1
|
Zhang J, Chen X, Zhan Q, Wang Y, Meng K, Hu Q, Zhao L. Studying on the structure-activity relationship of Flammulina velutipes polysaccharides via ultrasonic degradation: Insights into molecular weight, chain conformation, and anti-inflammatory activity. Int J Biol Macromol 2025; 302:140480. [PMID: 39889991 DOI: 10.1016/j.ijbiomac.2025.140480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/09/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025]
Abstract
Flammulina velutipes (F. velutipes) polysaccharides have been shown to play a crucial role in preventing inflammatory diseases. However, further exploration is needed to understand the specific relationship between their structure and anti-inflammatory activity. In this study, four structurally distinct F. velutipes polysaccharides (FVP2, FVP2U1, FVP2U2, and FVP2U3) were isolated via a previously established ultrasonic degradation model, and the exploration on the impact of chain conformation on their anti-inflammatory activities was focused. The results indicated that FVP2 exhibited a spherical conformation, while FVP2U1 and FVP2U2 displayed flexible chains, and FVP2U3 showed a semi-rigid chain. The study on the impact of four kinds of F. velutipes polysaccharides on inflammatory response in LPS-stimulated RAW264.7 cells revealed that ultrasonic degradation enhanced the anti-inflammatory activity of FVP2. The primary anti-inflammatory mechanism involved the inhibition of NO, TNF-α, IL-1β, and IL-6 release, and reduced transcriptional levels of TLR4, MyD88, NF-κB, and NLRP3. Among the ultrasonically degraded polysaccharides with compliant chain conformations and lower molecular weight demonstrated superior anti-inflammatory activity. These results provide insights into the relationship between molecular weight, chain conformation, and anti-inflammatory activity of F. velutipes polysaccharides, contributing to the potential application of ultrasound in developing highly active anti-inflammatory polysaccharides and related nutritional products.
Collapse
Affiliation(s)
- Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xin Chen
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Keke Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Qiuhui Hu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China; College of Food Science and Engineering, Nanjing University of Finance and Economics, Nanjing, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
2
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
3
|
Hu X, Ma W, Zhang D, Tian Z, Yang Y, Huang Y, Hong Y. Application of Natural Antioxidants as Feed Additives in Aquaculture: A Review. BIOLOGY 2025; 14:87. [PMID: 39857317 PMCID: PMC11762552 DOI: 10.3390/biology14010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/07/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Oxidative stress, a critical factor affecting the health and productivity of aquatic organisms, arises from the imbalance between reactive oxygen species (ROS) production and antioxidant defenses. In aquaculture, natural antioxidants have gained increasing attention as sustainable feed additives to mitigate oxidative damage, enhance immune responses, and improve overall growth performance. This review provides a comprehensive synthesis of the antioxidative mechanisms of key natural antioxidants, including carotenoids, polysaccharides, vitamins, polyphenols, and flavonoids. By neutralizing ROS and modulating cellular signaling pathways such as Nrf2/ARE, these compounds offer significant protective effects against oxidative damage in aquatic species. The manuscript consolidates recent advancements in antioxidant research, highlighting their practical applications in feed formulation and their role in promoting sustainability in aquaculture. This review aims to provide an integrative framework for understanding natural antioxidants' potential, guiding future research and practical implementation in aquaculture systems.
Collapse
Affiliation(s)
- Xiaodan Hu
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Wenjing Ma
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Disen Zhang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Zikun Tian
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Yuanqiang Yang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Yi Huang
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
| | - Yuhang Hong
- Key Laboratory of Application of Ecology and Environmental Protection in Plateau Wetland of Sichuan, Xichang University, Xichang 415000, China
- Key Laboratory of Animal Disease Detection and Prevention in Panxi District, Xichang University, Xichang 415000, China
| |
Collapse
|
4
|
Zhan Q, Yang M, Zhao X, Liu F, Zhao L. Structural Characterization and Hypoglycemic Activity of a Glycoprotein Extracted from Auricularia Auricula. Foods 2024; 13:3859. [PMID: 39682931 DOI: 10.3390/foods13233859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Glycoproteins are special proteins and important nutrients for hypoglycemic activity. However, the structure of Auricularia Auricula glycoprotein (AAG) and the stability of its hypoglycemic activity during simulated digestion (including saliva, gastral and intestine digestion) in vitro are still unknown. In this study, AAG-3 was isolated from Auricularia Auricula. SDS-PAGE, UV spectrum, FTIR, amino acid composition, dichroic spectrum and SEM were used to characterize its structure. The hypoglycemic activity of AAG-3 during in vitro digestion was investigated via inhibition of α-amylase and α-glucosidase activities, as well as glucose consumption, glycogen content and related enzyme activity in insulin-resistant HepG2 cells. Structural characterization showed that AAG-3 with a Mw of 18.21 kDa had an O-type glycopeptide bond and typical functional groups of glycoproteins. AAG-3 contained 18 kinds of amino acid and many α-helixes and β-turns, and its microstructure was sheet-like. With the simulated digestion of AAG-3 in vitro, the inhibition of α-amylase and α-glucosidase activity as well as the glucose consumption, glycogen content and HK and PK enzyme activities in insulin-resistant HepG2 cells were significantly increased. Therefore, AAG-3 has a potential role in reducing blood glucose levels and improving insulin resistance and can be used as a potential micronutritional supplement for diabetic patients.
Collapse
Affiliation(s)
- Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengdie Yang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinqi Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Feifei Liu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
5
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
6
|
Han D, Yang L, Liang Q, Sun H, Sun Y, Yan G, Zhang X, Han Y, Wang X, Wang X. Natural resourced polysaccharides: Preparation, purification, structural elucidation, structure-activity relationships and regulating intestinal flora, a system review. Int J Biol Macromol 2024; 280:135956. [PMID: 39317289 DOI: 10.1016/j.ijbiomac.2024.135956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 09/21/2024] [Indexed: 09/26/2024]
Abstract
Natural resourced polysaccharides (NRPs), as metabolites synthesized during activity of organisms, widely present in animal cell membranes or plant and microbial cell walls. NRPs have garnered extensive attention in the fields of medicine, foods, and farming owing to their distinct bioactivities and structural diversity. Despite the burgeoning growth in NRPs research, the available literature focuses primarily on a review of specific polysaccharides, necessitating an urgent need for a comprehensive summary of NRPs to offer readers a whole landscape of current advancements in NRPs research. Based on this, this article comprehensively reviews the latest research progress regarding preparation, purification, structure elucidation, structure-activity relationships and regulation of intestinal flora of NRPs in electronic databases, such as PubMed, Wiley, ScienceDirect and Web of Science from last 5 years. This review analyzes the effects of various extraction techniques on NRPs and also delves into the intrinsic correlation between the biological activity and structure of NRPs, highlighting that chemical modification can enhance their structural diversity and confer novel or improved biological functions. Moreover, this article extensively explores the application of NRP in promoting intestinal microecology balance, underscoring its significant potential as a probiotic initiator. This review lays a solid theoretical foundation for the future research and development of NRPs.
Collapse
Affiliation(s)
- Di Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Le Yang
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Qichao Liang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Hui Sun
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China.
| | - Ye Sun
- State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China
| | - Guangli Yan
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiwu Zhang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Ying Han
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China
| | - Xiaoyu Wang
- Technology Innovation Center of Wusulijiang Ciwujia, Revolution Street, Hulin 154300, China
| | - Xijun Wang
- State key laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, National Chinmedomics Research Center, National TCM Key Laboratory of Serum Pharmacochemistry, Metabolomics Laboratory, Department of Pharmaceutical Analysis, Heilongjiang University of Chinese Medicine, Heping Road 24, Harbin 150040, China; State Key Laboratory of Dampness Syndrome, The Second Affiliated Hospital Guangzhou University of Chinese Medicine, Dade Road 111, Guangzhou, China.
| |
Collapse
|
7
|
Chen H, Bai Z, Tao S, Li M, Jian L, Zhang Y, Yang X. Optimization of enzyme-assisted microwave extraction, structural characterization, antioxidant activity and in vitro protective effect against H 2O 2-induced damage in HepG2 cells of polysaccharides from roots of Rubus crataegifolius Bunge. Int J Biol Macromol 2024; 276:133969. [PMID: 39029849 DOI: 10.1016/j.ijbiomac.2024.133969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/27/2024] [Accepted: 07/16/2024] [Indexed: 07/21/2024]
Abstract
In this study, an enzyme-assisted microwave extraction process was obtained by response surface method of polysaccharide from roots of Rubus crataegifolius Bunge. The optimized extraction process was as follow: enzyme dosage 2 %, enzymatic time was 3.6 h, enzymatic pH 4.9, and microwave time 4.7 min, with the extraction yield of 9.07 %. Four homogeneous polysaccharides (RCP-1, RCP-3, RCP-4 and RCP-5) were purified through column chromatography. Four polysaccharides have the relative higher molecular weights of 1.70 × 106 Da, 5.56 × 106 Da, 4.97 × 106 Da, and 9.80 × 106 Da and mainly consisted of GluN, GluA, Glu, Gal and Arab. FT-IR and NMR spectral analysis confirmed that the purified polysaccharides were polypyranose containing α- and β-glycosidic bonds. RCP - 1 has a relative high crystallinity. Four purified polysaccharides contained triple helical conformations, and have good antioxidant activities. Among the purified polysaccharides, RCP - 1 was found to reduce the oxidative cell damage induced by H2O2 through increasing of cell viability, inhibition of AST and ALT levels, ROS production and cell apoptosis, increasing of the activities of antioxidative enzymes, as well as reduction of MDA content. Our findings would provide a foundation for purified polysaccharides efficient extraction and demonstrated that the polysaccharides from R. crataegifolius roots could be a promising hepatoprotective agent.
Collapse
Affiliation(s)
- Huiling Chen
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Zifan Bai
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Shuo Tao
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Muchun Li
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Liqiao Jian
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China
| | - Yan Zhang
- College of Medical, Jiaxing University, Jiaxing 314001, PR China.
| | - Xiudong Yang
- School of Chemistry and Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin City 132022, PR China.
| |
Collapse
|
8
|
Zhang Y, Lin X, Xia L, Xiong S, Xia B, Xie J, Lin Y, Lin L, Wu P. Progress on the Anti-Inflammatory Activity and Structure-Efficacy Relationship of Polysaccharides from Medical and Edible Homologous Traditional Chinese Medicines. Molecules 2024; 29:3852. [PMID: 39202931 PMCID: PMC11356930 DOI: 10.3390/molecules29163852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 09/03/2024] Open
Abstract
Medicinal food varieties developed according to the theory of medical and edible homologues are effective at preventing and treating chronic diseases and in health care. As of 2022, 110 types of traditional Chinese medicines from the same source of medicine and food have been published by the National Health Commission. Inflammation is the immune system's first response to injury, infection, and stress. Chronic inflammation is closely related to many diseases such as atherosclerosis and cancer. Therefore, timely intervention for inflammation is the mainstay treatment for other complex diseases. However, some traditional anti-inflammatory drugs on the market are commonly associated with a number of adverse effects, which seriously affect the health and safety of patients. Therefore, the in-depth development of new safe, harmless, and effective anti-inflammatory drugs has become a hot topic of research and an urgent clinical need. Polysaccharides, one of the main active ingredients of medical and edible homologous traditional Chinese medicines (MEHTCMs), have been confirmed by a large number of studies to exert anti-inflammatory effects through multiple targets and are considered potential natural anti-inflammatory drugs. In addition, the structure of medical and edible homologous traditional Chinese medicines' polysaccharides (MEHTCMPs) may be the key factor determining their anti-inflammatory activity, which makes the underlying the anti-inflammatory effects of polysaccharides and their structure-efficacy relationship hot topics of domestic and international research. However, due to the limitations of the current analytical techniques and tools, the structures have not been fully elucidated and the structure-efficacy relationship is relatively ambiguous, which are some of the difficulties in the process of developing and utilizing MEHTCMPs as novel anti-inflammatory drugs in the future. For this reason, this paper summarizes the potential anti-inflammatory mechanisms of MEHTCMPs, such as the regulation of the Toll-like receptor-related signaling pathway, MAPK signaling pathway, JAK-STAT signaling pathway, NLRP3 signaling pathway, PI3K-AKT signaling pathway, PPAR-γ signaling pathway, Nrf2-HO-1 signaling pathway, and the regulation of intestinal flora, and it systematically analyzes and evaluates the relationships between the anti-inflammatory activity of MEHTCMPs and their structures.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Xiulian Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Li Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Suhui Xiong
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Bohou Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Jingchen Xie
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Yan Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Limei Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| | - Ping Wu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, China; (Y.Z.); (X.L.); (L.X.); (S.X.); (B.X.); (J.X.); (Y.L.)
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha 410208, China
| |
Collapse
|
9
|
Lei Z, Shi Y, Zou J, Zhang X, Xin B, Guo D, Sun J, Luan F. A review of the polysaccharides against fatigue and the underlying mechanism. Int J Biol Macromol 2024; 275:133601. [PMID: 38969031 DOI: 10.1016/j.ijbiomac.2024.133601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/22/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
Fatigue is a common physiological state that affects normal human activities. Prolonged fatigue induces a variety of diseases and seriously affects human health, so it is imperative to discover nutritional dietary supplements and treatments without side effects, among which natural anti-fatigue polysaccharides have shown great potential. Polysaccharides, a class of biomolecules produced by a variety of organisms such as plants, animals, bacteria and algae, have attracted much attention in recent years due to their anti-fatigue activity and fewer side effects. This review summarizes the classification, dosage and experimental models of polysaccharides with anti-fatigue activity obtained from different natural sources. We also review the fatigue-relieving effects of these polysaccharides through mechanisms such as modulating oxidative damage, regulating energy metabolism and influencing intestinal flora, as well as the effects of molecular weights, monosaccharide compositions, structural features and chemical modifications of the polysaccharides on their anti-fatigue activities to support their potential application value in functional foods and pharmaceuticals. New valuable insights for future research on natural polysaccharides are also presented in the field of natural production of bio-based functional materials, functional foods and therapeutic agents.
Collapse
Affiliation(s)
- Ziwen Lei
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Yajun Shi
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Junbo Zou
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Xiaofei Zhang
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Bao Xin
- School of Public Health, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Dongyan Guo
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Jing Sun
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China
| | - Fei Luan
- Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, School of Pharmacy, Shaanxi University of Chinese Medicine, Xi'an 712046, Shaanxi, PR China.
| |
Collapse
|
10
|
Wang Y, Ji Y, Meng K, Zhang J, Zhong L, Zhan Q, Zhao L. Effects of different selenium biofortification methods on Pleurotus eryngii polysaccharides: Structural characteristics, antioxidant activity and binding capacity in vitro. Int J Biol Macromol 2024; 275:133214. [PMID: 38897526 DOI: 10.1016/j.ijbiomac.2024.133214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/28/2024] [Accepted: 06/15/2024] [Indexed: 06/21/2024]
Abstract
The effects of selenium biofortification methods involving sodium selenite and selenium yeast on the structural characteristics, antioxidant activity and binding capacity of Pleurotus eryngii polysaccharides were investigated. Sodium selenite Se-enriched Pleurotus eryngii polysaccharides (Se-SPEP), selenium yeast Se-enriched Pleurotus eryngii polysaccharides (Se-YPEP), and Pleurotus eryngii polysaccharides (PEP) had Se contents of 20.548 ± 1.561, 19.822 ± 0.613, and 0.052 ± 0.016 μg/g, respectively. Compared with PEP, Se-SPEP and Se-YPEP had lower molecular weight and contained the same monosaccharides in varying molar ratios. The results of FT-IR, PS, ZP, and SEM indicated significant alterations in structural characteristics following selenium biofortification. Se-PEPs exhibited superior activity against ABTS, DPPH, and ·OH radicals, as well as the higher binding capacity for Cd2+ and Cu2+ compared to natural polysaccharides. The binding capacity of the polysaccharides for Cd2+ and Cu2+ was higher at pH 6.8 compared to pH 2.0, while the opposite was observed for Pb2+. Furthermore, Se-PEPs exhibited a significantly higher binding capacity for Cd2+ and Cu2+ at both pH levels compared to natural polysaccharides (P < 0.05). Se-YPEP displayed higher antioxidant activity than Se-SPEP, with their binding capacities reversed. These data indicated that selenium biofortification methods have different positive impacts on the structure and activity of polysaccharides compared to natural polysaccharides, making Se-PEPs promising dietary supplements for safeguarding the body against the risks posed by food-derived heavy metals.
Collapse
Affiliation(s)
- Yifan Wang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Ji
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Keke Meng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingsi Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Zhong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiping Zhan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Zhao
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
11
|
Guo Q, Zhang M, Mujumdar AS. Progress of plant-derived non-starch polysaccharides and their challenges and applications in future foods. Compr Rev Food Sci Food Saf 2024; 23:e13361. [PMID: 39031723 DOI: 10.1111/1541-4337.13361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 07/22/2024]
Abstract
The development of future food is devoted not only to obtaining a sustainable food supply but also to providing high-quality foods for humans. Plant-derived non-starch polysaccharides (PNPs) are widely available, biocompatible, and nontoxic and have been largely applied to the food industry owing to their mechanical properties and biological activities. PNPs are considered excellent biomaterials and food ingredients contributing to future food development. However, a comprehensive review of the potential applications of PNPs in future food has not been reported. This review summarized the physicochemical and biological activities of PNPs and then discussed the structure-activity relationships of PNPs. Latest studies of PNPs on future foods including cell-cultured meat, food for special medical purposes (FSMPs), and three-dimensional-printed foods were reviewed. The challenges and prospects of PNPs applied to future food were critically proposed. PNPs with strong thermal stability are considered good thickeners, emulsifiers, and gelatinizers that greatly improve the processing adaptability of foods. The mechanical properties of PNPs and decellularized plant-based PNPs make them desirable scaffolds for cultured meat manufacturing. In addition, the biological activities of PNPs exhibit multiple health-promoting effects; therefore, PNPs can act as food ingredients producing FSMP to promote human health. Three-dimensional printing technology enhances food structures and biological activities of functional foods, which is in favor of expanding the application scopes of PNPs in future food. PNPs are promising in future food manufacturing, and more efforts need to be made to realize their commercial applications.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- Jiangsu Province International Joint Laboratory on Fresh Food Smart Processing and Quality Monitoring, Jiangnan University, Wuxi, China
| | - Min Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- China General Chamber of Commerce Key Laboratory on Fresh Food Processing & Preservation, Jiangnan University, Wuxi, China
| | - Arun S Mujumdar
- Department of Bioresource Engineering, Macdonald Campus, McGill University, Quebec, Canada
| |
Collapse
|
12
|
Chen Q, Zhang M, Liu Y, Liu W, Peng C, Zheng L. Sulfated Polysaccharides with Anticoagulant Potential: A Review Focusing on Structure-Activity Relationship and Action Mechanism. Chem Biodivers 2024; 21:e202400152. [PMID: 38600639 DOI: 10.1002/cbdv.202400152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/12/2024]
Abstract
Thromboembolism is the culprit of cardiovascular diseases, leading to the highest global mortality rate. Anticoagulation emerges as the primary approach for managing thrombotic conditions. Notably, sulfated polysaccharides exhibit favorable anticoagulant efficacy with reduced side effects. This review focuses on the structure-anticoagulant activity relationship of sulfated polysaccharides and the underlying action mechanisms. It is concluded that chlorosulfonicacid-pyridine method serves as the preferred technique to synthesize sulfated polysaccharides. The anticoagulant activity of sulfated polysaccharides is linked to the substitution site of sulfate groups, degree of substitution, molecular weight, main side chain structure, and glycosidic bond conformation. Moreover, sulfated polysaccharides exert anticoagulant activity via various pathways, including the inhibition of blood coagulation factors, activation of antithrombin III and heparin cofactor II, antiplatelet aggregation, and promotion of the fibrinolytic system.
Collapse
Affiliation(s)
- Qianfeng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Mengjiao Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, Jiangsu, 225000, China
| | - Yue Liu
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang, 315000, China
| | - Wei Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Cheng Peng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| | - Lixue Zheng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, Jiangsu, 215500, China
| |
Collapse
|
13
|
Wang W, Zhao B, Zhang Z, Kikuchi T, Li W, Jantrawut P, Feng F, Liu F, Zhang J. Natural polysaccharides and their derivatives targeting the tumor microenvironment: A review. Int J Biol Macromol 2024; 268:131789. [PMID: 38677708 DOI: 10.1016/j.ijbiomac.2024.131789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
Polysaccharides have gained attention as valuable supplements and natural medicinal resources, particularly for their anti-tumor properties. Their low toxicity and potent anti-tumor effects make them promising candidates for cancer prevention and treatment. The tumor microenvironment is crucial in tumor development and offers potential avenues for novel cancer therapies. Research indicates that polysaccharides can positively influence the tumor microenvironment. However, the structural complexity of most anti-tumor polysaccharides, often heteropolysaccharides, poses challenges for structural analysis. To enhance their pharmacological activity, researchers have modified the structure and properties of natural polysaccharides based on structure-activity relationships, and they have discovered that many polysaccharides exhibit significantly enhanced anti-tumor activity after chemical modification. This article reviews recent strategies for targeting the tumor microenvironment with polysaccharides and briefly discusses the structure-activity relationships of anti-tumor polysaccharides. It also summarises the main chemical modification methods of polysaccharides and discusses the impact of chemical modifications on the anti-tumor activity of polysaccharides. The review aims to lay a theoretical foundation for the development of anti-tumor polysaccharides and their derivatives.
Collapse
Affiliation(s)
- Wenli Wang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Bin Zhao
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - Zhongtao Zhang
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China
| | - Takashi Kikuchi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| | - Wei Li
- Faculty of Pharmaceutical Sciences, Toho University, Miyama 2-2-1, Funabashi, Chiba 274-8510, Japan
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Feng Feng
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China
| | - FuLei Liu
- Tumor Precise Intervention and Translational Medicine Laboratory, The Affiliated Taian City Central Hospital of Qingdao University, Taian 271000, China; Shandong Provincial Key Medical and Health Laboratory of Anti-drug Resistant Drug Research, Taian City Central Hospital, Taian 271000, China.
| | - Jie Zhang
- School of Traditional Chinese Pharmacy, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
14
|
Wang M, Tang HP, Bai QX, Yu AQ, Wang S, Wu LH, Fu L, Wang ZB, Kuang HX. Extraction, purification, structural characteristics, biological activities, and applications of polysaccharides from the genus Lilium: A review. Int J Biol Macromol 2024; 267:131499. [PMID: 38614164 DOI: 10.1016/j.ijbiomac.2024.131499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/07/2024] [Accepted: 04/08/2024] [Indexed: 04/15/2024]
Abstract
The genus Lilium (Lilium) has been widely used in East Asia for over 2000 years due to its rich nutritional and medicinal value, serving as both food and medicinal ingredient. Polysaccharides, as one of the most important bioactive components in Lilium, offer various health benefits. Recently, polysaccharides from Lilium plants have garnered significant attention from researchers due to their diverse biological properties including immunomodulatory, anti-oxidant, anti-diabetic, anti-tumor, anti-bacterial, anti-aging and anti-radiation effects. However, the limited comprehensive understanding of polysaccharides from Lilium plants has hindered their development and utilization. This review focuses on the extraction, purification, structural characteristics, biological activities, structure-activity relationships, applications, and relevant bibliometrics of polysaccharides from Lilium plants. Additionally, it delves into the potential development and future research directions. The aim of this article is to provide a comprehensive understanding of polysaccharides from Lilium plants and to serve as a basis for further research and development as therapeutic agents and multifunctional biomaterials.
Collapse
Affiliation(s)
- Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Peng Tang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Qian-Xiang Bai
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Ai-Qi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Shuang Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Li-Hong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lei Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhi-Bin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Hai-Xue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
15
|
Lu X, Dai Y, Yang S, Fu T, He Y, Zeng F, Chen T, Cao Y, Li R, Li J, Zhou W. Purification and characterization of a glycoprotein from Sipunculus nudus and its immune-enhancing activity to RAW 264.7 macrophages. Food Res Int 2023; 174:113591. [PMID: 37986528 DOI: 10.1016/j.foodres.2023.113591] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Sipunculus nudus, an edible marine invertebrate, has long been used as traditional Chinese medicine in folk remedies. In order to assess the immunoregulatory activity of glycoproteins in Sipunculus nudus and conduct a structure-activity relationship, a glycoprotein (SGP1) with molecular mass of 9.26 kDa was purified from Sipunculus nudus, and its chemical structure as well as immune-enhancing activity was investigated in this study. Structure analysis revealed that SGP1, a protein-dominate glycoprotein with O-glycosidic bonds, contained 92.8 % protein and 3.1 % saccharide. GC-MS result indicated that the saccharide moieties of SGP1 basically consisted of lyxose (Lyx), xylose (Xyl) as well as glucose (Glu) at a molar proportion of 0.87:4.16:1.36. The fourier transform infrared specoscopy (FT-IR) result proved that SGP1 have a typical characteristic of glycoprotein. Besides, circular dichroism (CD) result showed that SGP1 contained 4.1 % α-helix, 42.5 % β-sheet, 21.4 % β-turn, and 32.0 % random coil, indicating it's mainly a β-sheet glycoprotein. The amino acid sequence of SGP1 shared a similarity to the Myohemerythrin (sp|Q5K473|HEMTM) with protein sequence coverage of 28.3 %. Moreover, the activity evaluation results showed that SGP1 exhibited significant immune-enhancing activity to the RAW 264.7 macrophages by promoting macrophages proliferation, enhancing phagocytic capacity, and simultaneously stimulating the secretions of nitric oxide (NO), interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) via NF-κB pathways. In this study, SGP1 as a novel glycoprotein had an obvious immune-enhancing activity to macrophages, and thus could be applied in the functional foods as a potential immunopotentiator for the hypoimmune population.
Collapse
Affiliation(s)
- Xuli Lu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yaping Dai
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Shengtao Yang
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Tengfei Fu
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yunxia He
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Fanke Zeng
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Tinghui Chen
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Yupo Cao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| | - Ruyi Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Jihua Li
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China
| | - Wei Zhou
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, Guangdong, China.
| |
Collapse
|
16
|
Cheng K, Sun Y, Liu B, Ming J, Wang L, Xu C, Xiao Y, Zhang C, Shang L. Selenium Modification of Natural Products and Its Research Progress. Foods 2023; 12:3773. [PMID: 37893666 PMCID: PMC10606687 DOI: 10.3390/foods12203773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The selenization of natural products refers to the chemical modification method of artificially introducing selenium atoms into natural products to interact with the functional groups in the target molecule to form selenides. Nowadays, even though scientists in fields involving organic selenium compounds have achieved numerous results due to their continuous investment, few comprehensive and systematic summaries relating to their research results can be found. The present paper summarizes the selenization modification methods of several kinds of important natural products, such as polysaccharides, proteins/polypeptides, polyphenols, lipids, and cyclic compounds, as well as the basic principles or mechanisms of the selenizing methods. On this basis, this paper explored the future development trend of the research field relating to selenized natural products, and it is hoped to provide some suggestions for directional selenization modification and the application of natural active ingredients.
Collapse
Affiliation(s)
- Kaixuan Cheng
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yang Sun
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Bowen Liu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Jiajia Ming
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| | - Lulu Wang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chenfeng Xu
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Yuanyuan Xiao
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Chi Zhang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
| | - Longchen Shang
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China; (K.C.); (Y.S.); (B.L.); (L.W.); (C.X.); (Y.X.); (C.Z.)
- Enshi Tujia and Miao Autonomous Prefecture Academy of Agricultural Sciences, Enshi 445000, China;
| |
Collapse
|
17
|
Liu T, Ren Q, Wang S, Gao J, Shen C, Zhang S, Wang Y, Guan F. Chemical Modification of Polysaccharides: A Review of Synthetic Approaches, Biological Activity and the Structure-Activity Relationship. Molecules 2023; 28:6073. [PMID: 37630326 PMCID: PMC10457902 DOI: 10.3390/molecules28166073] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/11/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
Natural polysaccharides are macromolecular substances with great potential owing to their wide biological activity and low toxicity. However, not all polysaccharides have significant pharmacodynamic activity; hence, appropriate chemical modification methods can be selected according to the unique structural characteristics of polysaccharides to assist in enhancing and promoting the presentation of their biological activities. This review summarizes research progress on modified polysaccharides, including common chemical modification methods, the change in biological activity following modification, and the factors affecting the biological activity of chemically modified polysaccharides. At the same time, the difficulties and challenges associated with the structural modification of natural polysaccharides are also outlined in this review. Thus, research on polysaccharide structure modification is critical for improving the development and utilization of sugar products.
Collapse
Affiliation(s)
- Tianbo Liu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Qianqian Ren
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Jianing Gao
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; (T.L.); (Q.R.); (S.W.); (J.G.); (C.S.); (S.Z.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China
| |
Collapse
|
18
|
Chemical Modification, Characterization, and Activity Changes of Land Plant Polysaccharides: A Review. Polymers (Basel) 2022; 14:polym14194161. [PMID: 36236108 PMCID: PMC9570684 DOI: 10.3390/polym14194161] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/25/2022] [Accepted: 09/26/2022] [Indexed: 12/03/2022] Open
Abstract
Plant polysaccharides are widely found in nature and have a variety of biological activities, including immunomodulatory, antioxidative, and antitumoral. Due to their low toxicity and easy absorption, they are widely used in the health food and pharmaceutical industries. However, low activity hinders the wide application. Chemical modification is an important method to improve plant polysaccharides' physical and chemical properties. Through chemical modification, the antioxidant and immunomodulatory abilities of polysaccharides were significantly improved. Some polysaccharides with poor water solubility also significantly improved their water solubility after modification. Chemical modification of plant polysaccharides has become an important research direction. Research on the modification of plant polysaccharides is currently increasing, but a review of the various modification studies is absent. This paper reviews the research progress of chemical modification (sulfation, phosphorylation, acetylation, selenization, and carboxymethylation modification) of land plant polysaccharides (excluding marine plant polysaccharides and fungi plant polysaccharides) during the period of January 2012-June 2022, including the preparation, characterization, and biological activity of modified polysaccharides. This study will provide a basis for the deep application of land plant polysaccharides in food, nutraceuticals, and pharmaceuticals.
Collapse
|
19
|
Chen R, Xu J, Wu W, Wen Y, Lu S, El-Seedi HR, Zhao C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr Res Food Sci 2022; 5:1330-1341. [PMID: 36082139 PMCID: PMC9445227 DOI: 10.1016/j.crfs.2022.08.016] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/11/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022] Open
Abstract
Polysaccharides are usually composed of more than ten monosaccharide units, which are connected by linear or branched glycosidic bonds. The immunomodulatory effect of natural polysaccharides is one of the most important bioactive function. In this review, molecular weight, monosaccharide (including galactose, mannose, rhamnogalacturonan-I arabinogalactan and uronic acid), functional groups (namely sulfate, selenium, and acetyl groups), types of glycoside bond connection (including β-1,3-D-glucosyl, α-1,4-D-glucosyl, β-1,4-D-glucosyl, α-1,6-D-glucosyl, β-1,4-D-mannosyl, and β-1,4-D-Xylopyranosyl), conformation and the branching degrees are systematically identified as their contribution to the immunostimulatory activity of polysaccharides. At present, studies on the structure-activity relationships of polysaccharides are limited due to their low purity and high heterogeneity. However, it is an important step in providing useful guidance for dietary supplements with polysaccharides. The chemical structures and the process of immune responses induced are necessary to be discussed. Polysaccharides may bind with the cell surface receptors to modulate immune responses. This review mainly discusses the structure-activity relationship of dietary polysaccharides. Structure - activity relationships of polysaccharides with immune-enhancing effect are proposed. Polysaccharides with the higher molecular weight are helpful to improve immunity. Higer galactose, mannose, rhamnogalacturonan-I, arabinogalacta,n and uronic acid contents have immunoregulation.
Collapse
Affiliation(s)
- Ruoxin Chen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Jingxiang Xu
- School of Basic Medicine, Gannan Medical University, Ganzhou, 341000, China
| | - Weihao Wu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yuxi Wen
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Suyue Lu
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hesham R. El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, Uppsala University, Biomedical Centre, Box 574, 751 23, Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, 212013, China
- International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu Education Department, Jiangsu University, Zhenjiang, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Corresponding author.No.15 Shangxiadian Rd, Fuzhou, 350002, China
| |
Collapse
|