1
|
Zheng H, Liu X, Liang X, Guo S, Qin B, Liu EH, Duan JA. Mechanisms and structure-activity relationships of natural polysaccharides as potential anti-osteoporosis agents: A review. Int J Biol Macromol 2025; 298:139852. [PMID: 39814301 DOI: 10.1016/j.ijbiomac.2025.139852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/09/2025] [Accepted: 01/12/2025] [Indexed: 01/18/2025]
Abstract
In recent years, polysaccharides derived from natural sources have garnered significant attention due to their safety and potential anti-osteoporotic effects. This review provides a comprehensive overview of the sources, distribution, structures, and mechanisms of anti-osteoporosis polysaccharides, as well as an investigation into their structure-activity relationships. Over thirty distinct, homogenous polysaccharides with anti-osteoporosis properties have been extracted from natural sources, primarily categorized as glucans, fructans, galactomannans, glucomannans, and various other heteropolysaccharides. Natural polysaccharides can effectively enhance osteoblast differentiation and mineralization while suppressing osteoclast activation, with the mechanism regulated by the BMP/SMAD/RUNX2, Wnt/Catenin, OPG/RANKL/RANK, and TLR2/NF-κB/NFATc1 signaling pathways. Furthermore, polysaccharides contribute to the prevention of osteoporosis by mitigating oxidative stress, decreasing inflammation, and modulating the gut microbiota. This review also summarizes the relationship between the monosaccharide composition, molecular weight, and glycosidic bond type of polysaccharides and their anti-osteoporotic activity. A comprehensive summary and analysis of the existing deficiencies and challenges in the research of anti-osteoporotic polysaccharides is also concluded. This review may serve as a significant reference for the discovery and utilization of naturally derived anti-osteoporotic polysaccharides in the pharmaceutical and health industries.
Collapse
Affiliation(s)
- Huili Zheng
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Xinhui Liu
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Xiaofei Liang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Sheng Guo
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China
| | - Bing Qin
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - E-Hu Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Jin-Ao Duan
- Nanjing University of Chinese Medicine/National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing 210029, China; Jiangsu Province Key Laboratory of High Technology Research, Nanjing 210029, China; Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing 210023, China.
| |
Collapse
|
2
|
Liu W, Yao C, Wang D, Du G, Ji Y, Li Q. Dynamic Double-Networked Hydrogels by Hybridizing PVA and Herbal Polysaccharides: Improved Mechanical Properties and Selective Antibacterial Activity. Gels 2024; 10:821. [PMID: 39727579 DOI: 10.3390/gels10120821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/08/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine Dendrobium was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the Dendrobium polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed. Eventually, highly dynamic and double-networked hydrogels were successfully prepared by the integration of Dendrobium polysaccharides and PVA. Interestingly, the introduction of polysaccharides has given rise to more robust and dynamic hydrogel networks, leading to enhanced thermal stability, mechanical strength, and tensile capacity (>1000%) as well as the rapid self-healing ability (<5 s) of the "hybrid" hydrogels compared with the PVA/borax single networked hydrogel. Moreover, the polysaccharides/PVA double network hydrogel showed selective antibacterial activity towards S. aureus. The reported polysaccharides/PVA double networked hydrogel would provide a scaffold to hybridize bioactive natural polysaccharides and synthetic polymers for developing robust but dynamic multiple networked hydrogels that are tailorable for biomedical applications.
Collapse
Affiliation(s)
- Weidong Liu
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Chuying Yao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Daohang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Guangyan Du
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yutian Ji
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-Constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
3
|
Abubakar AS, Ahmad B, Ahmad N, Liu L, Liu B, Qu Y, Chen J, Chen P, Zhao H, Chen J, Chen K, Gao G, Zhu A. Physicochemical evaluation, structural characterization, in vitro and in vivo bioactivities of water-soluble polysaccharides from Luobuma (Apocynum L.) tea. Food Chem 2024; 460:140453. [PMID: 39067428 DOI: 10.1016/j.foodchem.2024.140453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 07/30/2024]
Abstract
Luobuma tea is made from the leaves of Apocynum hendersonii (Bt) and A. venetum (Ht) and has been used for a very long time in China and Japan as herbal tea. This study isolated water-soluble polysaccharides from the two species` teas. Physicochemical properties, structural properties, in vitro and in vivo antioxidant and immunomodulatory activities were determined for the first time. The results showed that the Bt and Ht polysaccharides with molecular weights of 31.21 and 49.11 kDa, respectively, composed of arabinose, galactose, rhamnose, glucose, xylose, fucose, and mannose. A dose-dependent nitric oxide production and interleukin-6 inhibitory effects were obtained. Also, they suppressed the expression of cyclooxygenase-2, tumor necrosis factor-α and interleukin-6 mRNA in LPS-induced RAW 264.7 macrophages. Likewise, Bt and Ht have significantly reduced edema in the paws of mice after carrageenan injection. These results suggested that the Luobuma teas polysaccharides can be explored as potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Aminu Shehu Abubakar
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Department of Agronomy, Bayero University Kano, PMB, 3011, Kano, Nigeria
| | - Bilal Ahmad
- College of Biology, Hunan University, Changsha 410082, China
| | - Nabi Ahmad
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha 410082, China
| | - Yatong Qu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China
| | - Jikang Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Ping Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Haohan Zhao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Jia Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Kunmei Chen
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China
| | - Gang Gao
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| | - Aiguo Zhu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China; Key Laboratory of Biological and Processing for Bast Fiber Crops, MARA, Changsha 410221, China; Yuelushan Laboratory, Changsha 410125, China.
| |
Collapse
|
4
|
Wang Y, Liu R, Xie Z, Du L, Wang Y, Han J, Zhang L. Structure characterization and immunological activity of capsular polysaccharide from live and heat-killed Lacticaseibacillus paracasei 6235. Int J Biol Macromol 2024; 277:134010. [PMID: 39032891 DOI: 10.1016/j.ijbiomac.2024.134010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/22/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Capsular polysaccharide (CPS) as a probiotic component has the ability to regulate the function of the host's immune system. However, how the structure and function of heat-killed CPS are altered remains unclear. In the present study, CPS were isolated and purified from live (LCPS) and heat-killed (HCPS) Lacticaseibacillus paracasei 6235. The differences in structure and immunomodulation between LCPS and HCPS were compared and analyzed. The results demonstrate that after heat killed, the molecular weight of CPS decreased from 23.4 kDa to 17.5 kDa, with the disappearance of galactosamine in the monosaccharide composition, and changes in the microstructure. Methylation analysis and nuclear magnetic resonance analysis revealed that the LCPS and HCPS are similar in structure, which main units of →3,4)-α-D-Glcp-(1→4)-α-D-Galp-(1→3)-β-L-Rhap-(1→6)-β-D-Galp-(1→, and repeating units of →3,4)-α-D-Glcp-(1→, →3)-β-L-Rhap-(1→, and →4)-α-D-Galp-(1→ residues. Furthermore, both LCPS and HCPS significantly downregulated the expression of pro-inflammatory cytokines in RAW264.7 cells induced by LPS. Specifically, HCPS reduced the levels of IL-6 and IL-1β by 79.38 % and 88.42 %, respectively, compared to LCPS. Concurrently, both LCPS and HCPS effectively mitigated inflammatory responses through the NF-κB and MAPK signaling pathways. Moreover, compared to LCPS, HCPS increased the protein expression levels of NF-κB/p-NF-κB and IκB/p-IκB by 26.14 % and 28.92 %, respectively. These results suggest that CPS has a role in modulating immune responses and that HCPS is more effective. This study can be further developed into new products related to postbiotics.
Collapse
Affiliation(s)
- Yucong Wang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Rongxu Liu
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Zhixin Xie
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Lei Du
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yingnan Wang
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| | - Jianchun Han
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; Heilongjiang Green Food Science Research Institute, Harbin 150030, China.
| | - Lili Zhang
- College of Food Science, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
5
|
Wei X, Wang D, Xu Z, Liu J, Zhu Q, Chen Q, Tang H, Xu W. Research progress on the regulatory and pharmacological mechanism of chemical components of Dendrobium. Heliyon 2024; 10:e37541. [PMID: 39328574 PMCID: PMC11425140 DOI: 10.1016/j.heliyon.2024.e37541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/28/2024] Open
Abstract
Dendrobium is a precious Chinese herbal medicine, which belongs to the genus Orchidaceae. Ancient records and modern pharmacological research show that Dendrobium has pharmacological effects such as anti-tumor, antioxidant regulating immunity and blood glucose, and anti-aging. Dendrobium contains polysaccharides, alkaloids, bibenzyl, sesquiterpenes, phenanthrene, polyphenols and other types of chemicals. Its pharmacological activity is closely related to these chemical components. For example, dendrobium extracts can achieve anti-tumor effects by inhibiting tumor cell proliferation and metastasis, promoting cell apoptosis and ferroptosis, or increasing cell sensitivity to chemotherapy drugs. It enhances immunity by regulating immune cell activity or cytokine release. In addition, it can alleviate neurodegenerative diseases by protecting nerve cells from apoptotic damage. In recent years, research reports on biologically active compounds in Dendrobium have shown a blowout growth, which makes us realize that it is meaningful to continuously update the research progress on the components and pharmacological regulatory mechanism of this traditional Chinese medicine. By classifying the collected chemical components according to different chemical structures and summarizing their pharmacological mechanisms, we investigated the current research progress of Dendrobium and provide a more comprehensive scientific foundation for the further development and clinical transformation of Dendrobium in the future.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
| | - Heng Tang
- Wanbei Coal Electric Group General Hospital, Anhui Province, Suzhou, 234011, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China
- University of Science and Technology of China, Hefei, 230026, PR China
- Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, PR China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, 230001, PR China
| |
Collapse
|
6
|
Zhang X, Ge R, Wu J, Cai X, Deng G, Lv J, Ma M, Yu N, Yao L, Peng D. Structural characterization and improves cognitive disorder in ageing mice of a glucomannan from Dendrobium huoshanense. Int J Biol Macromol 2024; 269:131995. [PMID: 38692529 DOI: 10.1016/j.ijbiomac.2024.131995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 04/01/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
In the present work, a neutral polysaccharide (DHP-2W) with attenuating cognitive disorder was identified from Dendrobium huoshanense and its structure was clarified. The polysaccharide was successfully purified from D. huoshanense by column chromatography and its activity was evaluated. With a molecular weight of 508.934kDa, this polysaccharide is composed of mannose and glucose at a molar ratio of 75.81: 24.19. Structural characterization revealed that DHP-2W has a backbone consisting of 4)-β-D-Manp-(1 and 4)-β-D-Glcp-(1. In vivo experiments revealed that DHP-2W improved cognitive disorder in D-galactose treated mice and relieved oxidative stress and inflammation. DHP-2W attenuates D-galactose-induced cognitive disorder by inhibiting the BCL2/BAX/CASP3 pathway and activating the AMPK/SIRT pathway, thereby inhibiting apoptosis. Furthermore, DHP-2W had a significant effect on regulating the serum levels of Flavin adenine dinucleotide, Shikimic acid, and Kynurenic acid in aged mice. These, in turn, had a positive impact on AMPK/SIRT1 and BCL2/BAX/CASP3, resulting in protective effects against cognitive disorder.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Ruipeng Ge
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jing Wu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Xiao Cai
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Guanghui Deng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Jiahui Lv
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Mengzhen Ma
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China
| | - Nianjun Yu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| | - Liang Yao
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China.
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, China; Anhui Academy of Chinese Medicine, Hefei, China; MOE-Anhui Joint Collaborative Innovation Center for Quality Improvement of Anhui Genuine Chinese Medicinal Materials, Hefei, China; Anhui Province Key Laboratory for Research and Development of Research & Development of Chinese Medicine, Hefei, China.
| |
Collapse
|
7
|
Xie C, Sun Q, Chen J, Yang B, Lu H, Liu Z, Li Y, Li K, Tang B, Lin L. Cu-Tremella fuciformis polysaccharide-based tumor microenvironment-responsive injectable gels for cuproptosis-based synergistic osteosarcoma therapy. Int J Biol Macromol 2024; 270:132029. [PMID: 38704064 DOI: 10.1016/j.ijbiomac.2024.132029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Cuproptosis affects osteosarcoma locally, and the exploitation of cuproptosis-related biomaterials for osteosarcoma treatment is still in its infancy. We designed and synthesized a novel injectable gel of Cu ion-coordinated Tremella fuciformis polysaccharide (TFP-Cu) for antiosteosarcoma therapy. This material has antitumor effects, the ability to stimulate immunity and promote bone formation, and a controlled Cu2+ release profile in smart response to tumor microenvironment stimulation. TFP-Cu can selectively inhibit the proliferation of K7M2 tumor cells by arresting the cell cycle and promoting cell apoptosis and cuproptosis. TFP-Cu also promoted the M1 polarization of RAW264.7 cells and regulated the immune microenvironment. These effects increased osteogenic gene and protein expression in MC3T3-E1 cells. TFP-Cu could significantly limit tumor growth in tumor-bearing mice by inducing tumor cell apoptosis and improving the activation of anti-CD8 T cell-mediated immune responses. Therefore, TFP-Cu could be a potential candidate for treating osteosarcoma and bioactive drug carrier for further cancer-related applications.
Collapse
Affiliation(s)
- Chao Xie
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China; Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Qili Sun
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Jingle Chen
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Bingsheng Yang
- Department of Orthopaedics, Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, PR China
| | - Huiwen Lu
- Department of Traditional Chinese Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, PR China
| | - Zhanpeng Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Yucong Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China
| | - Kai Li
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China
| | - Bin Tang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, PR China; Guangdong Provincial Key Laboratory of Advanced Biomaterials, PR China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
8
|
Huang X, Yang Q, Chang S, Liu Y, Wang X, Liu Z, Ren J. Potential osteoporosis-blocker Sparassis crispa polysaccharide: Isolation, purification and structure elucidation. Int J Biol Macromol 2024; 261:129879. [PMID: 38311133 DOI: 10.1016/j.ijbiomac.2024.129879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/21/2024] [Accepted: 01/30/2024] [Indexed: 02/06/2024]
Abstract
This study aimed to investigate the structural characterization of water-soluble polysaccharides from Sparassis crispa and their effects on the proliferation and differentiation of mouse osteoblasts. Three fractions (F-1, F-2, and F-3) were obtained from crude polysaccharides by a DEAE-52 cellulose column. The main fraction (F-1) was further purified by polysaccharide gel purification systems to obtain purified water-soluble Sparassis crispa polysaccharide (SCPS). The chemical structure of SCPS was analyzed by gas chromatography, Fourier transform infrared spectroscopy, methylation analysis, and nuclear magnetic resonance spectroscopy. The monosaccharide compositional analysis revealed that SCPS consisted of fucose, arabinose, galactose, glucose, xylose, mannose, ribose, galacturonic acid, glucuronic acid, and mannuronic acid in a molar ratio of 17.37:1.94:25.52:30.83:1.14:0.30:4.98:2.87:2.65. Moreover, the backbone of SCPS was composed of →3)-β-d-Glcp-(1→4)-β-d-Glcp-(1→, with side chains attached to the backbone at the O-6 positions through the →3,6)-β-d-Glcp-(1→ linkage. The in vitro experiments were conducted to investigate the effects of SCPS on the proliferation and differentiation of mouse osteoblasts. The results showed that SCPS significantly enhanced the proliferation and differentiation of mouse osteoblasts, indicating their potential as a pharmaceutical agent for promoting osteoblast proliferation and differentiation.
Collapse
Affiliation(s)
- Xiaohui Huang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China; Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Qiao Yang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China
| | - Songlin Chang
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China
| | - Yingwei Liu
- Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Xiaoyan Wang
- Edible Fungi Institute, Changsha, Hunan 410013, China
| | - Zhuxiang Liu
- College of Biological Resources and Environmental Sciences, Jishou University, Jishou, Hunan 416000, China.
| | - Jiali Ren
- Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, College of Food Science and Engineering, Central South University of Forestry and Technology, No. 498, Shaoshan Road, Changsha, Hunan 410004, China.
| |
Collapse
|
9
|
Jiang S, Wang Q, Wang Z, Borjigin G, Sun J, Zhao Y, Li Q, Shi X, Faizan Ali Shah S, Wang X, Gan C, Wu Y, Song X, Li Q, Yang C. Ultrasound-assisted polysaccharide extraction from Fritillaria ussuriensis Maxim. and its structural characterization, antioxidant and immunological activity. ULTRASONICS SONOCHEMISTRY 2024; 103:106800. [PMID: 38359575 PMCID: PMC10878995 DOI: 10.1016/j.ultsonch.2024.106800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/16/2023] [Accepted: 02/03/2024] [Indexed: 02/17/2024]
Abstract
Fritillaria ussuriensis Maxim. (F.M.) has been widely used in both food and medication for more than 2000 years. In order to achieve its comprehensive utilization and investigate the structural characterization and biology activity, response surface methodology (RSM) was used to optimize the ultrasound-assisted extraction conditions of F.M. polysaccharides. The optimal extraction conditions were ultrasonic power of 174.2 W, ratio of liquid to material of 40.7 mL/g and ultrasonic time of 82.0 min. In addition, a neutral polysaccharide F-1 was obtained, and its structure characterization, antioxidant and immunological activity were evaluated. The structural properties of the polysaccharide were characterized by UV, IR, GC-MS, NMR and AFM. Monosaccharide composition of F-1 (MW 18.11 kDa) was rhamnose, arabinose, glucosamine hydrochloride, galactose, and glucose which under the ratio of 0.9: 3.8: 0.2: 2.9: 92.2. The fractions of F-1 were mainly linked by → 6)-α-D-Glcp-(1 → with branch chain α-D-Glcp-(1 → 4)-α-D-Glcp-(1 → and 4,6)-α-D-Glcp-(1 → residues. Moreover, F-1 has a significant scavenging activity, which can clear hydroxyl radicals, superoxide anion, DPPH and ABTS. In addition, the immunological activity showed that F-1 had an effect on macrophage phagocytic activity. And it can increase the release of inflammatory factors including TNF-α, IL-1β and IL-6. F-1 is a novel polysaccharide with significant activity in antioxidant and immunological activity, which has great potential for antioxidant and immunizer in food, pharmaceutical and cosmetic industries. The study can provide a methodological basis for polysaccharide research and theoretical basis for the industrialized production and practical application.
Collapse
Affiliation(s)
- Shuang Jiang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qianbo Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Zhibin Wang
- Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, Harbin 150040, Heilongjiang, China
| | - Gilwa Borjigin
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Jiahui Sun
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yue Zhao
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qi Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xuepeng Shi
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Syed Faizan Ali Shah
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaotong Wang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chunli Gan
- Department of Medicinal Chemistry and Natural Medicine Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Yanli Wu
- Department of Organic Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Xiaodan Song
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Qian Li
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China
| | - Chunjuan Yang
- Department of Pharmaceutical Analysis and Analytical Chemistry, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China; Key Laboratory of Gut Microbiota and Pharmacogenomics of Heilongjiang Province, College of Pharmacy, Harbin Medical University, Harbin 150081, Heilongjiang, China.
| |
Collapse
|
10
|
Li S, Guo W, Zhang M, Zeng M, Wu H. Microalgae polysaccharides exert antioxidant and anti-inflammatory protective effects on human intestinal epithelial cells in vitro and dextran sodium sulfate-induced mouse colitis in vivo. Int J Biol Macromol 2024; 254:127811. [PMID: 37923042 DOI: 10.1016/j.ijbiomac.2023.127811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/26/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Microalgae polysaccharides (MAPS) have emerged as novel prebiotics, but their direct effects on intestinal epithelial barrier are largely unknown. Here, MAPS isolated from Chlorella pyrenoidosa, Spirulina platensis, and Synechococcus sp. PCC 7002 were characterized as mainly branched heteropolysaccharides, and were bioavailable to Caco-2 cells based on fluorescein isothiocyanate labeling and flow cytometry analysis. These MAPS were equally effective to scavenge hydroxyl and superoxide radicals in vitro and to attenuate the H2O2-, dextran sodium sulfate-, tumor necrosis factor α-, and interleukin 1β-induced burst of intracellular reactive oxygen species and mitochondrial superoxide radicals, interleukin-8 production, cyclooxygenase-2 and inducible nitric oxide synthase expression, and/or tight junction disruption in polarized Caco-2 cells. MAPS and a positive drug Mesalazine were intragastrically administered to C57BL/6 mice daily for 7 d during and after 4-d dextran sodium sulfate exposure. Clinical signs and colon histopathology revealed equivalent anti-colitis efficacies of MAPS and Mesalazine, and based on biochemical analysis of colonic tight junction proteins, goblet cells, mucin 2 and trefoil factor 3 transcription, and colonic and peripheral pro-inflammatory cytokines, MAPS alleviated dextran sodium sulfate-induced intestinal epithelial barrier dysfunction, and their activities were even superior than Mesalazine. Overall, MAPS confer direct antioxidant and anti-inflammatory protection to intestinal epithelial barrier function.
Collapse
Affiliation(s)
- Shiyang Li
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Wei Guo
- School of Pharmacy, Binzhou Medical University, 346 Guanhai Road, Yantai, Shandong 264003, China
| | - Meichao Zhang
- Weihai Institute for Food and Drug Control, Weihai 264299, China
| | - Mingyong Zeng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China
| | - Haohao Wu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, Shandong Province 266003, China.
| |
Collapse
|
11
|
Lei SS, Li B, Huang XW, Wang XP, Xiong S, Duan R, Li LZ. Structural identification of an polysaccharide isolated from Epimedium brevicornum and its beneficial effect on promoting osteogenesis in osteoblasts induced by high glucose. Biomed Pharmacother 2023; 169:115893. [PMID: 37979377 DOI: 10.1016/j.biopha.2023.115893] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023] Open
Abstract
AIM Diabetes osteoporosis (DOP) is a chronic bone metabolic disease induced by diabetes, whose morbidity continues to increase. Epimedium brevicornum Maxim (EB), a popular Chinese traditional medicine, has been used to treat bone diseases in China for thousands of years. But its material basis and specific mechanism of action are not clear. METHODS Epimedium brevicornum crude polysaccharide (EPE) is the main component, in this research the characterized the structure of EBPC1 purified from EPE was detected and its effects on cell proliferation, differentiation, and cytoskeletal in osteoblasts induced by high glucose. RESULTS The molecular weight of EBPC1 was 10.5 kDa. It was mainly comprised of glucose and galactose, and the backbone of EBPC1 was→4)-α-D-Galp-(1→4)-α-D-Galp-(1→6)-β-D-Galp-(1→6)-β-D-Galp-(1→4)-α-D-Glcp-(1→4)-α-D-Glcp-(1→. The results from in vitro experiments revealed that EBPC1 significantly increased alkaline phosphatase (ALP) activity and mineralized nodule formation in primary osteoblasts, also significantly up-regulated expression of Alp mRNA and Runx2 mRNA in the presence of EBPC1 pretreatment. Moreover, EBPC1 modulated apoptosis via the regulation of Bax/Bcl2. CONCLUSION These results indicate that EBPC1 treatment can promote osteogenesis during DOP, which can ameliorate apoptosis by regulating Bax/Bcl2 and accelerating osteogenesis in osteoblasts.
Collapse
Affiliation(s)
- Shan Shan Lei
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, PR China
| | - Bo Li
- Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Xiao Wen Huang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, PR China
| | - Xu Pin Wang
- Department of Medicine, Zhejiang Academy of Traditional Chinese Medicine, Hangzhou, Zhejiang 310007, PR China
| | - Shan Xiong
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, National Key Laboratory of Advanced Drug Delivery System, Key Laboratory for Biotechnology Drugs of National Health Commission (Shandong Academy of Medical Sciences), Key Lab for Rare & Uncommon Diseases of Shandong Province, Jinan, Shandong 250117, PR China.
| | - Rui Duan
- Jingmen Central Hospital, Jingmen, Hubei 448000, PR China.
| | - Lin Zi Li
- Jingmen Central Hospital, Jingmen, Hubei 448000, PR China.
| |
Collapse
|
12
|
Zhang W, He J, Zheng D, Zhao P, Wang Y, Zhao J, Li P. Immunomodulatory Activity and Its Mechanisms of Two Polysaccharides from Poria cocos. Molecules 2023; 29:50. [PMID: 38202633 PMCID: PMC10780076 DOI: 10.3390/molecules29010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Polyporaceae is an important fungal family that has been a source of natural products with a range of pharmaceutical activities in China. In our previous study, two polysaccharides, PCWPW and PCWPS, with significant antioxidant and antidepressant activity were obtained from Poria cocos. In this study, we evaluated their potential molecular mechanisms in the immunomodulation of macrophages. PCWPW and PCWPS were characterized by GC-MS analysis to contain 1,3-linked Glcp. ELISA assays results demonstrated that the secretion of TNF-α was significantly enhanced by PCWPW/PCWPS. RNA-seq data demonstrated that PCWPS treatment modulated the expression of immune-related genes in macrophages, which was further confirmed by RT-qPCR assays. The activation of TNF-α secretion was found to be mannose receptor (MR) dependent and suppressed by MR inhibitor pretreatment. Moreover, the amount of TNF-α cytokine secretion in PCWPW/PCWPS-induced RAW264.7 cells was decreased when pretreated with NF-κB or MAPK signaling pathway inhibitors. Collectively, our results suggested that PCWPW and PCWPS possessed immunomodulatory activity that regulates TNF-α expression through the NF-κB/MAPK signaling pathway by binding to mannose receptors. Therefore, PCWPW and PCWPS isolated from Poria cocos have potential as drug candidates for immune-related disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Peng Li
- Shanxi Key Laboratory for Modernization of TCVM, Department of Basic Sciences, Shanxi Agricultural University, Jinzhong 030801, China; (J.H.); (D.Z.); (P.Z.); (Y.W.); (J.Z.)
| |
Collapse
|
13
|
Zhu H, Yi X, Jia SS, Liu CY, Han ZW, Han BX, Jiang GC, Ding ZF, Wang RL, Lv GP. Optimization of Three Extraction Methods and Their Effect on the Structure and Antioxidant Activity of Polysaccharides in Dendrobium huoshanense. Molecules 2023; 28:8019. [PMID: 38138509 PMCID: PMC10745764 DOI: 10.3390/molecules28248019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Dendrobium huoshanense is a famous edible and medicinal herb, and polysaccharides are the main bioactive component in it. In this study, response surface methodology (RSM) combined with a Box-Behnken design (BBD) was used to optimize the enzyme-assisted extraction (EAE), ultrasound-microwave-assisted extraction (UMAE), and hot water extraction (HWE) conditions and obtain the polysaccharides named DHP-E, DHP-UM, and DHP-H. The effects of different extraction methods on the physicochemical properties, structure characteristics, and bioactivity of polysaccharides were compared. The differential thermogravimetric curves indicated that DHP-E showed a broader temperature range during thermal degradation compared with DHP-UM and DHP-H. The SEM results showed that DHP-E displayed an irregular granular structure, but DHP-UM and DHP-H were sponge-like. The results of absolute molecular weight indicated that polysaccharides with higher molecular weight detected in DHP-H and DHP-UM did not appear in DHP-E due to enzymatic degradation. The monosaccharide composition showed that DHPs were all composed of Man, Glc, and Gal but with different proportions. Finally, the glycosidic bond types, which have a significant effect on bioactivity, were decoded with methylation analysis. The results showed that DHPs contained four glycosidic bond types, including Glcp-(1→, →4)-Manp-(1→, →4)-Glcp-(1→, and →4,6)-Manp-(1→ with different ratios. Furthermore, DHP-E exhibited better DPPH and ABTS radical scavenging activities. These findings could provide scientific foundations for selecting appropriate extraction methods to obtain desired bioactivities for applications in the pharmaceutical and functional food industries.
Collapse
Affiliation(s)
- Hua Zhu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Xin Yi
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Si-Si Jia
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Chun-Yao Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Zi-Wei Han
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| | - Bang-Xing Han
- College of Biological and Pharmaceutical Engineering, West Anhui University, Lu’an 237012, China
| | - Gong-Cheng Jiang
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Zheng-Feng Ding
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Ren-Lei Wang
- Key Laboratory of Biological Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 211200, China; (G.-C.J.); (Z.-F.D.)
| | - Guang-Ping Lv
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (X.Y.); (S.-S.J.); (C.-Y.L.); (Z.-W.H.)
| |
Collapse
|
14
|
Hemati S, Hatamian-Zarmi A, Halabian R, Ghiasi M, Salimi A. Schizophyllan promotes osteogenic differentiation of human adipose tissue-derived mesenchymal stem cells in vitro. Mol Biol Rep 2023; 50:10037-10045. [PMID: 37902909 DOI: 10.1007/s11033-023-08877-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/02/2023] [Indexed: 11/01/2023]
Abstract
BACKGROUND Bioactive polysaccharides are a promising way for bone disease prevention with high efficiency. Schizophyllan (SPG) is a polysaccharide derived from a species of fungus with anticancer, antitumor, and anti-inflammatory effects. In the present study, for the first time, the cell proliferation, osteogenic markers, mineral deposition, and osteogenic gene expression of human adipose tissue-derived mesenchymal stem cells (hADMSCs) grown on SPG were evaluated by in vitro assays. METHODS AND RESULTS The cytotoxicity of SPG was measured using the MTT assay and acridine orange staining. Differentiation of hADMSCs was assessed using alkaline phosphatase (ALP) activity test, cellular calcium content assay, and mineralized matrix staining. To this end, Alizarin red S, von Kossa staining, and the expression of bone-specific markers, including ALP, Runx2, and osteonectin, were used by real-time RT-PCR over a 2-week period. According to the results, SPG at 10 µg/ml concentration was determined as the optimal dosage for differentiation studies. The results of osteogenic differentiation tests showed that compared to the control groups in vitro, SPG enhanced the osteogenic markers and mineralization as well as upregulation of the expression of bone specific genes in differentiated hADMSCs during differentiation. CONCLUSIONS The results revealed that SPG could be applied as effective factor for osteogenic differentiation in the future. The current study provides insights into the hADMSC-based treatment and introduces promising therapeutic material for individuals who suffer from bone defects and injuries.
Collapse
Affiliation(s)
- Saideh Hemati
- Department of Cellular and Molecular Biology, Faculty of Biology, Science and Research Branch of Islamic Azad University, Tehran, Iran
| | - Ashrafalsadat Hatamian-Zarmi
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohsen Ghiasi
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Salimi
- Tissue Engineering and Regenerative Medicine Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
15
|
Wang J, Yang J, Tang Z, Yu Y, Chen H, Yu Q, Zhang D, Yan C. Curculigo orchioides polysaccharide COP70-1 stimulates osteogenic differentiation of MC3T3-E1 cells by activating the BMP and Wnt signaling pathways. Int J Biol Macromol 2023; 248:125879. [PMID: 37473884 DOI: 10.1016/j.ijbiomac.2023.125879] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 06/26/2023] [Accepted: 07/16/2023] [Indexed: 07/22/2023]
Abstract
The crude polysaccharide CO70 isolated from Curculigo orchioides could alleviate ovariectomy-induced osteoporosis in rats. To clarify the bioactive components, a new heteropolysaccharide (COP70-1) was purified from CO70 in this study, which was consisted of β-D-Manp-(1→, →4)-α-D-Glcp-(1→, →4)-β-D-Manp-(1→, →3,4)-β-D-Manp-(1→, →4,6)-β-D-Manp-(1→, and →4,6)-α-D-Galp-(1→. COP70-1 significantly promoted the osteoblastic differentiation of MC3T3-E1 cells through improving alkaline phosphatase activity, the deposition of calcium as well as up-regulating the expression of osteogenic markers (RUNX2, OSX, BSP, OCN, and OPN). Furthermore, COP70-1 stimulated the expression of critical transcription factors of the BMP and Wnt pathways, including BMP2, p-SMAD1, active-β-catenin, p-GSK-3β, and LEF-1. In addition, LDN (BMP pathway inhibitor) and DKK-1 (Wnt pathway inhibitor) suppressed the COP70-1-induced osteogenic differentiation of MC3T3-E1 cells. Therefore, COP70-1 was one of the bioactive constituents of C. orchioides for targeting osteoblasts to treat osteoporosis by triggering BMP/Smad and Wnt/β-catenin pathways.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Junqiang Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Zonggui Tang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yongbo Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Haiyun Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qian Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Dawei Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Chunyan Yan
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
16
|
Wu W, Lin Y, Farag MA, Li Z, Shao P. Dendrobium as a new natural source of bioactive for the prevention and treatment of digestive tract diseases: A comprehensive review with future perspectives. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154784. [PMID: 37011417 DOI: 10.1016/j.phymed.2023.154784] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/01/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The incidence of diseases related to the digestive tract is on the rise, with many types of complex etiologies. Dendrobium nobile Lindl. is a famous Traditional Chinese Medicine (TCM) rich in many bioactives proven to be beneficial in several health diseases related to inflammation and oxidative stress. PURPOSE At present, despite the availability of various therapeutic clinical drugs used for the treatment of digestive tract diseases, resistance emergence and existence of several side effects warrant for the developing of novel drugs for improved effects on digestive tract diseases. METHODS "Orchidaceae", "Dendrobium", "inflammation", "digestive tract", and "polysaccharide" were used as search terms to screen the literature. The therapeutic use of Dendrobium related to digestive tract diseases relative to known polysaccharides and other bioactive compounds were derived from online databases, including Web of Science, PubMed, Elsevier, Science Direct, and China National Knowledge Infrastructure, as well as relevant information on the known pharmacological actions of the listed phytochemicals. RESULTS To better capitalize upon Dendrobium for preventing and treating diseases related to digestive tract, this review summarizes bioactives in Dendrobium reported of potential in digestive tract diseases management and their underlying action mechanisms. Studies revealed that Dendrobium encompasses diverse classes including polysaccharides, phenolics, alkaloids, bibenzyls, coumarins, phenanthrene and steroids, with polysaccharide as the major class. Dendrobium exerts various health effects on a variety of disease related to the digestive tract. Action mechanisms involve antioxidant, anti-inflammatory, anti-apoptotic, antioxidant, anticancer, alongside the regulation of some key signaling pathways. CONCLUSION Overall, Dendrobium appears as a promising TCM source of bioactives that has the potential to be further developed into nutraceuticals for digestive tract diseases compared to current drug treatments. This review highlights for Dendrobium potential effects with future perspectives for needed future research to maximize the use of bioactive compounds from Dendrobium for digestive tract disease treatment. A compile of Dendrobium bioactives is also presented alongside methods for their extraction and enrichment for potential incorporation in nutraceuticals.
Collapse
Affiliation(s)
- Wenjun Wu
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Zhejiang, Shaoxing 312000, China
| | - Yang Lin
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Zhejiang Sci-Tech University Shaoxing Academy of Biomedicine Co. Ltd., Zhejiang, Shaoxing 312000, China
| | - Mohamed A Farag
- Pharmacognosy Department, College of Pharmacy, Cairo University, Kasr El Aini St., P.B., Cairo, Egypt
| | - Zhenhao Li
- Zhejiang ShouXianGu Botanical Drug Institute Co., Ltd., Zhejiang Hangzhou 321200 China
| | - Ping Shao
- Department of Food Science and Technology, Zhejiang University of Technology, Zhejiang, Hangzhou 310014, China; Eco-Industrial Innovation Institute ZJUT, Zhejiang, Quzhou 324000, China.
| |
Collapse
|
17
|
Li X, Liu Y, Song H, Zhao M, Song Q. Antioxidant, antibacterial, and anti-inflammatory Periplaneta americana remnant chitosan/polysaccharide composite film: In vivo wound healing application evaluation. Int J Biol Macromol 2023; 237:124068. [PMID: 36934824 DOI: 10.1016/j.ijbiomac.2023.124068] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/26/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Periplaneta americana (P. americana), which is widely used for wound healing in China, produces a large amount of solid waste (P. americana remnant) after pharmaceutical production extraction. P. americana remnant chitosan (PAC) has a low molecular weight, low crystallinity, and easily modifiable structural properties. In this study, PAC and P. americana remnant polysaccharide (PAP) were used as raw materials to prepare a composite film (PAPCF). The good biocompatibility of the composite film was verified by cell proliferation assays and protein adsorption assays. The bioactivity of the composite film was assessed by antibacterial and in vivo/vitro antioxidant assays to evaluate its potential as a wound dressing. The wound healing experiment revealed that PAPCF improved wound closure and collagen deposition, decreased reactive oxygen species levels, and attenuated the inflammatory response, enabling rapid wound healing from the inflammatory phase to the proliferative phase in mice. Additionally, PAPCF was administered only once, reducing the chance of infection from multiple deliveries. In summary, this paper presents an easy-to-administer, cost-effective, and effective dressing candidate for wound treatment based on the environmental concept of resource reuse.
Collapse
Affiliation(s)
- Xuehua Li
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Yali Liu
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Hongrong Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Meiting Zhao
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China
| | - Qin Song
- School of Pharmacy, Chengdu University, Chengdu, Sichuan 610106, China.
| |
Collapse
|
18
|
Wang Y, Han J, Yue Y, Wu Y, Zhang W, Xia W, Wu M. Purification, structure identification and immune activity of a neutral polysaccharide from Cynanchum Auriculatum. Int J Biol Macromol 2023; 237:124142. [PMID: 36972816 DOI: 10.1016/j.ijbiomac.2023.124142] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/28/2023] [Accepted: 03/20/2023] [Indexed: 03/28/2023]
Abstract
The crude polysaccharides CAPS and CAP of Cynanchum Auriculatum, which were prepared by degrading starch by single-enzymatic method (α-amylase) and double-enzymatic method (α-amylase and glucoamylase) respectively, were compared. CAP had good water solubility and higher non-starch polysaccharide content. A homogeneous neutral polysaccharide CAPW, with the degree of acetylation about 17 %, was obtained from CAP by anion exchange column chromatography. Its detailed structure was identified by various methods. CAPW, with the weight average molecular weight of 8.4 kDa, was composed of mannose, glucose, galactose, xylose, and arabinose in a molar ratio of 1.27:1.00:0.25:0.10:1.16. The backbone included β-1,4-Manp, β-1,4,6-Manp, β-1,4-Glcp and β-1,4,6-Glcp residues, with branches at the O-6 position of β-1,4,6-Manp and β-1,4,6-Glcp residues, consisting of α-T-Araf, α-1,5-Araf, α-1,2,5-Araf, α-1,3,5-Araf, T-Xylp,1,4-Xylp, β-T-Manp and β-T-Galp residues. In vitro immunological experiments suggested that CAP-W improved the phagocytic ability of macrophages, stimulated the release of NO, TNF-α and IL-6 from RAW264.7 cells, promoted the expression of NF-κB and caused nuclear translocation of NF-κB p65.
Collapse
|
19
|
Shi MZ, Shi Y, Jin HF, Cao J. An efficient mixed enzymes-assisted mechanical bio-extraction of polysaccharides from Dendrobium officinale and determination of monosaccharides by HPLC-Q-TOF/MS. Int J Biol Macromol 2023; 227:986-1000. [PMID: 36464194 DOI: 10.1016/j.ijbiomac.2022.11.275] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 11/21/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022]
Abstract
The mixed enzymes-assisted mechanical bio-extraction method was first used to extract polysaccharides from Dendrobium officinale. Different parameters including the ratio of enzyme, the amount of enzyme, the grinding time, the extraction time and the solid/liquid ratio were investigated by single factor experiments and multifactorial experiments. Through the response surface methodology the optimal extraction conditions were obtained with the ratio of cellulase to pectinase was 2: 1 and total amount of enzyme was 0.23 mg, the grinding time of 11.48 min, the extraction time of 5.99 min. The obtained polysaccharide extracts were hydrolyzed and derivatized and then injected into high performance liquid chromatography-quadrupole time-of-flight mass spectrometry (HPLC-Q-TOF/MS) for monosaccharide composition analysis. After optimization of the chromatographic conditions (including mobile phase and column), twelve monosaccharides were successfully determined within 20 min. The proposed method provided satisfactory linearity with the correlation coefficients higher than 0.99, suitable recoveries (81.46-114.92 %), acceptable reproducibility ranging from 0.06 % to 4.77 %, low limits of detection (0.70-45.45 ng/mL). Compared with other methods, this method makes the extraction efficiency much higher and has the advantages of simple operation, environmental friendliness and mild extraction conditions. Therefore, this method can be used for the extraction of polysaccharides from plants and the determination of monosaccharides and has the potential to be used in more areas.
Collapse
Affiliation(s)
- Min-Zhen Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Ying Shi
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Huang-Fei Jin
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China
| | - Jun Cao
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, PR China.
| |
Collapse
|
20
|
Li H, Wang Y, Zhao P, Guo L, Huang L, Li X, Gao W. Naturally and chemically acetylated polysaccharides: Structural characteristics, synthesis, activities, and applications in the delivery system: A review. Carbohydr Polym 2023; 313:120746. [PMID: 37182931 DOI: 10.1016/j.carbpol.2023.120746] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/22/2023] [Accepted: 02/22/2023] [Indexed: 03/03/2023]
Abstract
Acetylated polysaccharides refer to polysaccharides containing acetyl groups on sugar units. In the past, the acetylation modification of wall polysaccharides has been a hot research topic for scientists. However, in recent years, many studies have reported that acetylation-modified plant, animal, and microbial polysaccharide show great potential in delivery systems. From the latest perspective, this review systematically presents the different sources of naturally acetylated polysaccharides, the regularity of their modification, the chemical preparation of acetylation modifications, the biological activities and functions of acetylated polysaccharides, and the application in the delivery system. In nature, acetylated polysaccharides are extensively distributed in plants, microorganism, and animals. The level of acetylation modification, the distribution of chains, and the locations of acetylation modification sites differ between species. An increasing number of acetylated polysaccharides were prepared in the aqueous medium, which is safe, environment friendly, and low-cost. In addition to being necessary for plant growth and development, acetylated polysaccharides have immunomodulatory, antioxidant, and anticancer properties. The above-mentioned multiple sources, multifunctional and multi-active acetylated polysaccharides, make them an increasingly important part of delivery systems. We conclude by discussing the future directions for research and development and the potential uses for acetylated polysaccharides.
Collapse
|
21
|
Peng D, Tian W, An M, Chen Y, Zeng W, Zhu S, Li P, Du B. Characterization of antidiabetic effects of Dendrobium officinale derivatives in a mouse model of type 2 diabetes mellitus. Food Chem 2023; 399:133974. [DOI: 10.1016/j.foodchem.2022.133974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 08/01/2022] [Accepted: 08/15/2022] [Indexed: 11/29/2022]
|
22
|
Li R, Zhou QL, Chen ST, Tai MR, Cai HY, Ding R, Liu XF, Chen JP, Luo LX, Zhong SY. Chemical Characterization and Immunomodulatory Activity of Fucoidan from Sargassum hemiphyllum. Mar Drugs 2022; 21:18. [PMID: 36662191 PMCID: PMC9865083 DOI: 10.3390/md21010018] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/09/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Fucoidan is a sulfated algal polyanionic polysaccharide that possesses many biological activities. In this paper, a fucoidan (SHF) polysaccharide was extracted from Sargassum hemiphyllum collected in the South China Sea. The SHF, with a molecular weight of 1166.48 kDa (44.06%, w/w), consisted of glucose (32.68%, w/w), galactose (24.81%, w/w), fucose (20.75%, w/w), xylose (6.98%, w/w), mannose (2.76%, w/w), other neutral monosaccharides, and three uronic acids, including glucuronic acid (5.39%, w/w), mannuronic acid (1.76%, w/w), and guronuronic acid (1.76%, w/w). The SHF exhibited excellent immunostimulatory activity. An immunostimulating assay showed that SHF could significantly increase NO secretion in macrophage RAW 264.7 cells via upregulation of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) levels based on both gene expression and protein abundance. These results suggest that SHF isolated from Sargassum hemiphyllum has great potential to act as a health-boosting ingredient in the pharmaceutical and functional-food fields.
Collapse
Affiliation(s)
- Rui Li
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| | - Qing-Ling Zhou
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Shu-Tong Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Min-Rui Tai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Hong-Ying Cai
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Rui Ding
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Xiao-Fei Liu
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Jian-Ping Chen
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
| | - Lian-Xiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, the Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang 524023, China
| | - Sai-Yi Zhong
- College of Food Science and Technology, Guangdong Ocean University, Guangdong Province Engineering Laboratory for Marine Biological Products, Guangdong Provincial Engineering Technology Research Center of Marine Food, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Provincial Science and Technology Innovation Center for Subtropical Fruit and Vegetable Processing, Zhanjiang 524008, China
- Collaborative Innovation Center of Seafood Deep Processing, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|