1
|
Jiao X, Jia K, Yu Y, Liu D, Zhang J, Zhang K, Zheng H, Sun X, Tong Y, Wei Q, Lv P. Nanocellulose-based functional materials towards water treatment. Carbohydr Polym 2025; 350:122977. [PMID: 39647961 DOI: 10.1016/j.carbpol.2024.122977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/01/2024] [Accepted: 11/10/2024] [Indexed: 12/10/2024]
Abstract
Water resources are important ecological resources for human survival. To date, advanced water purification technology has become one of the focus of global attention due to the continuous deterioration of the environment and the serious shortage of freshwater resources. Recently, nanocellulose, as a kind of sustainable and carbon-neutral biopolymer, has not only the properties of cellulose, but also the important nature of nanomaterials, including large specific surface area, tailorable surface chemistry, excellent mechanical flexibility, biodegradability, and environmental compatibility. Herein, this review covers several methods of extraction and preparation of nanocellulose and the functional modification strategies. Subsequently, we systematically review the application and latest research progress of nanocellulose-based functional material towards water treatment, from micro/nanoparticles filtration, dyes/organics adsorption/degradation, heavy metal ions adsorption/detection and oil-water separation to seawater desalination. Furthermore, scalable and low-cost nanocellulose synthesis strategies are discussed. Finally, the challenges and opportunities of nanocellulose water purification substrate in industrial application and emerging directions are briefly discussed. This review is expected to provide new insights for the application of advanced functional materials based on nanocellulose in water treatment and environmental remediation, and promote rapid cross-disciplinary development.
Collapse
Affiliation(s)
- Xiaohui Jiao
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Keli Jia
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yajing Yu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Danyu Liu
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jingli Zhang
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Kai Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, eQilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Huanda Zheng
- National Supercritical Fluid Dyeing Technology Research Center, Dalian Polytechnic University, Dalian, Liaoning 116034, PR China
| | - Xiaohang Sun
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, PR China
| | - Yingjia Tong
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Qufu Wei
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Pengfei Lv
- Key Laboratory of Eco-Textiles, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Wang X, Luo S, Luo J, Liu L, Hu Y, Li Z, Jiang L, Qin H. Fluorescent cellulose nanofibrils hydrogels for sensitive detection and efficient adsorption of Cu 2+ and Cr 6. Carbohydr Polym 2025; 347:122748. [PMID: 39486977 DOI: 10.1016/j.carbpol.2024.122748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 11/04/2024]
Abstract
Increasing chromium and copper pollution poses a significant threat to the global environment and human health. It is crucial to detect and remove Cu (II) and Cr (VI) from water. Cellulose nanofibrils (CNF)-based hydrogels were a natural, abundant, and biocompatible material that has attracted great attention for bio adsorption applications. In this work, a new fluorescent CNF-based hydrogel (PAA-CNF-W) was prepared for the high-efficiency adsorption and sensitive detection of Cu (II) and Cr (VI). CNF was introduced as a natural backbone to construct a three-dimensional porous structure, which increased the specific surface area and provided additional active sites, exhibiting excellent adsorption properties for Cu (II) (159.24 mg/g) and Cr (VI) (173.87 mg/g). Moreover, the synthesized dansyl chloride derivatives with fluorescent properties were introduced to the hydrogel and formed chelates with the metals leading to fluorescence quenching. PAA-CNF-W hydrogels showed high sensitivity to the detection limit (LOD) of Cu (II) (28.70 mg/L) and Cr (VI) (1.45 mg/L). The kinetic study revealed that pseudo-second order kinetics was the best-fitting model. The Langmuir isotherm was the best adjustment model. The study provides a new idea for efficient detection and removal of Cu (II) and Cr (VI) from wastewater by cellulose materials.
Collapse
Affiliation(s)
- Xinran Wang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Shipeng Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Jing Luo
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Liyang Liu
- Forest products and Chemical Engineering Division, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Yaxin Hu
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Ze Li
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China
| | - Li Jiang
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| | - Hengfei Qin
- School of Resources and Environmental Engineering, Jiangsu University of Technology, Changzhou 213001, China.
| |
Collapse
|
3
|
Qi X, Xiong X, Cai H, Zhang X, Ma Q, Tan H, Guo X, Lv H. Carbon dots-loaded cellulose nanofibrils hydrogel incorporating Bi 2O 3/BiOCOOH for effective adsorption and photocatalytic degradation of lignin. Carbohydr Polym 2024; 346:122601. [PMID: 39245520 DOI: 10.1016/j.carbpol.2024.122601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
A novel photocatalytic adsorbent, a cellulose nanofibrils based hydrogel incorporating carbon dots and Bi2O3/BiOCOOH (designated as CCHBi), was developed to address lignin pollution. CCHBi exhibited an adsorption capacity of 435.0 mg/g, 8.9 times greater than that of commercial activated carbon. This enhanced adsorption performance was attributed to the 3D porous structure constructed using cellulose nanofibrils (CNs), which increased the specific surface area and provided additional sorption sites. Adsorption and photocatalytic experiments showed that CCHBi had a photocatalytic degradation rate constant of 0.0140 min-1, 3.1 times higher than that of Bi2O3/BiOCOOH. The superior photocatalytic performance of CCHBi was due to the Z-scheme photocatalytic system constructed by carbon dots-loaded cellulose nanofibrils and Bi2O3/BiOCOOH, which facilitated the separation of photoinduced charge carriers. Additionally, the stability of CCHBi was confirmed through consecutive cycles of adsorption and photocatalysis, maintaining a removal efficiency of 85 % after ten cycles. The enhanced stability was due to the 3D porous structure constructed by CNs, which safeguarded the Bi2O3/BiOCOOH. This study validates the potential of CCHBi for high-performance lignin removal and promotes the application of CNs in developing new photocatalytic adsorbents.
Collapse
Affiliation(s)
- Xinmiao Qi
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiang Xiong
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Haoxuan Cai
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China; College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xuefeng Zhang
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qiang Ma
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Haining Tan
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Xin Guo
- College of Chemistry and Chemical Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Huiying Lv
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China.
| |
Collapse
|
4
|
Nordin AH, Yusoff AH, Husna SMN, Noor SFM, Norfarhana AS, Paiman SH, Ilyas RA, Nordin ML, Osman MS, Abdullah N. Recent advances in nanocellulose-based adsorbent for sustainable removal of pharmaceutical contaminants from water bodies: A review. Int J Biol Macromol 2024; 280:135799. [PMID: 39307484 DOI: 10.1016/j.ijbiomac.2024.135799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/25/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The long-term presence of pharmaceutical pollution in water bodies has raised public awareness. Nanocellulose is often used in adsorption to remove pollutants from wastewater since it is an abundant, green and sustainable material. This paper offers an extensive overview of the recent works reporting the potential of nanocellulose-based adsorbents to treat pharmaceutical wastewater. This study distinguishes itself by not only summarizing recent research findings but also critically integrating discussions on the improvements in nanocellulose production and sorts of alterations based on the type of pharmaceutical contaminants. Commonly, charged, or hydrophobic characteristics are introduced onto nanocellulose surfaces to accelerate and enhance the removal of pharmaceutical compounds. Although adsorbents based on nanocellulose have considerable potential, several significant challenges impede their practical application, particularly concerning cost and scalability. Large-scale synthesis of nanocellulose is technically challenging and expensive, which prevents its widespread use in wastewater treatment plants. Continued innovation in this area could lead to breakthroughs in the practical application of nanocellulose as a superior adsorbent. The prospects of utilization of nanocellulose are explained, providing a sustainable way to address the existing restriction and maximize the application of the modified nanocellulose in the field of pharmaceutical pollutants removal.
Collapse
Affiliation(s)
- Abu Hassan Nordin
- Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Arau 02600, Perlis, Malaysia; Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia; EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Abdul Hafidz Yusoff
- Gold, Rare Earth and Material Technopreneurship Centre (GREAT), Faculty of Bioengineering and Technology, Universiti Malaysia Kelantan, Jeli, Kelantan 17600, Malaysia.
| | - Siti Muhamad Nur Husna
- Department of Primary Care Medicine, Faculty of Medicine, Universiti Malaya, 50603 Wilayah Persekutuan Kuala Lumpur, Malaysia
| | - Siti Fadilla Md Noor
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Abdul Samad Norfarhana
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Syafikah Huda Paiman
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Rushdan Ahmad Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), Skudai 81310, Johor, Malaysia
| | - Muhammad Luqman Nordin
- Department of Clinical Studies, Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa, Kota Bharu 16100, Kelantan, Malaysia
| | - Mohamed Syazwan Osman
- EMZI-UiTM Nanoparticles Colloids & Interface Industrial Research Laboratory (NANO-CORE), Chemical Engineering Studies, College of Engineering, Universiti Teknologi MARA, Cawangan Pulau Pinang, 13500 Permatang Pauh Campus, Pulau Pinang, Malaysia
| | - Norfazliana Abdullah
- Oil and Gas Engineering Programme, Faculty of Engineering, Universiti Malaysia Sabah, Jalan UMS, 88400 Kota Kinabalu, Sabah, Malaysia
| |
Collapse
|
5
|
Lv X, Huang Y, Hu M, Wang Y, Dai D, Ma L, Zhang Y, Dai H. Recent advances in nanocellulose based hydrogels: Preparation strategy, typical properties and food application. Int J Biol Macromol 2024; 277:134015. [PMID: 39038566 DOI: 10.1016/j.ijbiomac.2024.134015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/05/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Nanocellulose has been favored as one of the most promising sustainable nanomaterials, due to its competitive advantages and superior performances such as hydrophilicity, renewability, biodegradability, biocompatibility, tunable surface features, excellent mechanical strength, and high specific surface area. Based on the above properties of nanocellulose and the advantages of hydrogels such as high water absorption, adsorption, porosity and structural adjustability, nanocellulose based hydrogels integrating the benefits of both have attracted extensive attention as promising materials in various fields. In this review, the main fabrication strategies of nanocellulose based hydrogels are initially discussed in terms of different crosslinking methods. Then, the typical properties of nanocellulose based hydrogels are comprehensively summarized, including porous structure, swelling ability, adsorption, mechanical, self-healing, smart response performances. Especially, relying on these properties, the general application of nanocellulose based hydrogels in food field is also discussed, mainly including food packaging, food detection, nutrient embedding delivery, 3D food printing, and enzyme immobilization. Finally, the safety of nanocellulose based hydrogel is summarized, and the current challenges and future perspectives of nanocellulose based hydrogels are put forward.
Collapse
Affiliation(s)
- Xiangxiang Lv
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yue Huang
- Chongqing Sericulture Science and Technology Research Institute, Chongqing, 400700, China
| | - Mengtao Hu
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuxi Wang
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Difei Dai
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Liang Ma
- College of Food Science, Southwest University, Chongqing, 400715, China
| | - Yuhao Zhang
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China
| | - Hongjie Dai
- College of Food Science, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Speciality Food Co-Built by Sichuan and Chongqing, Chongqing, 400715, China.
| |
Collapse
|
6
|
Hamidon TS, Garba ZN, Zango ZU, Hussin MH. Biopolymer-based beads for the adsorptive removal of organic pollutants from wastewater: Current state and future perspectives. Int J Biol Macromol 2024; 269:131759. [PMID: 38679272 DOI: 10.1016/j.ijbiomac.2024.131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/13/2024] [Accepted: 04/20/2024] [Indexed: 05/01/2024]
Abstract
Among biopolymer-based adsorbents, composites in the form of beads have shown promising results in terms of high adsorption capacity and ease of separation from the effluents. This review addresses the potential of biopolymer-based beads to remediate wastewaters polluted with emerging organic contaminants, for instance dyes, active pharmaceutical ingredients, pesticides, phenols, oils, polyaromatic hydrocarbons, and polychlorinated biphenyls. High adsorption capacities up to 2541.76 mg g-1 for dyes, 392 mg g-1 for pesticides and phenols, 1890.3 mg g-1 for pharmaceuticals, and 537 g g-1 for oils and organic solvents have been reported. The review also attempted to convey to its readers the significance of wastewater treatment through adsorption by providing an overview on decontamination technologies of organic water contaminants. Various preparation methods of biopolymer-based gel beads and adsorption mechanisms involved in the process of decontamination have been summarized and analyzed. Therefore, we believe there is an urge to discuss the current state of the application of biopolymer-based gel beads for the adsorption of organic pollutants from wastewater and future perspectives in this regard since it is imperative to treat wastewater before releasing into freshwater bodies.
Collapse
Affiliation(s)
- Tuan Sherwyn Hamidon
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| | | | - Zakariyya Uba Zango
- Department of Chemistry, Faculty of Science, Al-Qalam University Katsina, Katsina 820101, Nigeria
| | - M Hazwan Hussin
- Materials Technology Research Group (MaTReC), School of Chemical Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia.
| |
Collapse
|
7
|
Dakhly HA, Albohy SAH, Salman AA, Abo Dena AS. Facile synthesis of a magnetic molecularly-imprinted polymer adsorbent for solid-phase extraction of diclofenac from water. RSC Adv 2024; 14:15942-15952. [PMID: 38756847 PMCID: PMC11097753 DOI: 10.1039/d4ra02529f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024] Open
Abstract
Numerous pollutants endanger the safety and purity of water, making water pollution a major worldwide concern. The health of people and aquatic ecosystems are at risk from these contaminants, which include hazardous microbes, industrial waste, and agricultural runoff. Fortunately, there appears to be a viable option to address this problem with adsorptive water treatment techniques. The present study presents a magnetic adsorbent (MMIP) based on molecularly imprinted polyaniline and magnetite nanoparticles for the solid-phase extraction of diclofenac, an anti-inflammatory medication, from industrial wastewater. The adsorbent nanomaterial was characterized using dynamic light scattering, zeta potential measurement, vibrating sample magnetometry, X-ray diffraction, and scanning electron microscopy. The MMIP demonstrated a particle size of 86.3 nm and an adsorption capacity of 139.7 mg g-1 at 600 mg L-1 of diclofenac and after a 200 min incubation period. The highest %removal was attained at pH range of 3-7. The adsorption process follows the pseudo-second order kinetic model. In addition, it was found that the adsorption process is enthalpy-driven and may occur via hydrogen bonding and/or van der Waals interactions.
Collapse
Affiliation(s)
- Heba Ali Dakhly
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
| | - Salwa A H Albohy
- Chemistry Department, Faculty of Science (Girl's), Al-Azhar University Youssif Abbas St., P.O. Box 11754 Nasr-City Cairo Egypt
| | - Aida A Salman
- Chemistry Department, Faculty of Science (Girl's), Al-Azhar University Youssif Abbas St., P.O. Box 11754 Nasr-City Cairo Egypt
| | - Ahmed S Abo Dena
- Faculty of Oral and Dental Medicine, Future University in Egypt (FUE) New Cairo Egypt
- Pharmaceutical Chemistry Department, National Organization for Drug Control and Research (NODCAR) Giza Egypt
| |
Collapse
|
8
|
Ko M, Jang T, Yoon S, Lee J, Choi JH, Choi JW, Park JA. Synthesis of recyclable and light-weight graphene oxide/chitosan/genipin sponges for the adsorption of diclofenac, triclosan, and microplastics. CHEMOSPHERE 2024; 356:141956. [PMID: 38604514 DOI: 10.1016/j.chemosphere.2024.141956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/16/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
Emerging micropollutants, such as pharmaceuticals and microplastics (MPs), have become a pressing water environmental concern. The aim of this study is to synthesize chitosan sponges using graphene oxide (GO) and genipin (GP) for the removal of pharmaceuticals (diclofenac (DCF) and triclosan (TCS)) and MPs, verify their adsorption mechanisms, evaluate the effects of temperature, pH, and salinity on their adsorption capacities, and determine their reusability. The GO5/CS/GP sponge exhibited a macroporous nature (porosity = 95%, density = 32.6 mg/cm3). GO and cross-linker GP enhanced the adsorption of DCF, TCS, and polystyrene (PS) MPs onto the CS sponges. The adsorption of DCF, TCS, and PS MPs involved multiple steps: surface diffusion and pore diffusion of the sponge. The adsorption isotherms demonstrated that Langmuir model was the most fitted well model to explain adsorption of TCS (qm = 7.08 mg/g) and PS MPs (qm = 7.42 mg/g) on GO5/CS/GP sponge, while Freundlich model suited for DCF adsorption (qm = 48.58 mg/g). DCF adsorption was thermodynamically spontaneous and endothermic; however, the adsorption of TCS and PS MPs was exothermic (283-313 K). The optimal pH was 5.5-7 due to the surface charge of the GO5/CS/GP sponge (pHzpc = 5.76) and ionization of DCF, TCS, and PS MPs. As the salinity increased, DCF removal efficiency drastically decreased due to the weakening of electrostatic interactions; however, TCS removal efficiency remained stable because TCS adsorption was mainly caused by hydrophobic and π-π interactions rather than electrostatic interaction. The removal of PS MPs was enhanced by the electrostatic screening effects of high Na+ ions. PS nanoplastics (average size = 26 nm) were removed by the GO5/CS/GP sponge at a rate of 73.0%, which was better than that of PS MPs (41.5%). In addition, the GO5/CS/GP sponge could be recycled over five adsorption-desorption cycles.
Collapse
Affiliation(s)
- Mingi Ko
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Taesoon Jang
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Soyeong Yoon
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jooyoung Lee
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jin-Hyuk Choi
- Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Jae-Woo Choi
- Water Cycle Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea; Division of Energy & Environment Technology, KIST School, Korea University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Jeong-Ann Park
- Department of Environmental Engineering, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Integrated Energy and Infra System, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
9
|
Majeed F, Razzaq A, Rehmat S, Azhar I, Mohyuddin A, Rizvi NB. Enhanced dye sequestration with natural polysaccharides-based hydrogels: A review. Carbohydr Polym 2024; 330:121820. [PMID: 38368085 DOI: 10.1016/j.carbpol.2024.121820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/28/2023] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
Due to the expansion of industrial activities, the concentration of dyes in water has been increasing. The dire need to remove these pollutants from water has been heavily discussed. This study focuses on the reproducible and sustainable solution for wastewater treatment and dye annihilation challenges. Adsorption has been rated the most practical way of the several decolorization procedures due to its minimal initial investment, convenient utility, and high-performance caliber. Hydrogels, which are three-dimensional polymer networks, are notable because of their potential to regenerate, biodegrade, absorb bulky amounts of water, respond to stimuli, and have unique morphologies. Natural polysaccharide hydrogels are chosen over synthetic ones because they are robust, bioresorbable, non-toxic, and cheaply accessible. This study has covered six biopolymers, including chitosan, cellulose, pectin, sodium alginate, guar gum, and starch, consisting of their chemical architecture, origins, characteristics, and uses. The next part describes these polysaccharide-based hydrogels, including their manufacturing techniques, chemical alterations, and adsorption effectiveness. It is deeply evaluated how size and shape affect the adsorption rate, which has not been addressed in any prior research. To assist the readers in identifying areas for further research in this subject, limitations of these hydrogels and future views are provided in the conclusion.
Collapse
Affiliation(s)
- Fiza Majeed
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Ammarah Razzaq
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan
| | - Shabnam Rehmat
- Department of Chemistry, University of Narowal, Narowal 51600, Pakistan; School of Chemistry, University of the Punjab, Lahore 54590, Pakistan.
| | - Irfan Azhar
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Abrar Mohyuddin
- Department of Chemistry, The Emerson University Multan, Multan 60000, Pakistan
| | | |
Collapse
|
10
|
Deng Z, Wu Z, Wu Q, Yu J, Zou C, Deng H, Jin P, Fang D. Cellulose nanocrystals intercalated clay biocomposite for rapid Cr(VI) removal. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29719-29729. [PMID: 38584232 DOI: 10.1007/s11356-024-33066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
The application of bentonite (Bt) as an adsorbent for heavy metals has been limited due to its hydrophobicity and insufficient surface area. Herein, we present cellulose nanocrystal (CNC) modified Bt composite (CNC@Bt) with enhanced efficiency for Cr(VI) removal. CNC@Bt exhibited an increased specific surface area and a porous structure, while maintaining the original crystal structure of Bt. This was achieved through a synergistic function of ion exchange, hydrogen bonding, electrostatic interactions, and steric hindrance. The adsorption of Cr(VI) by CNC@Bt followed the pseudo-second-order kinetic and Langmuir isotherm adsorption model. Moreover, the process was endothermic and spontaneous. At an initial Cr(VI) concentration of 20 mg/L and pH = 4.0, 10 g/L CNC@Bt achieved a removal rate of 92.7%, and the adsorption capacity was 1.85 mg/g, significantly higher than bare Bt (37.9% and 0.76 mg/g). The removal efficiency remained consistently above 80% over a wide pH range, indicating the potential practical applicability of CNC@Bt. With its fast adsorption rate, pH adaptability, and stable performance, CNC@Bt presents promising prospects for the rapid treatment of Cr-contaminated wastewater.
Collapse
Affiliation(s)
- Zilong Deng
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Zixuan Wu
- State Key Laboratory for Pollution Control, School of Environmental Science and Engineering, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Qin Wu
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
| | - Junlei Yu
- Food Inspection and Testing Research Institute of Jiangxi General Institute of Testing and Certification, Nanchang, 330046, Jiangxi, China
| | - Chenglong Zou
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China
| | - Huali Deng
- Shanghai Dongfang Guochuang Advanced Textile Innovation Center Co. Ltd, Shanghai Textile Science Research Institute Co. Ltd, Shanghai, 200082, China
| | - Pingliang Jin
- Shanghai Dongfang Guochuang Advanced Textile Innovation Center Co. Ltd, Shanghai Textile Science Research Institute Co. Ltd, Shanghai, 200082, China
| | - Donglu Fang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, 210037, Jiangsu, China.
| |
Collapse
|
11
|
Zhang Z, Cai X, Lv Y, Tang X, Shi N, Zhou J, Yan M, Li Y. Self-healing, ultra-stretchable, and highly sensitive conductive hydrogel reinforced by sulfate polysaccharide from Enteromorpha prolifera for human motion sensing. Int J Biol Macromol 2023; 253:126847. [PMID: 37709219 DOI: 10.1016/j.ijbiomac.2023.126847] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 09/16/2023]
Abstract
The synthesis of multifunctional conductive hydrogel has attracted extensive attention worldwide due to their integrated properties of stretchability, self-adhesion, self-healing, and high sensitivity, while it is still a challenge. Although various kinds of polysaccharides and their derivatives are used to achieve the aforementioned objective, there are few researches about hydrogel design introducing sulfated polysaccharide from Enteromorpha prolifera (SPE), which is rich in hydroxyl, sulfate, and carboxyl groups providing amounts of reaction sites for hydrogel synthesis. Herein, conductive hydrogel (PAA-Al3+-SPE3) reinforced by SPE was designed by simple one pot hot polymerization method. This hydrogel demonstrated charming extension ratio (up to 4027.40 %), strain stress (up to 59.94 kPa), compressive strength (19.71 Mpa), and high conductivity sensibility (GF 6.76, 300 % - 700 %). Additionally, PAA-Al3+-SPE3 showed good self-healing property (repaired autonomously after 60 s) and satisfied self-adhesion (31.11 kPa) due to the reversible hydrogen bonds and metal coordination interactions. Furthermore, the PAA-Al3+-SPE3 hydrogel showed great real-time sensing performance to monitor various motions. These findings suggest the potential of PAA-Al3+-SPE3 hydrogel as an affordable and reliable conductive sensing material. Meantime, the first utilization of SPE to construct flexible wearable sensors offers new route for the high-value application of Enteromorpha prolifera.
Collapse
Affiliation(s)
- Zhuanyuan Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiujuan Cai
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yue Lv
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Xiaoyan Tang
- Bureau of Agriculture and Rural Affairs of Donggang District, Rizhao 276800, PR China
| | - Naiwen Shi
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Jiazhe Zhou
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Mingyan Yan
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yinping Li
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
12
|
Zhang F, Zhang C, Teng J, Han D, Wu L, Hou W. Preparation of hydrogels based on poplar cellulose and their removal efficiency of Cd(II) from aqueous solutions. JOURNAL OF WATER AND HEALTH 2023; 21:676-686. [PMID: 37387335 PMCID: wh_2023_252 DOI: 10.2166/wh.2023.252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Industrial heavy metal-contaminated wastewater is one of the main water pollution problems. Adsorbents are a promising method for the removal of heavy metal contaminants. Herein, polyaspartic acid/carboxymethyl poplar sawdust hydrogels (PASP/CMPP) and ascorbic acid/carboxymethyl poplar sawdust hydrogels (VC/CMPP) were prepared by aqueous polymerization using alkalized poplar sawdust (CMPP) as the substrate and PASP and vitamin C (VC) as modifiers. The effective results, provided by the characterization analysis of SEM and BET, indicate that the surface of the PASP/CMPP hydrogel has a larger number of loose pores and a larger pore volume than the VC/CMPP hydrogel. The treatment effects of the two hydrogels on simulated wastewater containing Cd(II) were investigated by a batch of experiments. The results showed that PASP/CMPP had a better adsorption effect than VC/CMPP under the same adsorption conditions. Interestingly, the solid concentration effect was found in the process of sorption kinetics and sorption isotherms. The sorption kinetic curves of Cd(II) on PASP/CMPP were well-fitted by the quasi-second-order kinetics under different adsorbent concentrations. The adsorption conforms to Langmuir and Freundlich adsorption isotherm models. More importantly, PASP/CMPP composites are expected to be used as a new kind of environmental adsorbent for wastewater treatment.
Collapse
Affiliation(s)
- Fengrong Zhang
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China E-mail:
| | | | - Jia Teng
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Dandan Han
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Lishun Wu
- School of Chemistry and Chemical Engineering, Heze University, Heze 274015, China
| | - Wanguo Hou
- Key Laboratory of Colloid and Interface Chemistry (Ministry of Education), Shandong University, Jinan 250100, China
| |
Collapse
|
13
|
Agustin MB, Lehtonen M, Kemell M, Lahtinen P, Oliaei E, Mikkonen KS. Lignin nanoparticle-decorated nanocellulose cryogels as adsorbents for pharmaceutical pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117210. [PMID: 36608603 DOI: 10.1016/j.jenvman.2022.117210] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Adsorption is a relatively simple wastewater treatment method that has the potential to mitigate the impacts of pharmaceutical pollution. This requires the development of reusable adsorbents that can simultaneously remove pharmaceuticals of varying chemical structure and properties. Here, the adsorption potential of nanostructured wood-based adsorbents towards different pharmaceuticals in a multi-component system was investigated. The adsorbents in the form of macroporous cryogels were prepared by anchoring lignin nanoparticles (LNPs) to the nanocellulose network via electrostatic attraction. The naturally anionic LNPs were anchored to cationic cellulose nanofibrils (cCNF) and the cationic LNPs (cLNPs) were combined with anionic TEMPO-oxidized CNF (TCNF), producing two sets of nanocellulose-based cryogels that also differed in their overall surface charge density. The cryogels, prepared by freeze-drying, showed layered cellulosic sheets randomly decorated with spherical lignin on the surface. They exhibited varying selectivity and efficiency in removing pharmaceuticals with differing aromaticity, polarity and ionic characters. Their adsorption potential was also affected by the type (unmodified or cationic), amount and morphology of the lignin nanomaterials, as well as the pH of the pharmaceutical solution. Overall, the findings revealed that LNPs or cLNPs can act as functionalizing and crosslinking agents to nanocellulose-based cryogels. Despite the decrease in the overall positive surface charge, the addition of LNPs to the cCNF-based cryogels showed enhanced adsorption, not only towards the anionic aromatic pharmaceutical diclofenac but also towards the aromatic cationic metoprolol (MPL) and tramadol (TRA) and neutral aromatic carbamazepine. The addition of cLNPs to TCNF-based cryogels improved the adsorption of MPL and TRA despite the decrease in the net negative surface charge. The improved adsorption was attributed to modes of removal other than electrostatic attraction, and they could be π-π aromatic ring or hydrophobic interactions brought by the addition of LNPs or cLNPs. However, significant improvement was only found if the ratio of LNPs or cLNPs to nanocellulose was 0.6:1 or higher and with spherical lignin nanomaterials. As crosslinking agents, the LNPs or cLNPs affected the rheological behavior of the gels, and increased the firmness and decreased the water holding capacity of the corresponding cryogels. The resistance of the cryogels towards disintegration with exposure to water also improved with crosslinking, which eventually enabled the cryogels, especially the TCNF-based one, to be regenerated and reused for five cycles of adsorption-desorption experiment for the model pharmaceutical MPL. Thus, this study opened new opportunities to utilize LNPs in providing nanocellulose-based adsorbents with additional functional groups, which were otherwise often achieved by rigorous chemical modifications, at the same time, crosslinking the nanocellulose network.
Collapse
Affiliation(s)
- Melissa B Agustin
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland.
| | - Mari Lehtonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland
| | - Marianna Kemell
- Department of Chemistry, Faculty of Science, P.O. Box 55, FI-00014, University of Helsinki, Finland
| | - Panu Lahtinen
- VTT, Technical Research Centre of Finland, P.O. Box 1000, FIN-02044, VTT, Finland
| | - Erfan Oliaei
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44, Stockholm, Sweden
| | - Kirsi S Mikkonen
- Department of Food and Nutrition, Faculty of Agriculture and Forestry, P.O. Box 66, FI-00014, University of Helsinki, Finland; Helsinki Institute of Sustainability Science, P.O. Box 65, FI-00014, University of Helsinki, Finland
| |
Collapse
|
14
|
Hossein M, Asha R, Bakari R, Islam NF, Jiang G, Sarma H. Exploring eco-friendly approaches for mitigating pharmaceutical and personal care products in aquatic ecosystems: A sustainability assessment. CHEMOSPHERE 2023; 316:137715. [PMID: 36621687 DOI: 10.1016/j.chemosphere.2022.137715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
Global water scarcity is exacerbated by climate change, population growth, and water pollution. Over half of the world's population will be affected by water shortages for at least a month annually by 2050 due toa lack of clean water sources. Even though recycling wastewater helps meet the growing demand, new pollutants, including pharmaceuticals and personal care products (PPCPs), pose a health threat since conventional methods cannot remove them and their environmental monitoring regulations are yet in place. Therefore, the current review aims to investigate and propose eco-friendly technologies for removing PPCPs from wastewater and their implementation strategies for ecosystem safety. Findings indicated the absence of a single wastewater treatment technology that can remove all PPCPs in a single operation. Instead, biotechnological methods are one of the alternatives that can remove PPCPs from aquatic environments. In this context, community involvement and knowledge transfer are identified keys to clean water resources' long-term sustainability.
Collapse
Affiliation(s)
- Miraji Hossein
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ripanda Asha
- Department' of Chemistry, College of Natural and Mathematical Sciences, The University of Dodoma, P. O. Box 338, Dodoma, Tanzania
| | - Ramadhani Bakari
- Department of Petroleum and Energy Engineering, The University of Dodoma, Dodoma, 41000, Tanzania
| | - Nazim Forid Islam
- Institutional Biotech Hub (IBT Hub), Department of Botany, Nanda Nath Saikia College, Titabar, Assam, 785630, India
| | - Guangming Jiang
- School of Civil, Mining and Environmental Engineering, University of Wollongong, Australia; Illawarra Health and Medical Research Institute (IHMRI), University of Wollongong, Wollongong, Australia.
| | - Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| |
Collapse
|
15
|
Xu C, Shu H, Chen C, Qi X, Zhou P, Ma Y, Zhao C, Yang W. Super-adsorbent microspheres based on a triallyl isocyanurate-maleic anhydride copolymer for the removal of organic pollutants from water. NANOSCALE 2023; 15:4053-4062. [PMID: 36729408 DOI: 10.1039/d2nr07124j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Owing to the frequent occurrence of diclofenac sodium (DS) in fresh aquatic environments and its potential toxicity towards living organisms, the effective removal of DS has attracted worldwide attention. Herein, a green and efficient strategy to fabricate crosslinked microspheres with interconnected mesoporous structures and abundant adsorption active sites was developed. With this strategy, triallyl isocyanurate (TAIC)-maleic anhydride (MAH) copolymer microspheres (TMs) with a diameter of 1.19-1.35 μm were first prepared by self-stabilized precipitation (2SP) polymerization, and the TMs possess a large amount reactive anhydride groups (62.5-71.8 mol%), a specific surface area of 51.6-182.4 m2 g-1 and a mesoporous structure (average pore size: 3.4-3.8 nm). Then the TMs were further functionalized with polyethylenimine (PEI) to give rise to cationic microspheres (Cat-TMs), which showed excellent adsorption performance to DS with a rapid adsorption rate (reached equilibrium within 30 min), a very high equilibrium adsorption capacity (1421 mg g-1) and excellent recyclability. The pseudo-second-order model and Langmuir model were a good fit for the adsorption kinetic and isotherm process, respectively. Furthermore, due to the high cation density (4.291 mmol g-1) and excellent pH buffer capacity of Cat-TMs, the adsorption capacity can be maintained at a high level within the pH range of 6-10. The regenerated Cat-TMs showed only a slight loss (<5%) in the adsorption capacity even after 5 adsorption-desorption cycles. In short, Cat-TMs can be considered as a highly promising adsorbent for the rapid and ultra-efficient removal of anionic organic contaminants and have significant potential to be applied in wastewater treatment.
Collapse
Affiliation(s)
- Can Xu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Hongyi Shu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Chuxuan Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Xi Qi
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Pengfei Zhou
- Shandong Dongyue Polymer Material Co., Ltd, China
| | - Yuhong Ma
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Changwen Zhao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Wantai Yang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
- Beijing Engineering Research Center for the Synthesis and Applications of Waterborne Polymers, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|