1
|
Zhou Y, Yuan C, Zhang Q, Zhang X, Li Y, Wen H. Preparation of quaternary ammonium lignosulfonate modified UV resistant polyurethane and its application in leather dyeing. Int J Biol Macromol 2025; 292:139259. [PMID: 39733898 DOI: 10.1016/j.ijbiomac.2024.139259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Applying cationic waterborne polyurethane (CWPU) in the leather color-fixing process can improve the dyeing rate and enhance color fastness. However, under prolonged exposure to sunlight, CWPU will age and degrade and the leather will fade in color, become stiff and crack easily. In this study, an Ultraviolet absorber was introduced into cationic waterborne polyurethane (UVCWPU) and quaternary ammonium Lignosulfonate (QLS) was prepared by quaternization. Quaternary ammonium Lignosulfonate/UV-resistant waterborne polyurethane (QLS/UVCWPU) composite was prepared by the blending method. A one-way experiment was carried out to investigate the effect of the additional amount of quaternary ammonium reagent on the degree of modification of QLS, and the results showed that when the ratio of 3-chloro-2-hydroxypropyltrimethylammonium chloride (CHPTMAC) to LS was 7:1, the isoelectric point of the prepared QLS reached 6.65, and the content of N was 4.32 % so that the quaternary ammonium lignosulfonate modification was successful. QLS/UVCWPU was used to solidify the leather at pH 4.0 and a dosage of 4 %. The dye absorption rate of the leather increased to 97.3 %, the K/S value of the dyed gray leather reached 28.51, the color fastness to dry rubbing was improved to grade 5, and the color fastness to wet rubbing was up to grade 3 and enhancing the color fastness to sunlight, slowing down the effect of ultraviolet aging, and improving the antimicrobial properties of the leather.
Collapse
Affiliation(s)
- Yongxiang Zhou
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China.
| | - Changlong Yuan
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China
| | - Qi Zhang
- College of Bioresources Chemical & Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Xinyan Zhang
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Xi'an 710021, China; Xi'an Key Laboratory of Green Chemicals and Functional Materials, Xi'an 710021, China
| | - Yafei Li
- Hangzhou NaiShiTeWei Technology Service Co., Ltd., Hangzhou 310018, China
| | - Huitao Wen
- Fujian Key Laboratory of Leather Green Design and Manufacture, Jinjiang 362271, Fujian, China
| |
Collapse
|
2
|
Li D, Qi L, Gibril ME, Xue Y, Yang G, Yang M, Gu Y, Chen J. Switchable Solvent for Separation and Extraction of Lignin from Lignocellulose Biomass: An Investigation of Chemical Structure and Molecular Weight. Polymers (Basel) 2024; 16:3560. [PMID: 39771412 PMCID: PMC11679162 DOI: 10.3390/polym16243560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/17/2024] [Accepted: 12/17/2024] [Indexed: 01/11/2025] Open
Abstract
Lignin, the most abundant natural aromatic polymer, holds considerable promise for applications in various industries. The primary obstacle to the valorization of lignin into useful materials is its low molecular weight and diminished chemical reactivity, attributable to its intricate structure. This study aimed to treat lignocellulosic biomass using a switchable solvent (DBU-HexOH/H2O) derived from the non-nucleophilic superbase 1,8-diazabicyclo [5.4.0]undec-7-ene (DBU), which efficiently separates and extracts lignin from poplar wood. Additionally, it sought to characterize fundamental properties of the extracted switchable solvent lignin (SSL) and propose a mechanism for its separation. In comparison to milled wood lignin, SSL exhibits a greater molecular weight, superior homogeneity, and enhanced stability. The SSL sample was analyzed using spectroscopies including infrared spectroscopy, nuclear magnetic resonance, and X-ray photoelectron spectroscopy. The findings indicated that the structure of SSL was preserved, with the switchable solvent primarily cleaving the C-C and α-O-4 bonds, resulting in a low hydroxyl content, an elevated H/C ratio, and a reduced O/C ratio. The SSL was successfully prepared to lignin nanoparticles (LNPs) with size range of 531-955 nm. This paper presents a technique for processing lignocellulosic biomass using a switchable solvent, highlighting advancements in lignin's structure and enhancing its use in the chemical sector.
Collapse
Affiliation(s)
- Debao Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Letian Qi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Magdi E. Gibril
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
- Faculty of Industries Engineering and Technology, University of Gezira, Wad Medani 2667, Sudan
| | - Yu Xue
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Guihua Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Mengru Yang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Yujie Gu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| | - Jiachuan Chen
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (D.L.); (M.E.G.); (Y.X.); (M.Y.); (Y.G.); (J.C.)
| |
Collapse
|
3
|
Jeong S, Lee S, Lee G, Hyun J, Ryu B. Systematic Characteristics of Fucoidan: Intriguing Features for New Pharmacological Interventions. Int J Mol Sci 2024; 25:11771. [PMID: 39519327 PMCID: PMC11546589 DOI: 10.3390/ijms252111771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Fucoidan, a sulfated polysaccharide found primarily in brown algae, is known for exhibiting various biological activities, many of which have been attributed to its sulfate content. However, recent advancements in techniques for analyzing polysaccharide structures have highlighted that not only the sulfate groups but also the composition, molecular weight, and structures of the polysaccharides and their monomers play a crucial role in modulating biological effects. This review comprehensively provides the monosaccharide composition, degree of sulfation, molecular weight distribution, and linkage of glycosidic bonds of fucoidan, focusing on the diversity of its biological activities based on various characteristics. The implications of these findings for future applications and potential therapeutic uses of fucoidan are also discussed.
Collapse
Affiliation(s)
- Seungjin Jeong
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Seokmin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Geumbin Lee
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Jimin Hyun
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
| | - Bomi Ryu
- Department of Food Science Nutrition, Pukyong National University, Busan 48513, Republic of Korea; (S.J.); (S.L.); (G.L.)
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
4
|
Yang DH, Nah H, Lee D, Min SJ, Park S, An SH, Wang J, He H, Choi KS, Ko WK, Lee JS, Kwon IK, Lee SJ, Heo DN. A review on gold nanoparticles as an innovative therapeutic cue in bone tissue engineering: Prospects and future clinical applications. Mater Today Bio 2024; 26:101016. [PMID: 38516171 PMCID: PMC10952045 DOI: 10.1016/j.mtbio.2024.101016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/19/2024] [Accepted: 03/02/2024] [Indexed: 03/23/2024] Open
Abstract
Bone damage is a complex orthopedic problem primarily caused by trauma, cancer, or bacterial infection of bone tissue. Clinical care management for bone damage remains a significant clinical challenge and there is a growing need for more advanced bone therapy options. Nanotechnology has been widely explored in the field of orthopedic therapy for the treatment of a severe bone disease. Among nanomaterials, gold nanoparticles (GNPs) along with other biomaterials are emerging as a new paradigm for treatment with excellent potential for bone tissue engineering and regenerative medicine applications. In recent years, a great deal of research has focused on demonstrating the potential for GNPs to provide for enhancement of osteogenesis, reduction of osteoclastogenesis/osteomyelitis, and treatment of bone cancer. This review details the latest understandings in regards to GNPs based therapeutic systems, mechanisms, and the applications of GNPs against various bone disorders. The present review aims to summarize i) the mechanisms of GNPs in bone tissue remodeling, ii) preparation methods of GNPs, and iii) functionalization of GNPs and its decoration on biomaterials as a delivery vehicle in a specific bone tissue engineering for future clinical application.
Collapse
Affiliation(s)
- Dae Hyeok Yang
- Institute of Cell and Tissue Engineering, College of Medicine, The Catholic University of Korea, Seoul, 06591, Republic of Korea
| | - Haram Nah
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Donghyun Lee
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sung Jun Min
- Department of Dentistry, Graduate School, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Seulki Park
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Sang-Hyun An
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation (DGMIF), 80 Cheombok-ro, Dong-gu, Daegu, 41061, Republic of Korea
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai, 201203, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Kyu-Sun Choi
- Department of Neurosurgery, College of Medicine, Hanyang University, 222, Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Wan-Kyu Ko
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Kyung Hee University Medical Science Research Institute, Kyung Hee University, 23 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| | - Sang Jin Lee
- Biofunctional Materials, Division of Applied Oral Sciences and Community Dental Care, Faculty of Dentistry, The University of Hong Kong, 34 Hospital Road, Sai Ying Pun, Hong Kong SAR, China
| | - Dong Nyoung Heo
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul 02447, Republic of Korea
- Biofriends Inc, 26 Kyungheedae-Ro, Dongdaemun-Gu, Seoul, 02447, Republic of Korea
| |
Collapse
|
5
|
Pei W, Yu Y, Wang P, Zheng L, Lan K, Jin Y, Yong Q, Huang C. Research trends of bio-application of major components in lignocellulosic biomass (cellulose, hemicellulose and lignin) in orthopedics fields based on the bibliometric analysis: A review. Int J Biol Macromol 2024; 267:131505. [PMID: 38631574 DOI: 10.1016/j.ijbiomac.2024.131505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 04/06/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature. The results reveal a steady growth in publications focusing on the application of BC-LB in orthopedics, with China and the United States leading in research output. The "International Journal of Biological Macromolecules" was identified as the most cited journal for BC-LB research in orthopedics. The research hotspots encompassed bone tissue engineering, cartilage tissue engineering, and drug delivery systems, indicating the fundamental research and potential development in these areas. This study also highlights the challenges associated with the clinical application of BC-LB in orthopedics and provides valuable insights for future advancements in the field.
Collapse
Affiliation(s)
- Wenhui Pei
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China.
| | - Liming Zheng
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Sports Medicine and Adult Reconstructive Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, China; Department of Orthopedic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province 310000, PR China
| | - Kai Lan
- Department of Forest Biomaterials, College of Natural Resources, North Carolina State University, Raleigh, NC 27695, USA
| | - Yongcan Jin
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
6
|
Liu S, Xiao S, Wang B, Cai Y, Xie R, Wang X, Wang J. Fractional extraction of lignin from coffee beans with low cytotoxicity, excellent anticancer and antioxidant activities. Int J Biol Macromol 2024; 263:130509. [PMID: 38423438 DOI: 10.1016/j.ijbiomac.2024.130509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Lignin, a biopolymer generated from renewable resources, is widely present in terrestrial plants and possesses notable biosafety characteristics. The objective of this work was to assess the edible safety, in vitro antioxidant, and anti-cancer properties of various lignin fractions isolated from commercially available coffee beans often used for coffee preparation. The findings suggest that the phenolic hydroxyl content increased from 3.26 mmol/g (ED70L) to 5.81 mmol/g (ED0L) with decreasing molecular weight, which resulted in more significant antioxidant properties of the low molecular weight lignin fraction. The findings of the study indicate that the viability of RAW 264.7 and HaCaT cells decreased as the quantity of lignin fractions increased. It was observed that concentrations below 200 μg/mL did not exhibit any harmful effects on normal cells. The results of the study demonstrated a significant reduction of cancer cell growth (specifically A375 cells) at a concentration of 800 μg/mL for all lignin fractions, with an observed inhibition rate of 95 %. The results of this study indicate that the lignin extracts derived from coffee beans exhibit significant potential in mitigating diseases resulting from excessive radical production. Furthermore, these extracts show promise as natural antioxidants and anti-cancer agents.
Collapse
Affiliation(s)
- Shiwen Liu
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Shan Xiao
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Bo Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Yanxue Cai
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China
| | - Ruihong Xie
- College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xing Wang
- College of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Jihui Wang
- School of Life and Health Technology, Dongguan University of Technology, Dongguan 523808, China; Dongguan Prefabricated Food Innovation Development and Quality Control Key Laboratory, Dongguan 523808, China.
| |
Collapse
|
7
|
Su Z, Yao B, Liu G, Fang J. Polyphenols as potential preventers of osteoporosis: A comprehensive review on antioxidant and anti-inflammatory effects, molecular mechanisms, and signal pathways in bone metabolism. J Nutr Biochem 2024; 123:109488. [PMID: 37865383 DOI: 10.1016/j.jnutbio.2023.109488] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 10/03/2023] [Accepted: 10/17/2023] [Indexed: 10/23/2023]
Abstract
Osteoporosis (OP) is a skeletal disorder characterized by decreased bone density, alterations in bone microstructure, and increased damage to the bones. As the population ages and life expectancy increases, OP has become a global epidemic, drawing attention from scientists and doctors. Because of polyphenols have favorable antioxidant and anti-allergy effects, which are regarded as potential methods to prevent angiocardipathy and OP. Polyphenols offer a promising approach to preventing and treating OP by affecting bone metabolism, reducing bone resolution, maintaining bone density, and lowering the differentiation level of osteoclasts (OC). There are multiple ways in which polyphenols affect bone metabolism. This article provides an overview of how polyphenols inhibit oxidative stress, exert antibacterial effects, and prevent the occurrence of OP. Furthermore, we will explore the regulatory mechanisms and signaling pathways implicated in this process.
Collapse
Affiliation(s)
- Zhan Su
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Bin Yao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Gang Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China
| | - Jun Fang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Hunan Provincial Engineering Research Center of Applied Microbial Resources Development for Livestock and Poultry, Changsha, Hunan, China.
| |
Collapse
|
8
|
Li K, Zhong W, Li P, Ren J, Jiang K, Wu W. Recent advances in lignin antioxidant: Antioxidant mechanism, evaluation methods, influence factors and various applications. Int J Biol Macromol 2023; 251:125992. [PMID: 37544567 DOI: 10.1016/j.ijbiomac.2023.125992] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/07/2023] [Accepted: 07/21/2023] [Indexed: 08/08/2023]
Abstract
Lignin, a by-product of processing lignocellulosic materials, has a polyphenolic structure and can be used as an antioxidant directly or synergistically with synthetic types of antioxidants, leading to different applications. Its antioxidant mechanism is mainly related to the production of ROS, but the details need to be further investigated. The antioxidant property of lignin is mainly related to the content of phenolic hydroxyl group, but methoxy, purity will also have an effect on it. In addition, different methods to detect the antioxidant properties of lignin have different advantages and disadvantages. In this paper, the antioxidant mechanism of lignin, the methods to determine the antioxidant activity and the progress of its application in various fields are reviewed. In addition, the current research on the antioxidant properties of lignin and the hot directions are provided, and an outlook on the research into the antioxidant properties of lignin is provided to broaden its potential application areas.
Collapse
Affiliation(s)
- Kongyan Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Zhong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Penghui Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jianpeng Ren
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kangjie Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjuan Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
9
|
Hachimi Alaoui C, Réthoré G, Weiss P, Fatimi A. Sustainable Biomass Lignin-Based Hydrogels: A Review on Properties, Formulation, and Biomedical Applications. Int J Mol Sci 2023; 24:13493. [PMID: 37686299 PMCID: PMC10487582 DOI: 10.3390/ijms241713493] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/27/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Different techniques have been developed to overcome the recalcitrant nature of lignocellulosic biomass and extract lignin biopolymer. Lignin has gained considerable interest owing to its attractive properties. These properties may be more beneficial when including lignin in the preparation of highly desired value-added products, including hydrogels. Lignin biopolymer, as one of the three major components of lignocellulosic biomaterials, has attracted significant interest in the biomedical field due to its biocompatibility, biodegradability, and antioxidant and antimicrobial activities. Its valorization by developing new hydrogels has increased in recent years. Furthermore, lignin-based hydrogels have shown great potential for various biomedical applications, and their copolymerization with other polymers and biopolymers further expands their possibilities. In this regard, lignin-based hydrogels can be synthesized by a variety of methods, including but not limited to interpenetrating polymer networks and polymerization, crosslinking copolymerization, crosslinking grafted lignin and monomers, atom transfer radical polymerization, and reversible addition-fragmentation transfer polymerization. As an example, the crosslinking mechanism of lignin-chitosan-poly(vinyl alcohol) (PVA) hydrogel involves active groups of lignin such as hydroxyl, carboxyl, and sulfonic groups that can form hydrogen bonds (with groups in the chemical structures of chitosan and/or PVA) and ionic bonds (with groups in the chemical structures of chitosan and/or PVA). The aim of this review paper is to provide a comprehensive overview of lignin-based hydrogels and their applications, focusing on the preparation and properties of lignin-based hydrogels and the biomedical applications of these hydrogels. In addition, we explore their potential in wound healing, drug delivery systems, and 3D bioprinting, showcasing the unique properties of lignin-based hydrogels that enable their successful utilization in these areas. Finally, we discuss future trends in the field and draw conclusions based on the findings presented.
Collapse
Affiliation(s)
- Chaymaa Hachimi Alaoui
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
- Nantes Université, Oniris, Univ Angers, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France
| | - Gildas Réthoré
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Pierre Weiss
- Nantes Université, Oniris, Univ Angers, CHU Nantes, INSERM, Regenerative Medicine and Skeleton, RmeS, UMR 1229, F-44000 Nantes, France; (G.R.); (P.W.)
| | - Ahmed Fatimi
- Chemical Science and Engineering Research Team (ERSIC), FPBM, Sultan Moulay Slimane University, Mghila, P.O. Box 592, Beni Mellal 23000, Morocco;
| |
Collapse
|
10
|
Yan B, Deng J, Gu J, Tao Y, Huang C, Lai C, Yong Q. Comparison of structure and neuroprotective ability of low molecular weight galactomannans from Sesbania cannabina obtained by different extraction technologies. Food Chem 2023; 427:136642. [PMID: 37364317 DOI: 10.1016/j.foodchem.2023.136642] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 06/08/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
Low-molecular-weight-galactomannan (LMW-GM) is an edible polysaccharide with various biological activities. However, it is used in the field of neuroprotection. In this study, two types of LMW-GMs from Sesbania cannabina were obtained by gluconic acid extraction (GA-LMW-GM) and enzymatic hydrolysis (GMOS). The structure of GA-LMW-GM and GMOS were identified using different nuclear magnetic resonance (NMR) techniques. The antioxidant and neuroprotective activities of GA-LMW-GM and GMOS were evaluated in vitro/vivo. The results showed that both GA-LMW-GM and GMOS possess good free radicals scavenging ability in vitro with IC50 values of 1.9 mg/mL and 4.9 mg/mL for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radicals 2.8 mg/mL and 4.4 mg/mL for O2•- radicals, respectively. However, GA-LMW-GM was more effective at scavenging reactive oxygen species (ROS) in vivo and protecting the fundamental growth (with a recovery capability of 62.5%) and locomotor functions (with recovery capability of 193.7%) of zebrafish with neurological damage induced by Bisphenol AF.
Collapse
Affiliation(s)
- Bowen Yan
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junping Deng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Jie Gu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Yuheng Tao
- School of Pharmacy, School of Biology and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
11
|
Wei J, Ou Z, Tong B, Liao Z, Yang C. Engineered extracellular vesicles as therapeutics of degenerative orthopedic diseases. Front Bioeng Biotechnol 2023; 11:1162263. [PMID: 37362216 PMCID: PMC10289007 DOI: 10.3389/fbioe.2023.1162263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/19/2023] [Indexed: 06/28/2023] Open
Abstract
Degenerative orthopedic diseases, as a global public health problem, have made serious negative impact on patients' quality of life and socio-economic burden. Traditional treatments, including chemical drugs and surgical treatments, have obvious side effects and unsatisfactory efficacy. Therefore, biological therapy has become the focus of researches on degenerative orthopedic diseases. Extracellular vesicles (EVs), with superior properties of immunoregulatory, growth support, and drug delivery capabilities, have emerged as a new cell-free strategy for the treatment of many diseases, including degenerative orthopedic diseases. An increasing number of studies have shown that EVs can be engineered through cargo loading, surface modification, and chemical synthesis to improve efficiency, specificity, and safety. Herein, a comprehensive overview of recent advances in engineering strategies and applications of engineered EVs as well as related researches in degenerative orthopedic diseases, including osteoarthritis (OA), osteoporosis (OP), intervertebral disc degeneration (IDD) and osteonecrosis of the femoral head (ONFH), is provided. In addition, we analyze the potential and challenges of applying engineered EVs to clinical practice.
Collapse
Affiliation(s)
| | | | | | | | - Cao Yang
- *Correspondence: Zhiwei Liao, ; Cao Yang,
| |
Collapse
|
12
|
Chen RP, Wei XY, Gan CH, Cai BC, Xu WJ, Niyazi S, Wang Q, Yu L, Min HH, Yong Q. The acceleration on decolorization of azo dyes by magnetic lignin-based materials via enhancing the extracellular electron transfer. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 341:118022. [PMID: 37150166 DOI: 10.1016/j.jenvman.2023.118022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/19/2023] [Accepted: 04/24/2023] [Indexed: 05/09/2023]
Abstract
Two novel and eco-friendly redox mediators (RMs), magnetic oxidative vanillin (MOV) and magnetic oxidative syringaldehyde (MOS), both derived from lignin, were prepared to improve the decolorization of the methyl orange (MO) dye. The Decolorization Efficiency (DE) of MO in the batch experiments with MOV and MOS were increased by more than 60% and 22%, respectively, when compared to the control experiment without magnetic RMs. Moreover, the two magnetic RMs could maintain stable DE of MO in sequenced batch reactors (SBRs), and negligible leaching of the oxidized lignin monomers was observed under various environmental conditions. Density Function Theory (DFT) calculations were used to propose three potential biodegradation mechanisms for azo dyes, and the key intermediates were confirmed using high-performance liquid chromatography. This study proposed a feasible strategy for functional utilization of lignin resource, as well as a practical method for effectively treating azo dye-containing wastewater.
Collapse
Affiliation(s)
- Rong-Ping Chen
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Xin-Yuan Wei
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Cheng-Hao Gan
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Bing-Cai Cai
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Wen-Jie Xu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Shareen Niyazi
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Quan Wang
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Lei Yu
- Department of Environmental Engineering, College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China; College of Biology and the Environment, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Hui-Hua Min
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, 210037, China
| | - Qiang Yong
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
13
|
Abdullah T, İlyasoğlu G, Memić A. Designing Lignin-Based Biomaterials as Carriers of Bioactive Molecules. Pharmaceutics 2023; 15:pharmaceutics15041114. [PMID: 37111600 PMCID: PMC10143462 DOI: 10.3390/pharmaceutics15041114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
There is a need to develop circular and sustainable economies by utilizing sustainable, green, and renewable resources in high-tech industrial fields especially in the pharmaceutical industry. In the last decade, many derivatives of food and agricultural waste have gained considerable attention due to their abundance, renewability, biocompatibility, environmental amiability, and remarkable biological features. Particularly, lignin, which has been used as a low-grade burning fuel in the past, recently attracted a lot of attention for biomedical applications because of its antioxidant, anti-UV, and antimicrobial properties. Moreover, lignin has abundant phenolic, aliphatic hydroxyl groups, and other chemically reactive sites, making it a desirable biomaterial for drug delivery applications. In this review, we provide an overview of designing different forms of lignin-based biomaterials, including hydrogels, cryogels, electrospun scaffolds, and three-dimensional (3D) printed structures and how they have been used for bioactive compound delivery. We highlight various design criteria and parameters that influence the properties of each type of lignin-based biomaterial and corelate them to various drug delivery applications. In addition, we provide a critical analysis, including the advantages and challenges encountered by each biomaterial fabrication strategy. Finally, we highlight the prospects and future directions associated with the application of lignin-based biomaterials in the pharmaceutical field. We expect that this review will cover the most recent and important developments in this field and serve as a steppingstone for the next generation of pharmaceutical research.
Collapse
|
14
|
Improving the protective ability of lignin against vascular and neurological development in BPAF-induced zebrafish by high-pressure homogenization technology. Int J Biol Macromol 2023; 231:123356. [PMID: 36682655 DOI: 10.1016/j.ijbiomac.2023.123356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
The lack of a sufficient amount of functional groups in the lignin structure limits its bioapplication. In this work, high-pressure homogenization was performed on original kraft lignin (L-ORI) to prepare lignin nanoparticles (L-NANO), which aimed to improve its functional group contents for further vascular and neurological applications. The results showed that the prepared L-NANO possessed spherical structures with diameters of 40.3-160.4 nm and increased amount of hydroxyl groups. Compared to L-ORI, L-NANO possessed better in vivo and in vitro antioxidant capacity, which could endow it with enhanced protective effects for the vascular and neural development of bisphenol AF (BPAF)-induced zebrafish. In addition, L-NANO reduced the neurotoxicity and cardiovascular toxicity of BPAF in zebrafish by upregulating the expression levels of oxidative stress-related genes (Cu/Zn-Sod and cat), which could further significantly upregulate the expression levels of neurogenesis genes (elavl3, gap43, mbp, and syn2a) and protect the contraction of the cardinal vein (CCV) and early central nervous system development by upregulating the expression levels of vascular genes (flk1 and flt4). The excellent cardiovascular and neurodevelopmental protective ability of L-NANO indicated that high-pressure homogenization is a promising technology for improving the bioactivity of lignin.
Collapse
|
15
|
Protective effects of lignin fractions obtained from grape seeds against bisphenol AF neurotoxicity via antioxidative effects mediated by the Nrf2 pathway. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2237-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
16
|
Wang Z, Yang S, Gao Y, Huang J. Extraction and purification of antioxidative flavonoids from Chionanthus retusa leaf. Front Bioeng Biotechnol 2022; 10:1085562. [PMID: 36568308 PMCID: PMC9780382 DOI: 10.3389/fbioe.2022.1085562] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
In this work, flavonoids from the leaves of Chionanthus retusa were extracted using alcohol, and the extraction yield was optimized by single-factor and orthogonal experiments. Then, the extracted solution with flavonoids was purified via macroporous resin by elution with different concentrations of ethanol. The antioxidative activity of total flavonoid in purified extracted solution was evaluated by detecting its ability to scavenge DPPH free radicals. The results demonstrated that ethanol with a concentration of 60%, ultrasonic power of 140 W, liquid-solid ratio of 25:1 ml g-1, and water-bath temperature of 80°C were the optimal conditions for the extraction of total flavonoids from C. retusa leaf, achieving a yield of 121.28 mg g-1. After purification by macroporous resin using different concentrations of ethanol, the highest content of total flavonoids (88.51%) in the extracted solution can be obtained with the 50% ethanol eluant. The results of scavenging DPPH free radicals suggest that the purified flavonoids in the 50% ethanol eluant had the best antioxidant capacity over the flavonoids in other ethanol eluants. In addition, it is confirmed the antioxidant capacity of the extractives was associated with the content of total flavonoids and kinds of flavonoids. These results may provide a feasible pathway to make full use of total flavonoids from C. retusa leaf.
Collapse
Affiliation(s)
- Zhen Wang
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| | - Shilong Yang
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing, China,*Correspondence: Shilong Yang,
| | - Yajun Gao
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| | - Jianting Huang
- Lianyungang Forestry Technical Guidance Station, Lianyungang, China
| |
Collapse
|
17
|
Jasminum sambac Cell Extract as Antioxidant Booster against Skin Aging. Antioxidants (Basel) 2022; 11:antiox11122409. [PMID: 36552617 PMCID: PMC9774971 DOI: 10.3390/antiox11122409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Oxidative stress plays a major role in the skin aging process through the reactive oxygen species production and advanced glycation end products (AGEs) formation. Antioxidant ingredients are therefore needed in the skin care market and the use of molecules coming from plant cell cultures provide a unique opportunity. In this paper, the features of an hydroethanolic extract obtained by Jasminum sambac cells (JasHEx) were explored. The antioxidant and anti-AGE properties were investigated by a multidisciplinary approach combining mass spectrometric and bio-informatic in vitro and ex vivo experiments. JasHEx contains phenolic acid derivatives, lignans and triterpenes and it was found to reduce cytosolic reactive oxygen species production in keratinocytes exposed to exogenous stress. It also showed the ability to reduce AGE formation and to increase the collagen type I production in extracellular matrix. Data demonstrated that JasHEx antioxidant properties were related to its free radical scavenging and metal chelating activities and to the activation of the Nrf2/ARE pathway. This can well explain JasHEx anti-inflammatory activity related to the decrease in NO levels in LPS-stimulated macrophages. Thus, JasHEx can be considered a powerful antioxidant booster against oxidative stress-induced skin aging.
Collapse
|
18
|
Liu Y, Wang X, Wu Q, Pei W, Teo MJ, Chen ZS, Huang C. Application of lignin and lignin-based composites in different tissue engineering fields. Int J Biol Macromol 2022; 222:994-1006. [DOI: 10.1016/j.ijbiomac.2022.09.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/17/2022] [Accepted: 09/28/2022] [Indexed: 12/17/2022]
|
19
|
Qian H, Liu J, Wang X, Pei W, Fu C, Ma M, Huang C. The state-of-the-art application of functional bacterial cellulose-based materials in biomedical fields. Carbohydr Polym 2022; 300:120252. [DOI: 10.1016/j.carbpol.2022.120252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
20
|
Argenziano R, Moccia F, Esposito R, D’Errico G, Panzella L, Napolitano A. Recovery of Lignins with Potent Antioxidant Properties from Shells of Edible Nuts by a Green Ball Milling/Deep Eutectic Solvent (DES)-Based Protocol. Antioxidants (Basel) 2022; 11:antiox11101860. [PMID: 36290583 PMCID: PMC9598286 DOI: 10.3390/antiox11101860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 11/25/2022] Open
Abstract
Lignins are phenolic polymers endowed with potent antioxidant properties that are finding increasing applications in a variety of fields. Consequently, there is a growing need for easily available and sustainable sources, as well as for green extraction methodologies of these compounds. Herein, a ball milling/deep eutectic solvent (DES)-based treatment is reported as an efficient strategy for the recovery of antioxidant lignins from the shells of edible nuts, namely chestnuts, hazelnuts, peanuts, pecan nuts, and pistachios. In particular, preliminarily ball-milled shells were treated with 1:2 mol/mol choline chloride:lactic acid at 120 °C for 24 h, and the extracted material was recovered in 19–27% w/w yields after precipitation by the addition of 0.01 M HCl. Extensive spectroscopic and chromatographic analysis allowed for confirmation that the main phenolic constituents present in the shell extracts were lignins, accompanied by small amounts (0.9% w/w) of ellagic acid, in the case of chestnut shells. The recovered samples exhibited very promising antioxidant properties, particularly in the 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay (EC50 values ranging from 0.03 to 0.19 mg/mL). These results open new perspectives for the valorization of nut shells as green sources of lignins for applications as antioxidants, e.g., in the biomedical, food, and/or cosmetic sector.
Collapse
|
21
|
Gordobil O, Li H, Izquierdo AA, Egizabal A, Sevastyanova O, Sandak A. Surface chemistry and bioactivity of colloidal particles from industrial kraft lignins. Int J Biol Macromol 2022; 220:1444-1453. [PMID: 36122772 DOI: 10.1016/j.ijbiomac.2022.09.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/12/2022] [Indexed: 11/05/2022]
Abstract
The morphology control of lignin through particle size reduction to nanoscale seems to be a suitable conversion technology to overcome the intrinsic limitations of its native form to develop a wide range of biomaterials with high performance. Colloidal lignin particles (CLPs) in the range of 150-200 nm were synthesised from hardwood and softwood kraft lignins by the solvent shifting method. The initial molecular features of kraft lignins were evaluated in terms of purity, molecular weight distribution, and chemical functionalities. The impact of the lignin source and structure on the morphology, size distribution, and surface chemistry of CLPs was evaluated by particle size analyser, SEM, TEM and 1H NMR. The results evidenced the influence of the botanical origin on the morphology and surface chemistry of particles. Furthermore, the antioxidant properties and cytotoxicity of lignins and corresponding CLPs, towards lung fibroblast cells were compared. CLPs from hardwood kraft lignins exhibited higher antioxidant power against DPPH free radical and a higher cytotoxic effect (IC30 = 67-70 μg/mL) against lung fibroblast when compared to CLPs from softwood kraft lignin (IC30 = ~91 μg/mL). However, the cytotoxicity of these biomaterials was dose-dependent, suggesting their potential application as active ingredients in cosmetic and pharmaceutic products at low concentrations.
Collapse
Affiliation(s)
| | - Huisi Li
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm 100 44, Sweden
| | - Ana Ayerdi Izquierdo
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastian 20009, Spain
| | - Ainhoa Egizabal
- TECNALIA, Basque Research and Technology Alliance (BRTA), Mikeletegi Pasealekua 2, Donostia-San Sebastian 20009, Spain
| | - Olena Sevastyanova
- Department of Fiber and Polymer Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm 100 44, Sweden; Wallenberg Wood Science Center, WWSC, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, Teknikringen 56-58, Stockholm 100 44, Sweden.
| | - Anna Sandak
- InnoRenew CoE, Livade 6, 6310 Izola, Slovenia; University of Primorska, Faculty of Mathematics, Natural Sciences and Information Technologies, Glagoljaska 8, 6000 Koper, Slovenia
| |
Collapse
|
22
|
Wang Q, Su Y, Gu Y, Lai C, Ling Z, Yong Q. Valorization of bamboo shoot shell waste for the coproduction of fermentable sugars and xylooligosaccharides. Front Bioeng Biotechnol 2022; 10:1006925. [PMID: 36185456 PMCID: PMC9523113 DOI: 10.3389/fbioe.2022.1006925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
In this work, hydrothermal pretreatment (autohydrolysis) was coupled with endo-xylanase enzymatic hydrolysis for bamboo shoot shell (BSS) to produce glucose and valuable xylooligosaccharides (XOS) rich in xylobiose (X2) and xylotriose (X3). Results showed that the enzymatic hydrolysis efficiency of pretreated BSS residue reached 88.4% with addition of PEG during the hydrolysis process. To enrich the portions of X2–X3 in XOS, endo-xylanase was used to hydrolyze the XOS in the prehydrolysate, which was obtained at the optimum condition (170°C, 50 min). After enzymatic hydrolysis, the yield of XOS reached 25.6%, which contained 76.7% of X2–X3. Moreover, the prehydrolysate contained a low concentration of fermentation inhibitors (formic acid 0.7 g/L, acetic acid 2.6 g/L, furfural 0.7 g/L). Based on mass balance, 32.1 g of glucose and 6.6 g of XOS (containing 5.1 g of X2-X3) could be produced from 100.0 g of BSS by the coupled technology. These results indicate that BSS could be an economical feedstock for the production of glucose and XOS.
Collapse
Affiliation(s)
- Qiyao Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yan Su
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Yang Gu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, China
- *Correspondence: Qiang Yong,
| |
Collapse
|
23
|
Yang J, Guo R, Yang H, Wu L. Synthesis, determination, and bio-application in cellular and biomass-bamboo imaging of natural cinnamaldehyde derivatives. Front Bioeng Biotechnol 2022; 10:963128. [PMID: 36032717 PMCID: PMC9402932 DOI: 10.3389/fbioe.2022.963128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 07/11/2022] [Indexed: 11/21/2022] Open
Abstract
Cinnamon essential oil (CEO) is the main ingredient in the renewable biomass of cinnamon, which contains natural cinnamaldehyde. To valorize the value of cinnamaldehyde, two simple and useful compounds (1 and 2) from CEO were synthesized using a Schiff-base reaction and characterized by infrared spectra (IR), nuclear magnetic resonance (NMR), and high-resolution mass spectrometry (HRMS). Compound 1 was used to confirm the presence of Fe3+ and ClO− in solution, as well as compound 2. Using fluorescence enhancement phenomena, it offered practicable linear relationship of 1’s fluorescence intensity and Fe3+ concentrations: (0–8.0 × 10−5 mol/L), y = 36.232x + 45.054, R2 = 0.9947, with a limit of detection (LOD) of 0.323 μM, as well as compound 2. With increasing fluorescence, F404/F426 of 1 and the ClO− concentration (0–1.0 × 10−4 mol/L) also had a linear relationship: y = 0.0392x + 0.5545, R2 = 0.9931, LOD = 0.165 μM. However, the fluorescence intensity of 2 (596 nm) was quenched by a reduced concentration of ClO−, resulting in a linear. In addition, compounds 1 and 2 were used to image human astrocytoma MG (U-251), brain neuroblastoma (LN-229) cells, and bamboo tissue by adding Fe3+ or ClO−, with clear intracellular fluorescence. Thus, the two compounds based on CEO could be used to dye cells and bamboo tissues by fluorescence technology.
Collapse
Affiliation(s)
- Jinlai Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
| | - Rencong Guo
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Huimin Yang
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
| | - Liangru Wu
- China National Bamboo Research Center, Hangzhou, China
- Key Laboratory of Bamboo Forest Ecology and Resource Utilization of National Forestry and Grassland Administration, Hangzhou, China
- Key Laboratory of High Efficient Processing of Bamboo of Zhejiang Province, Hangzhou, China
- National Longterm Observation and Research Station for Forest Ecosystem in Hangzhou-Jiaxing-Huzhou Plain, Hangzhou, China
- Bamboo Industry (Jian'ou) Branch, Fujian Provincial Collaborative Innovation Institute, Jian'ou, China
- *Correspondence: Liangru Wu,
| |
Collapse
|
24
|
Chen ZS, Yan M, Pei W, Yan B, Huang C, Chan HYE. Lignin-carbohydrate complexes suppress SCA3 neurodegeneration via upregulating proteasomal activities. Int J Biol Macromol 2022; 218:690-705. [PMID: 35872311 DOI: 10.1016/j.ijbiomac.2022.07.133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/12/2022] [Accepted: 07/18/2022] [Indexed: 01/15/2023]
Abstract
Lignin-carbohydrate complexes (LCCs) represent a group of macromolecules with diverse biological functions such as antioxidative properties. Polyglutamine (polyQ) diseases such as spinocerebellar ataxia type 3 (SCA3) comprise a set of neurodegenerative disorders characterized by the formation of polyQ protein aggregates in patient neurons. LCCs have been reported to prevent such protein aggregation. In this study, we identified a potential mechanism underlying the above anti-protein aggregation activity. We isolated and characterized multiple LCC fractions from bamboo and poplar and found that lignin-rich LCCs (BM-LCC-AcOH and PR-LCC-AcOH) effectively eliminated both monomeric and aggregated mutant ataxin-3 (ATXN3polyQ) proteins in neuronal cells and a Drosophila melanogaster SCA3 disease model. In addition, treatment with BM-LCC-AcOH or PR-LCC-AcOH rescued photoreceptor degeneration in vivo. At the mechanistic level, we demonstrated that BM-LCC-AcOH and PR-LCC-AcOH upregulated proteasomal activity. When proteasomal function was impaired, the ability of the LCCs to suppress ATXN3polyQ aggregation was abolished. Thus, we identified a previously undescribed proteasome-inducing function of LCCs and showed that such activity is indispensable for the beneficial effects of LCCs on SCA3 neurotoxicity.
Collapse
Affiliation(s)
- Zhefan Stephen Chen
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Mingqi Yan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China
| | - Wenhui Pei
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Bowen Yan
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Department of Bioengineering, Nanjing Forestry University, Nanjing, China.
| | - Ho Yin Edwin Chan
- School of Life Sciences, Faculty of Science, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China; Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China.
| |
Collapse
|