1
|
Cao J, Tao C, Qin X, Wu K, Yang H, Liu C, Cheng T. PI3K-Akt-SGF1-Dimm pathway mediates the nutritional regulation of silk protein synthesis in Bombyx mori. Int J Biol Macromol 2024; 278:134650. [PMID: 39128739 DOI: 10.1016/j.ijbiomac.2024.134650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/04/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The efficient synthesis of silk protein is heavily reliant on the ingestion of massive nutrients during the peak growth phase in the silkworm. However, the molecular mechanism of nutritional regulation of silk protein synthesis remains unknown. In this study, we investigated the impact of nutrient deficiency on the synthesis of silk protein. Nutritional deficiency led to a reduction in silk yield, accompanied by decreased levels of silk proteins and fibroin heavy chain (FibH)-activating transcription factors SGF1 and Dimm. Furthermore, insulin enhanced the protein levels of SGF1 and Dimm, which can be attenuated by specific inhibitors of PI3K. Co-immunoprecipitation analysis showed that the nutrient pathway factor protein kinase B (Akt) could interact with SGF1 protein. Knockdown of Akt reduced the phosphorylation level of SGF1 and impedes its nuclear translocation. Further studies revealed that SGF1 was directly bound to Fkh site in the 22-43 region upstream of ATG of Dimm gene to activate its transcription. In conclusion, during the peak growth phase, nutrition promotes the massive synthesis of silk protein through the PI3K-Akt-SGF1-Dimm pathway. This study offers valuable insights into the efficient synthesis of silk proteins and establishes a theoretical foundation for improving silk yield.
Collapse
Affiliation(s)
- Jun Cao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Cuicui Tao
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Xiaodan Qin
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Keli Wu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Hongguo Yang
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China
| | - Chun Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| | - Tingcai Cheng
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China.
| |
Collapse
|
2
|
Pan M, Jiang K, Jin Y, Mao Y, Lu W, Jiang W, Chen W. Study on the Structure and Properties of Silk Fibers Obtained from Factory All-Age Artificial Diets. Int J Mol Sci 2024; 25:6129. [PMID: 38892315 PMCID: PMC11172905 DOI: 10.3390/ijms25116129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/24/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
The traditional production mode of the sericulture industry is no longer suitable for the development requirements of modern agriculture; to facilitate the sustainable development of the sericulture industry, factory all-age artificial diet feeding came into being. Understanding the structural characteristics and properties of silk fibers obtained from factory all-age artificial diet feeding is an important prerequisite for application in the fields of textiles, clothing, biomedicine, and others. However, there have been no reports so far. In this paper, by feeding silkworms with factory all-age artificial diets (AD group) and mulberry leaves (ML group), silk fibers were obtained via two different feeding methods. The structure, mechanical properties, hygroscopic properties, and degradation properties were studied by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Structurally, no new functional groups appeared in the AD group. Compared with the ML group, the structure of the two groups was similar, and there was no significant difference in mechanical properties and moisture absorption. The structure of degummed silk fibers is dominated by crystalline regions, but α-chymotrypsin hydrolyzes the amorphous regions of silk proteins, so that after 28 d of degradation, the weight loss of both is very small. This provides further justification for the feasibility of factory all-age artificial diets for silkworms.
Collapse
Affiliation(s)
- Mengyao Pan
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Kexin Jiang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Yuwei Jin
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
| | - Ying Mao
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Wangyang Lu
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| | - Wenbin Jiang
- College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China; (M.P.); (K.J.); (Y.J.); (W.L.)
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China;
- Zhejiang Provincial Innovation Center of Advanced Textile Technology, Shaoxing 312000, China
| |
Collapse
|
3
|
Zeng Z, Tong X, Yang Y, Zhang Y, Deng S, Zhang G, Dai F. Pediococcus pentosaceus ZZ61 enhances growth performance and pathogenic resistance of silkworm Bombyx mori by regulating gut microbiota and metabolites. BIORESOURCE TECHNOLOGY 2024; 402:130821. [PMID: 38735341 DOI: 10.1016/j.biortech.2024.130821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/14/2024]
Abstract
Probiotics have attracted considerable attention in animal husbandry due to their positive effect on animal growth and health. This study aimed to screen candidate probiotic strain promoting the growth and health of silkworm and reveal the potential mechanisms. A novel probiotic Pediococcus pentosaceus strain (ZZ61) substantially promoted body weight gain, feed efficiency, and silk yield. These effects were likely mediated by changes in the intestinal digestive enzyme activity and nutrient provisioning (e.g., B vitamins) of the host, improving nutrient digestion and assimilation. Additionally, P. pentosaceus produced antimicrobial compounds and increased the antioxidant capacity to protect the host against pathogenic infection. Furthermore, P. pentosaceus affected the gut microbiome and altered the levels of gut metabolites (e.g., glycine and glycerophospholipids), which in turn promotes host nutrition and health. This study contributes to an improved understanding of the interactions between probiotic and host and promotes probiotic utilization in sericulture.
Collapse
Affiliation(s)
- Zhu Zeng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaoling Tong
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Yi Yang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Yuli Zhang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region, Nanning 530007, China.
| | - Shuwen Deng
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| | - Guizheng Zhang
- Guangxi Key Laboratory of Sericultural Genetic Improvement and Efficient Breeding, Guangxi Zhuang Autonomous Region, Nanning 530007, China.
| | - Fangyin Dai
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Hăbeanu M, Gheorghe A, Dinita G, Mihalcea T. An In-Depth Insight into the Profile, Mechanisms, Functions, and Transfer of Essential Amino Acids from Mulberry Leaves to Silkworm Bombyx mori L. Pupae and Fish. INSECTS 2024; 15:332. [PMID: 38786888 PMCID: PMC11122254 DOI: 10.3390/insects15050332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/25/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024]
Abstract
The silkworm Bombyx mori, the second most varied group of insects, is a fascinating insect that belongs to the Lepidoptera species. We aimed to deepen our knowledge about the composition and significance of amino acids (AA) from the sericulture chain to fish. AAs are the most prevalent molecules throughout the growth process of silkworms. We described AAs classification, occurrence, metabolism, and functions. Online datasets revealed that the essential AAs (EAA) level in fish meal and silkworm pupae (SWP) is comparable. SWP have a high content of methionine and lysine, which are the principal limiting AAs in fish diets, indicating that SWP have nutritional potential to be added to fish diets. Additionally, an overview of the data analyzed displays that SWP have a higher protein efficiency ratio than fish meal, the classical protein-rich source (>1.19 times), and compared to soybean meal, the second-most preferred source of protein in aquaculture (>2.08 times), indicating that SWP can be considered effective for animal feeding. In this study, we provide an overview of the current knowledge concerning AAs, paying special emphasis to EAAs and explaining, to some extent, certain mechanisms and functions of these compounds, from mulberry leaves to larvae-pupae and fish diets.
Collapse
Affiliation(s)
- Mihaela Hăbeanu
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| | - Anca Gheorghe
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| | - Georgeta Dinita
- Faculty of Animal Productions Engineering and Management, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 59 Marasti Blvd., District 1, 011464 Bucharest, Romania;
| | - Teodor Mihalcea
- Research Station for Sericulture Baneasa, 013685 Bucharest, Romania; (A.G.); (T.M.)
| |
Collapse
|
5
|
Wu J, Li L, Qin D, Chen H, Liu Y, Shen G, Zhao P. Silkworm Hemolymph and Cocoon Metabolomics Reveals Valine Improves Feed Efficiency of Silkworm Artificial Diet. INSECTS 2024; 15:291. [PMID: 38667421 PMCID: PMC11050563 DOI: 10.3390/insects15040291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Artificial silkworm diets significantly impact farm profitability. Sustainable cocoon production depends on the continuous improvement of feed efficiency to reduce costs and nutrient losses in the feed. This study used metabolomics to explore the differences in silkworm cocoons and hemolymph under two modes of rearing: an artificial diet and a mulberry-leaf diet. Nine metabolites of silkworm cocoons and hemolymph in the mulberry-leaf group were higher than those in the artificial-diet group. Enrichment analysis of the KEGG pathways for these metabolites revealed that they were mainly enriched in the valine, leucine, and isoleucine biosynthesis and degradation pathways. Hence, the artificial silkworm diet was supplemented various concentrations of valine were supplemented to with the aim of examining the impact of valine on their feeding and digestion of the artificial diet. The results indicated that valine addition had no significant effect on feed digestibility in the fifth-instar silkworm. Food intake in the 2% and 4% valine groups was significantly lower than that in the 0% valine group. However, the 2% and 4% valine groups showed significantly improved cocoon-production efficiency, at 11.3% and 25.1% higher, respectively. However, the cocoon-layer-production efficiencies of the 2% and 4% valine groups decreased by 7.7% and 13.9%, respectively. The research confirmed that valine is an effective substance for enhancing the feed efficiency of silkworms.
Collapse
Affiliation(s)
- Jinxin Wu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Lingyi Li
- Westa College, Southwest University, Chongqing 400715, China
| | - Daoyuan Qin
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Han Chen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Yuanlin Liu
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Guanwang Shen
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| | - Ping Zhao
- Integrative Science Center of Germplasm Creation in Western China (Chongqing) Science City, Biological Science Research Center, Southwest University, Chongqing 400715, China
| |
Collapse
|
6
|
Zhang X, Huo Y, Kong Y, Zhou W, Qin F, Hu X. Effects of short-term florfenicol exposure on the gene expression pattern, midgut microbiota, and metabolome in the lepidopteran model silkworm (Bombyx mori). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169099. [PMID: 38056650 DOI: 10.1016/j.scitotenv.2023.169099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
Florfenicol (FF), an alternative veterinary antibiotic for chloramphenicol, has been widely utilized in livestock breeding to prevent and treat bacterial diseases. However, the toxicological effects of FF have yet to be fully disclosed. The domesticated silkworm (Bombyx mori), a lepidopteran model, was selected to assess the toxicological effects of FF dietary exposure with multi-omics. The findings showed that high-dose (250 μg/L) FF exposure increased the whole cocoon weight. High-dose FF exposure affected the species richness and community diversity of the microbiota in the silkworm midgut. Biochemical processes and innate immunity were impacted by FF exposure. The KEGG pathways impacted by the midgut microbiota and their metabolites were compared, and several pathways were found to be related to the two ecosystems. In addition, the innate immunity and lipid metabolism pathways were impacted, and some of the differentially expressed genes were enriched in these pathways. These related pathways may involve crosstalk between the midgut microbiota shift, midgut biological functions, and global gene expression. Therefore, our study also advances the application of the silkworm larval model in assessing antibiotic metabolic toxicity and provides novel insights into the potential risks of FF.
Collapse
Affiliation(s)
- Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yiming Huo
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Yifei Kong
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feiju Qin
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
7
|
Wu X, Zhang X, Chen X, Ye A, Cao J, Hu X, Zhou W. The effects of polylactic acid bioplastic exposure on midgut microbiota and metabolite profiles in silkworm (Bombyx mori): An integrated multi-omics analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122210. [PMID: 37454715 DOI: 10.1016/j.envpol.2023.122210] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/18/2023]
Abstract
Polylactic acid (PLA) is a highly common biodegradable plastic and a potential threat to health and the environment. However, limited data are available on the effects of PLA exposure in the silkworm (Bombyx mori), a model organism used in toxicity studies. In this study, silkworms with or without PLA exposure (P1: 1 mg/L, P5: 5 mg/L, P25: 25 mg/L, and P0: 0 mg/L) for the entire 5th instar period were used to investigate the impact of PLA exposure on midgut morphology, larvae growth, and survival. Mitochondrial damage was observed in the P5 and P25 groups. The weights of the P25 posterior silk gland (5th day in the 5th instar), mature larvae and pupae were all significantly lower than those of the controls (P < 0.05). Dead worm cocoon rates and larva-pupa to 5th instar larvae ratios showed a positive and negative dose-dependent manner with respect to PLA concentrations, respectively. Additionally, reactive oxygen species levels and superoxide dismutase activity of the P25 midgut were significantly higher and lower when compared with controls, respectively (P < 0.05). The molecular mechanisms underlying the effects of PLA and associated physiological responses were also investigated. In the midgut metabolome, 127 significantly different metabolites (variable importance projection >1 and P < 0.05) were identified between the P0 and P25 groups and were mainly enriched for amino acid metabolism and energy supply pathways. The 16 S rDNA data showed that PLA altered microbial richness and structural composition. Microbiota, classified into 34 genera and 63 species, were significantly altered after 25 mg/L PLA exposure (P < 0.05). Spearman's correlation results showed that Bifidobacterium catenulatum and Schaalia odontolytica played potentially vital roles during exposure, as they demonstrated stronger correlations with the significantly different metabolites than other bacterial species. In sum, PLA induced toxic effects on silkworms, especially on energy- and protein-relevant metabolism, but at high concentrations (25 mg/L). This prospective mechanistic investigation on the effects of PLA on larval toxicity provides novel insight regarding the ecological risks of biodegradable plastics in the environment.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xing Zhang
- School of Chemistry and Life Science, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China
| | - Xiaolong Hu
- School of Biology & Basic Medical Science, Soochow University, Suzhou, 215123, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
8
|
Muzamil A, Tahir HM, Ali A, Bhatti MF, Munir F, Ijaz F, Adnan M, Khan HA, Abdul Qayyum K. Effect of amino acid fortified mulberry leaves on economic and biological traits of Bombyx mori L. Heliyon 2023; 9:e21053. [PMID: 37867808 PMCID: PMC10585384 DOI: 10.1016/j.heliyon.2023.e21053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023] Open
Abstract
The demand for silk has been increasing day by day but the average silk production is not enough to meet its demand. In this study, we investigated the effect of amino acid supplemented mulberry feed on the biological and commercial traits of Bombyx mori L. (Lepidoptera; Bombycidae). The silkworm larvae at 5th instar stage were taken and fed with fresh and healthy mulberry leaves coated with Alanine, Glycine and Serine in fourteen different combinations. Results of the current study revealed that the average weight of silkworm larvae and the % ratio of silk gland to body weight on day 7 was significantly (P˂0.05) higher in the group fed with amino acid fortified leaves as compared to the control. The commercial traits of larvae fed with amino acid fortified leaves also improved significantly. The larvae fed with Alanine (1 %) treated mulberry leaves showed the maximum cocoon weight, cocoon length, cocoon width, cocoon shell ratio and fibroin content as compared to the control group. It is evident from the results that the amino acid (particularly alanine) coated mulberry leaves have a positive effect on the commercial and biological traits of Bombyx mori (L.).
Collapse
Affiliation(s)
- Ayesha Muzamil
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Aamir Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Farooq Bhatti
- Sericulture Wing, Punjab Forestry, Wildlife and Fisheries Department, Ravi Road, Lahore, Pakistan
| | - Fariha Munir
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Fatima Ijaz
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Adnan
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | | |
Collapse
|
9
|
Meng Z, Zhou D, Lv D, Gan Q, Liao Y, Peng Z, Zhou X, Xu S, Chi P, Wang Z, Nüssler AK, Yang X, Liu L, Deng D, Yang W. Human milk extracellular vesicles enhance muscle growth and physical performance of immature mice associating with Akt/mTOR/p70s6k signaling pathway. J Nanobiotechnology 2023; 21:304. [PMID: 37644475 PMCID: PMC10463453 DOI: 10.1186/s12951-023-02043-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
Extracellular vesicles (EVs) play an important role in human and bovine milk composition. According to excellent published studies, it also exerts various functions in the gut, bone, or immune system. However, the effects of milk-derived EVs on skeletal muscle growth and performance have yet to be fully explored. Firstly, the current study examined the amino acids profile in human milk EVs (HME) and bovine milk EVs (BME) using targeted metabolomics. Secondly, HME and BME were injected in the quadriceps of mice for four weeks (1 time/3 days). Then, related muscle performance, muscle growth markers/pathways, and amino acids profile were detected or measured by grip strength analysis, rotarod performance testing, Jenner-Giemsa/H&E staining, Western blotting, and targeted metabolomics, respectively. Finally, HME and BME were co-cultured with C2C12 cells to detect the above-related indexes and further testify relative phenomena. Our findings mainly demonstrated that HME and BME significantly increase the diameter of C2C12 myotubes. HME treatment demonstrates higher exercise performance and muscle fiber densities than BME treatment. Besides, after KEGG and correlation analyses with biological function after HME and BME treatment, results showed L-Ornithine acts as a "notable marker" after HME treatment to affect mouse skeletal muscle growth or functions. Otherwise, L-Ornithine also significantly positively correlates with the activation of the AKT/mTOR pathway and myogenic regulatory factors (MRFs) and can also be observed in muscle and C2C12 cells after HME treatment. Overall, our study not only provides a novel result for the amino acid composition of HME and BME, but the current study also indicates the advantage of human milk on skeletal muscle growth and performance.
Collapse
Affiliation(s)
- Zitong Meng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dong Zhou
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Dan Lv
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Quan Gan
- Department of Obstetrics, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
- Department of Critical Care Medicine, Maternal and Child Health Hospital of Hubei Province, 745 Wuluo Road, Wuhan, 430000, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Xiaolei Zhou
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Shiyin Xu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Penglong Chi
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Zhipeng Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Andreas K Nüssler
- Department of Traumatology, BG Trauma Center, University of Tübingen, Schnarrenbergstr. 95, 72076, Tübingen, Germany
| | - Xuefeng Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China
| | - Dongrui Deng
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
- Department of Nutrition and Food Hygiene and MOE Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hangkong Road 13, Wuhan, 430030, China.
| |
Collapse
|
10
|
Yin X, Zhang Y, Yu D, Li G, Wang X, Wei Y, He C, Liu Y, Li Y, Xu K, Zhang G. Effects of artificial diet rearing during all instars on silk secretion and gene transcription in Bombyx mori (Lepidoptera: Bombycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2023; 116:1379-1390. [PMID: 37300368 DOI: 10.1093/jee/toad102] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/05/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Silkworms (Bombyx mori) reared on artificial diets during all instars have the advantages of simplicity and efficiency, year-round production, and reduced risk of poisoning. However, low silk yield remains a challenge, limiting its industrial application. To address this issue, the spinning behavior, nutrient absorption, and transcriptomics of silkworms were investigated. Compared with silkworms reared on mulberry leaves during all instars, those fed with artificial diets showed significantly lower cocoon weight, cocoon shell weight, cocoon shell rate, and silk gland tissue somatic index at the end of the fifth instar (P < 0.01). The spinning duration and crawling distance of silkworms reared on artificial diets were also significantly lower than those reared on mulberry leaves (P < 0.01). Regarding nutrient absorption, the dietary efficiency indexes of silkworms fed with artificial diets were significantly lower than those fed with mulberry leaves, except for the efficiency conversion of digesta to cocoon (P < 0.01). Further RNA-Seq analysis revealed 386 differentially transcribed genes between the 2 groups, with 242 upregulated and 144 downregulated genes. GO enrichment analysis showed that differential transcriptional genes were mainly enriched in organic acid metabolism, oxidation-reduction, and drug catabolism. KEGG enrichment analysis showed that differential transcriptional genes were mainly enriched in genetic information processing and metabolism pathways. Our findings provide new insights into the silk secretion and can serve as a reference for future research and application of silkworms fed with artificial diets.
Collapse
Affiliation(s)
- Xingcan Yin
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuli Zhang
- Guangxi Academy of Sericultural Sciences, Nanning, Guangxi 530007, China
| | - Dongliang Yu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Guoli Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Xilei Wang
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Wei
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Chunhui He
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Yanwei Liu
- Guangxi Academy of Sericultural Sciences, Nanning, Guangxi 530007, China
| | - Yizhe Li
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Kaizun Xu
- College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning, Guangxi 530004, China
| | - Guizheng Zhang
- Guangxi Academy of Sericultural Sciences, Nanning, Guangxi 530007, China
| |
Collapse
|
11
|
Li J, Deng J, Deng X, Liu L, Zha X. Metabonomic Analysis of Silkworm Midgut Reveals Differences between the Physiological Effects of an Artificial and Mulberry Leaf Diet. INSECTS 2023; 14:347. [PMID: 37103160 PMCID: PMC10146990 DOI: 10.3390/insects14040347] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 06/19/2023]
Abstract
Bombyx mori is a model lepidopteran insect of great economic value. Mulberry leaves are its only natural food source. The development of artificial diets can not only resolve the seasonal shortage of mulberry leaves but also enable changes to be made to the feed composition according to need. Metabolomic differences between the midguts of male and female silkworms fed either on fresh mulberry leaves or an artificial diet were studied using liquid chromatography-mass spectrography (LC-MS/MS) analysis. A total of 758 differential metabolites were identified. Our analysis showed that they were mainly involved in disease resistance and immunity, silk quality, and silkworm growth and development. These experimental results provide insights into the formulation of optimized artificial feed for silkworms.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jing Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xuan Deng
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Lianlian Liu
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Xingfu Zha
- State Key Laboratory of Silkworm Genome Biology, Institute of Sericulture and Systems Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Jaya Prakash N, Wang X, Kandasubramanian B. Regenerated silk fibroin loaded with natural additives: a sustainable approach towards health care. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023:1-38. [PMID: 36648394 DOI: 10.1080/09205063.2023.2170137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
According to World Health Organization (WHO), on average, 0.5 Kg of hazardous waste is generated per bed every day in high-income countries. The adverse effects imposed by synthetic materials and chemicals on the environment and humankind have urged researchers to explore greener technologies and materials. Amidst of all the natural fibers, silk fibroin (SF), by virtue of its superior toughness (6 × 104∼16 × 104 J/kg), tensile strength (47.2-67.7 MPa), tunable biodegradability, excellent Young's modulus (1.9-3.9 GPa), presence of functional groups, ease of processing, and biocompatibility has garnered an enormous amount of scientific interests. The use of silk fibroin conjoint with purely natural materials can be an excellent solution for the adverse effects of chemical-based treatment techniques. Considering this noteworthiness, vigorous research is going on in silk-based biomaterials, and it is opening up new vistas of opportunities. This review enswathes the structural aspects of silk fibroin along with its potency to form composites with other natural materials, such as curcumin, keratin, alginate, hydroxyapatite, hyaluronic acid, and cellulose, that can replace the conventionally used synthetic materials, providing a sustainable pathway to biomedical engineering. It was observed that a large amount of polar functional moieties present on the silk fibroin surface enables them to compatibilize easily with the natural additives. The conjunction of silk with natural additives initiates synergistic interactions that mitigate the limitations offered by individual units as well as enhance the applicability of materials. Further the current status and challenges in the commercialization of silk-based biomedical devices are discussed.
Collapse
Affiliation(s)
- Niranjana Jaya Prakash
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| | - Xungai Wang
- Fiber Science and Technology, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Balasubramanian Kandasubramanian
- Department of Metallurgical and Materials Engineering, Defence Institute of Advanced Technology (DU), Ministry of Defence, Structural Composites Laboratory, Girinagar, Pune, Maharashtra, India
| |
Collapse
|
13
|
Chen X, Zhang X, Ye A, Wu X, Cao J, Zhou W. Toxic effects of triphenyltin on the silkworm Bombyx mori as a lepidopterous insect model. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114245. [PMID: 36327780 DOI: 10.1016/j.ecoenv.2022.114245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
Triphenyltin (TPT) is a widely used reagent in various industries and agriculture, but is also known to accumulate in natural ecosystems and animal tissues. Hence, the aim of this study was to comprehensively assess the toxicity of TPT in the silkworm Bombyx mori as a model insect. The results showed that TPT exposure for the entire 5th instar larval stage significantly reduced the weight of silkworm pupa and inhibited development of the silkworm midgut. Following exposure to 2 μg/kg of TPT for 4 days, differentially expressed genes in midgut were associated with enriched pathways involved in the metabolism of carbohydrates, lipids, and amino acids, as determined by RNA sequencing. Furthermore, the metabolic profiles of the intestinal content of silkworms exposed to 2 μg/kg of TPT for 4 days were markedly altered and differential metabolites produced by metabolism of carbohydrates, lipids, and amino acids were enriched as determined by non-targeted GC-MS/MS metabolomics. This study provides novel insights into the mechanisms underlying the toxicity of TPT and emphasizes the risks posed by such pollutants released into the environment.
Collapse
Affiliation(s)
- Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xing Zhang
- School of Biology & Basic Medical Science, Soochow University, Suzhou 215123, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
14
|
Wu X, Chen X, Ye A, Cao J, He R, Pan M, Jin F, Ma H, Zhou W. Multi-tissue metabolomic profiling reveals potential mechanisms of cocoon yield in silkworms (Bombyx mori) fed formula feed versus mulberry leaves. Front Mol Biosci 2022; 9:977047. [PMID: 36060262 PMCID: PMC9428324 DOI: 10.3389/fmolb.2022.977047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022] Open
Abstract
Use of formula feed (FF) for silkworms for all instars, has promoted transformation and progress in traditional sericulture. However, the cocoon yield of FF silkworms has failed to reach that of silkworms fed mulberry leaves (ML). The biological mechanisms underlying this phenomenon have not been well described. This study aimed to identify metabolic mechanisms and potential biomarkers relating to the poor cocoon yield of FF silkworms. In this study, silkworms received treatments of either ML (ML group) or FF (FF group) for all instars. At the 3rd day of the 5th instar, the midgut (MG), hemolymph (HL) and posterior silk gland (PSG) were collected for the metabolome profiles detection. The remaining silkworms were fed ML or FF until cocooning for investigation. The whole cocoon yield (WCY) was significantly higher in the FF group than the ML group (p < 0.05), whereas the cocoon shell weight (CSW) and cocoon shell rate (CSR) were significantly lower in the FF group (p < 0.05). A total of 845, 867 and 831 metabolites were qualified and quantified in the MG, HL and PSG of the FF silkworms, respectively. Correspondingly, 789, 833 and 730 metabolites were quantified in above three tissues of the ML group. Further, 230, 249 and 304 significantly different metabolites (SDMs) were identified in the MG, HL and PSG between the FF and ML group, respectively. Eleven metabolic pathways enriched by the SDMs were mutual among the three tissues. Among them, cysteine and methionine metabolism, arginine biosynthesis, and arginine and proline metabolism were the top three pathways with the highest impact value in the PSG. Six biomarkers were obtained through biomarker analysis and Pearson correlation calculation. Among them, homocitrulline, glycitein, valyl-threonine, propyl gallate and 3-amino-2,3-dihydrobenzoic acid were positively correlated with WCY, but negatively correlated with CSW and CSR (p < 0.05). An opposite correlation pattern was observed between 3-dimethylallyl-4-hydroxyphenylpyruvate and the three cocoon performance traits. Overall, three key metabolic pathways and six biomarkers associated with cocoon yield were interpreted, and should provide directions for formula feed optimization in factory-raised silkworms.
Collapse
Affiliation(s)
- Xuehui Wu
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xuedong Chen
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Aihong Ye
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Jinru Cao
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Ruimin He
- Shengzhou Mulsun Biotech Co., Ltd., Shengzhou, Zhejiang, China
| | - Meiliang Pan
- Zhejiang Provincial Agricultural Technology Extension and Service Center, Hangzhou, Zhejiang, China
| | - Feng Jin
- Shengzhou Mulsun Biotech Co., Ltd., Shengzhou, Zhejiang, China
| | - Huanyan Ma
- Zhejiang Provincial Agricultural Technology Extension and Service Center, Hangzhou, Zhejiang, China
| | - Wenlin Zhou
- Institute of Sericulture and Tea, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
- *Correspondence: Wenlin Zhou,
| |
Collapse
|