1
|
Wu H, Wang X, Wang G, Yuan G, Jia W, Tian L, Zheng Y, Ding W, Pei J. Advancing Scaffold-Assisted Modality for In Situ Osteochondral Regeneration: A Shift From Biodegradable to Bioadaptable. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407040. [PMID: 39104283 DOI: 10.1002/adma.202407040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Indexed: 08/07/2024]
Abstract
Over the decades, the management of osteochondral lesions remains a significant yet unmet medical challenge without curative solutions to date. Owing to the complex nature of osteochondral units with multi-tissues and multicellularity, and inherently divergent cellular turnover capacities, current clinical practices often fall short of robust and satisfactory repair efficacy. Alternative strategies, particularly tissue engineering assisted with biomaterial scaffolds, achieve considerable advances, with the emerging pursuit of a more cost-effective approach of in situ osteochondral regeneration, as evolving toward cell-free modalities. By leveraging endogenous cell sources and innate regenerative potential facilitated with instructive scaffolds, promising results are anticipated and being evidenced. Accordingly, a paradigm shift is occurring in scaffold development, from biodegradable and biocompatible to bioadaptable in spatiotemporal control. Hence, this review summarizes the ongoing progress in deploying bioadaptable criteria for scaffold-based engineering in endogenous osteochondral repair, with emphases on precise control over the scaffolding material, degradation, structure and biomechanics, and surface and biointerfacial characteristics, alongside their distinguished impact on the outcomes. Future outlooks of a highlight on advanced, frontier materials, technologies, and tools tailoring precision medicine and smart healthcare are provided, which potentially paves the path toward the ultimate goal of complete osteochondral regeneration with function restoration.
Collapse
Affiliation(s)
- Han Wu
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xuejing Wang
- Interdisciplinary Research Center of Biology & Catalysis, School of Life Sciences, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Guocheng Wang
- Research Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, Guangdong, 518055, China
| | - Guangyin Yuan
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Weitao Jia
- Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Liangfei Tian
- Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yufeng Zheng
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Wenjiang Ding
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jia Pei
- National Engineering Research Center of Light Alloy Net Forming & State Key Laboratory of Metal Matrix Composite & Center of Hydrogen Science, School of Materials Science & Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Institute of Medical Robotics & National Engineering Research Center for Advanced Magnetic Resonance Technologies for Diagnosis and Therapy, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
2
|
Ahmed WS, Geethakumari AM, Sultana A, Fatima A, Philip AM, Uddin SMN, Biswas KH. A slow but steady nanoLuc: R162A mutation results in a decreased, but stable, nanoLuc activity. Int J Biol Macromol 2024; 269:131864. [PMID: 38692549 DOI: 10.1016/j.ijbiomac.2024.131864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 04/21/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
NanoLuc (NLuc) luciferase has found extensive application in designing a range of biological assays, including gene expression analysis, protein-protein interaction, and protein conformational changes due to its enhanced brightness and small size. However, questions related to its mechanism of interaction with the substrate, furimazine, as well as bioluminescence activity remain elusive. Here, we combined molecular dynamics (MD) simulation and mutational analysis to show that the R162A mutation results in a decreased but stable bioluminescence activity of NLuc in living cells and in vitro. Specifically, we performed multiple, all-atom, explicit solvent MD simulations of the apo and furimazine-docked (holo) NLuc structures revealing differential dynamics of the protein in the absence and presence of the ligand. Further, analysis of trajectories for hydrogen bonds (H-bonds) formed between NLuc and furimazine revealed substantial H-bond interaction between R162 and Q32 residues. Mutation of the two residues in NLuc revealed a decreased but stable activity of the R162A, but not Q32A, mutant NLuc in live cell and in vitro assays performed using lysates prepared from cells expressing the proteins and with the furimazine substrate. In addition to highlighting the role of the R162 residue in NLuc activity, we believe that the mutant NLuc will find wide application in designing in vitro assays requiring extended monitoring of NLuc bioluminescence activity. SIGNIFICANCE: Bioluminescence has been extensively utilized in developing a variety of biological and biomedical assays. In this regard, engineering of brighter bioluminescent proteins, i.e. luciferases, has played a significant role. This is acutely exemplified by the engineering of the NLuc luciferase, which is small in size and displays much enhanced bioluminescence and thermal stability compared to previously available luciferases. While enhanced bioluminescent activity is desirable in a multitude of biological and biomedical assays, it would also be useful to develop variants of the protein that display a prolonged bioluminescence activity. This is specifically relevant in designing assays that require bioluminescence for extended periods, such as in the case of biosensors designed for monitoring slow enzymatic or cellular signaling reactions, without necessitating multiple rounds of luciferase substrate addition or any specialized reagents that result in increased assay costs. In the current manuscript, we report a mutant NLuc that possesses a stable and prolonged bioluminescence activity, albeit lower than the wild-type NLuc, and envisage a wider application of the mutant NLuc in designing biosensors for monitoring slower biological and biomedical events.
Collapse
Affiliation(s)
- Wesam S Ahmed
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Anupriya M Geethakumari
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asfia Sultana
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Asma Fatima
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Angelin M Philip
- Division of Genomics and Translational Biomedicine, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - S M Nasir Uddin
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar
| | - Kabir H Biswas
- Division of Biological and Biomedical Sciences, College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha 34110, Qatar.
| |
Collapse
|
3
|
Luck MI, Subillaga EJ, Borenstein R, Sabo Y. Ginkgolic acid inhibits orthopneumo- and metapneumo- virus infectivity. Sci Rep 2024; 14:8230. [PMID: 38589437 PMCID: PMC11001990 DOI: 10.1038/s41598-024-58032-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 03/25/2024] [Indexed: 04/10/2024] Open
Abstract
The human respiratory syncytial virus (hRSV) and the human metapneumovirus (hMPV) are important human respiratory pathogens from the Pneumoviridae family. Both are responsible for severe respiratory tract infections in infants, young children, elderly individuals, adults with chronic medical conditions, and immunocompromised patients. Despite their large impact on human health, vaccines for hRSV were only recently introduced, and only limited treatment options exist. Here we show that Ginkgolic acid (GA), a natural compound from the extract of Ginkgo biloba, with known antiviral properties for several viruses, efficiently inhibits these viruses' infectivity and spread in cultures in a dose-dependent manner. We demonstrate that the drug specifically affects the entry step during the early stages on the viruses' life cycle with no effect on post-entry and late stage events, including viral gene transcription, genome replication, assembly and particles release. We provide evidence that GA acts as an efficient antiviral for members of the Pneumoviridae family and has the potential to be used to treat acute infections.
Collapse
Affiliation(s)
- Maria I Luck
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Erick J Subillaga
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA
| | - Ronen Borenstein
- The Program for Experimental and Theoretical Modeling Division of Hepatology, Department of Medicine Stritch School of Medicine, Loyola University Chicago, Maywood, IL, 60153, USA
| | - Yosef Sabo
- Aaron Diamond AIDS Research Center, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
- Division of Infectious Diseases, Department of Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.
| |
Collapse
|
4
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|
5
|
Wang R, Chen X, Li H, Chen X, Sun D, Yu D, Lu J, Xie Y, Zhang Q, Xu J, Zhang W, Chen H, Liu S, Chen L. Danshensu inhibits SARS-CoV-2 by targeting its main protease as a specific covalent inhibitor and discovery of bifunctional compounds eliciting antiviral and anti-inflammatory activity. Int J Biol Macromol 2024; 257:128623. [PMID: 38070810 DOI: 10.1016/j.ijbiomac.2023.128623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/30/2023] [Accepted: 12/02/2023] [Indexed: 12/17/2023]
Abstract
The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has posed a serious threat to human. Since there are still no effective treatment options against the new emerging variants of SARS-CoV-2, it is necessary to devote a continuous endeavor for more targeted drugs and the preparation for the next pandemic. Salvia miltiorrhiza and its active ingredients possess wide antiviral activities, including against SARS-CoV-2. Danshensu, as one of the most important active ingredients in Salvia miltiorrhiza, has been reported to inhibit the entry of SARS-CoV-2 into ACE2 (angiotensin-converting enzyme 2)-overexpressed HEK-293T cells and Vero-E6 cells. However, there is a paucity of information regarding its detailed target and mechanism against SARS-CoV-2. Here, we present Danshensu as a covalent inhibitor of 3-chymotrypsin-like protease (3CLpro) against SARS-CoV-2 by the time-dependent inhibition assay (TDI) and mass spectrometry analysis. Further molecular docking, site-directed mutagenesis, circular dichroism (CD) and fluorescence spectra revealed that Danshensu covalently binds to C145 of SARS-CoV-2 3CLpro, meanwhile forming the hydrogen bonds with S144, H163 and E166 in the S1 site. Structure-based optimization of Danshensu led to the discovery of the promising compounds with good inhibitory activity and microsomal stability in vitro. Due to Danshensu inhibiting lung inflammation in the mouse model, we found that Danshensu derivatives also showed better anti-inflammatory activity than Danshensu in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophage cells. Thus, our study provides not only the clue of the efficacy of Salvia miltiorrhiza against SARS-CoV-2, but also a detailed mechanistic insight into the covalent mode of action of Danshensu for design of covalent inhibitors against SARS-CoV-2 3CLpro, highlighting its potential as a bifunctional molecule with antivirus and anti-inflammation.
Collapse
Affiliation(s)
- Ruyu Wang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xuwen Chen
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Hongtao Li
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xixiang Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Donghui Sun
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Danmei Yu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiani Lu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuanyuan Xie
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Qian Zhang
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201203, China
| | - Jianrong Xu
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China
| | - Weidong Zhang
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Shanghai Institute of Infectious Diseases and Biosafety, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongzhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shunying Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
| | - Lili Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
6
|
Dabrell SN, Li YC, Yamaguchi H, Chen HF, Hung MC. Herbal Compounds Dauricine and Isoliensinine Impede SARS-CoV-2 Viral Entry. Biomedicines 2023; 11:2914. [PMID: 38001915 PMCID: PMC10669532 DOI: 10.3390/biomedicines11112914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Targeting viral entry has been the focal point for the last 3 years due to the continued threat posed by SARS-CoV-2. SARS-CoV-2's entry is highly dependent on the interaction between the virus's Spike protein and host receptors. The virus's Spike protein is a key modulator of viral entry, allowing sequential cleavage of ACE2 at the S1/S2 and S2 sites, resulting in the amalgamation of membranes and subsequent entry of the virus. A Polybasic insertion (PRRAR) conveniently located at the S1/S2 site can also be cleaved by furin or by serine protease, TMPRSS2, at the cell surface. Since ACE2 and TMPRSS2 are conveniently located on the surface of host cells, targeting one or both receptors may inhibit receptor-ligand interaction. Here, we show that Dauricine and Isoliensinine, two commonly used herbal compounds, were capable of inhibiting SARS-CoV-2 viral entry by reducing Spike-ACE2 interaction but not suppressing TMPRSS2 protease activity. Further, our biological assays using pseudoviruses engineered to express Spike proteins of different variants revealed a reduction in infection rates following treatment with these compounds. The molecular modeling revealed an interconnection between R403 of Spike protein and both two compounds. Spike mutations at residue R403 are critical, and often utilized by ACE2 to gain cell access. Overall, our findings strongly suggest that Dauricine and Isoliensinine are effective in blocking Spike-ACE2 interaction and may serve as effective therapeutic agents for targeting SARS-CoV-2's viral entry.
Collapse
Affiliation(s)
- Shaneek Natoya Dabrell
- International Master's Program of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
| | - Yi-Chuan Li
- Department of Biological Science and Technology, China Medical University, Taichung 406040, Taiwan
| | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 406040, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 406040, Taiwan
- Center for Molecular Medicine, China Medical University Hospital, China Medical University, Taichung 406040, Taiwan
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung 406040, Taiwan
- Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 406040, Taiwan
- Department of Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
7
|
Chen Y, Cao B, Zhou Q, Liu Y, He Q, Zhao M. Bibliometric evaluation of 2020-2022 publications on COVID-19-related cardiovascular disease. Front Cardiovasc Med 2023; 9:1070336. [PMID: 36712251 PMCID: PMC9880207 DOI: 10.3389/fcvm.2022.1070336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Objective This study aimed to investigate the international scientific output regarding the relationship between COVID-19 and cardiovascular diseases (CVDs) through a bibliometric analysis and explore research hotspots in this field. Methods We searched the Web of Science Core Collection for publications and used different types of software, such as R, CiteSpace, and VOSviewer, to analyze and visualize the data. Results A total of 10,055 publications were retrieved as of the 13 December 2022, based on the inclusion criteria after screening. The USA and China lead in the quantity and quality of publications in this field. Based on Bradford's law, 63 journals were considered core journals in the field. Co-cited references and keywords analysis indicated that researchers paid particular attention to cardiovascular comorbidities, outcomes, and COVID-19 regenerative medicine. In summary, with increasing COVID-19 research related to CVD, more attention might be drawn to the relationship between these two diseases. Conclusion The hotspots in this field may continue to revolve around cardiovascular comorbidities, outcomes, and COVID-19 regenerative medicine. Owing to the different situations faced by different groups with COVID-19, further exploration of the related factors specific to each of these groups, e.g., history or no history of heart failure, is needed, with a view to providing a reference for intervention measures in COVID-19 research.
Collapse
Affiliation(s)
- Yiru Chen
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, China
| | - Buzi Cao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Medical School, Hunan Normal University, Changsha, China
| | - Quan Zhou
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, China
| | - Yantong Liu
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Xiangya School of Medicine, Central South University, Changsha, China
| | - Qingnan He
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,*Correspondence: Qingnan He ✉
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China,Mingyi Zhao ✉
| |
Collapse
|