the ash.
Collapse
Affiliation(s)
- Chao Xu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China; Department of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, DK-1958 Frederiksberg C, Denmark
| | - Jun Li
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Xin Zhang
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Panpan Wang
- Key Laboratory of Recycling and Eco-treatment of Waste Biomass of Zhejiang Province, School of Environmental and Natural Resources, Zhejiang University of Science and Technology, Hangzhou 310023, Zhejiang, China
| | - Bo Deng
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Nian Liu
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiaoxia Yuan
- College of Engineering, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Agricultural Equipment in Mid-lower Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China; Technology & Equipment Center for Carbon Neutrality in Agriculture, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
44
|
Liu B, Liu L, Deng B, Huang C, Zhu J, Liang L, He X, Wei Y, Qin C, Liang C, Liu S, Yao S. Application and prospect of organic acid pretreatment in lignocellulosic biomass separation: A review. Int J Biol Macromol 2022; 222:1400-1413. [PMID: 36195224 DOI: 10.1016/j.ijbiomac.2022.09.270] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/20/2022] [Accepted: 09/28/2022] [Indexed: 11/28/2022]
Abstract
As a clean and efficient method of lignocellulosic biomass separation, organic acid pretreatment has attracted extensive research. Hemicellulose or lignin is selectively isolated and the cellulose structure is preserved. Effective fractionation of lignocellulosic biomass is achieved. The separation characteristics of hemicellulose or lignin by different organic acids were summarized. The organic acids of hemicellulose were separated into hydrogen ionized, autocatalytic and α-hydroxy acids according to the separation mechanism. The separation of lignin depends on the dissolution mechanism and spatial effect of organic acids. In addition, the challenges and prospects of organic acid pretreatment were analyzed. The separation of hemicellulose and enzymatic hydrolysis of cellulose were significantly affected by the polycondensation of lignin, which is effectively inhibited by the addition of green additives such as ketones or alcohols. Lignin separation was improved by developing a deep eutectic solvent treatment based on organic acid pretreatment. This work provides support for efficient cleaning of carbohydrate polymers and lignin to promote global carbon neutrality.
Collapse
Affiliation(s)
- Baojie Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Lu Liu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Baojuan Deng
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jiatian Zhu
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Linlin Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Xinliang He
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuxin Wei
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Chengrong Qin
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Shijie Liu
- Department of Paper and Bioprocess Engineering, SUNY College of Environmental Science and Forestry,1 Forestry Drive, Syracuse, NY 13210, United States
| | - Shuangquan Yao
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, School of Light Industrial and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
45
|
Combined Biological and Chemical/Physicochemical Pretreatment Methods of Lignocellulosic Biomass for Bioethanol and Biomethane Energy Production—A Review. Appl Microbiol 2022. [DOI: 10.3390/applmicrobiol2040055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Lignocellulosic biomass is a low-cost and environmentally-friendly resource that can be used to produce biofuels such as bioethanol and biogas, which are the leading candidates for the partial substitution of fossil fuels. However, the main challenge of using lignocellulosic materials for biofuel production is the low accessibility to cellulose for hydrolysis of enzymes and microorganisms, which can be overcome by pretreatment. Biological and chemical pretreatments have their own disadvantages, which could be reduced by combining the two methods. In this article, we review biological–chemical combined pretreatment strategies for biogas and bioethanol production. The synergy of fungal/enzyme–NaOH pretreatment is the only biological–chemical combination studied for biogas production and has proven to be effective. The use of enzyme, which is relatively expensive, has the advantage of hydrolysis efficiency compared to fungi. Nonetheless, there is vast scope for research and development of other chemical–biological combinations for biogas production. With respect to ethanol production, fungal–organosolv combination is widely studied and can achieve a maximum of 82% theoretical yield. Order of pretreatment is also important, as fungi may reduce the accessibility of cellulose made available by prior chemical strategies and suppress lignin degradation. The biofuel yield of similarly pretreated biomass can vary depending on the downstream process. Therefore, new strategies, such as bioaugmentation and genetically engineered strains, could help to further intensify biofuel yields.
Collapse
|
46
|
Kim SR, Eckert CA, Mazzoli R. Editorial: Microorganisms for Consolidated 2nd Generation Biorefining. Front Microbiol 2022; 13:940610. [PMID: 35783433 PMCID: PMC9248810 DOI: 10.3389/fmicb.2022.940610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 05/23/2022] [Indexed: 12/01/2022] Open
Affiliation(s)
- Soo Rin Kim
- School of Food Science and Biotechnology, Research Institute of Tailored Food Technology, Kyungpook National University, Daegu, South Korea
| | - Carrie A. Eckert
- Synthetic Biology Group, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
- *Correspondence: Roberto Mazzoli
| |
Collapse
|
47
|
The Fractionation of Corn Stalk Components by Hydrothermal Treatment Followed by Ultrasonic Ethanol Extraction. ENERGIES 2022. [DOI: 10.3390/en15072616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The fractionation of components of lignocellulosic biomass is important to be able to take advantage of biomass resources. The hydrothermal–ethanol method has significant advantages for fraction separation. The first step of hydrothermal treatment can separate hemicellulose efficiently, but hydrothermal treatment affects the efficiency of ethanol treatment to delignify lignin. In this study, the efficiency of lignin removal was improved by an ultrasonic-assisted second-step ethanol treatment. The effects of ultrasonic time, ultrasonic temperature, and ultrasonic power on the ultrasonic ethanol treatment of hydrothermal straw were investigated. The separated lignin was characterized by solid product composition analysis, FT-IR, and XRD. The hydrolysate was characterized by GC-MS to investigate the advantage on the products obtained by ethanol treatment. The results showed that an appropriate sonication time (15 min) could improve the delignification efficiency. A proper sonication temperature (180 °C) can improve the lignin removal efficiency with a better retention of cellulose. However, a high sonication power 70% (840 W) favored the retention of cellulose and lignin removal.
Collapse
|