1
|
Yana L, Zhiwei C, Yunuo Z, Jingxi W. Application of biodegradable colorimetric films based on purple tomatoes anthocyanins loaded chitosan and polyvinyl alcohol in pork meat. FOOD SCI TECHNOL INT 2024; 30:741-750. [PMID: 37553978 DOI: 10.1177/10820132231193616] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
A series of biodegradable colorimetric films were prepared by using chitosan and polyvinyl alcohol as matrix, in which, the weight ratio of chitosan: Polyvinyl alcohol was 100: 0, 80: 20, 50: 50, 20: 80, or 0: 100, with addition of 10% (w/w, relative to chitosan) anthocyanins extracted from purple tomatoes (purple tomatoes anthocyanin) as pigment. The aim of this study was to observe the effect of weight ratio (chitosan: Polyvinyl alcohol) on the mechanical properties, contact angle, swelling rate, pH sensitivity, antioxidant properties of chitosan-polyvinyl alcohol/purple tomatoes anthocyanins films, and the antibacterial activity of films produced for pork packaging. In addition, the films as a smart colorimetric indicator for monitoring the freshness of pork was investigated. The results showed that as the ratio of chitosan to polyvinyl alcohol decreases, the elongation at break, hydrophilicity, and swelling rate of the films increased especially from 16.5% to 174.2% for elongation at break and 93.0° to 53.8° for water contact angle, however, the tensile strength decreased from 67.3 to 24.7 MPa. With decreasing of chitosan: Polyvinyl alcohol, the antibacterial activity on pork was decreased, and the antioxidant properties of films increased first then decreased. Fourier transform infrared spectroscopy indicated there were interactions among chitosan, polyvinyl alcohol, and purple tomatoes anthocyanins. The color response of films was depended on pH, as well as the immersion time. The longer immersion resulted in a more pronounced color change. The color changed from purplish red (pH 2-4) to green (pH 5-10) to yellow (pH 10-12). In monitoring the freshness of pork, the film showed a nice visual color change, indicating a potential application in smart packaging. These bio-based materials may be useful alternatives to synthetic plastics for food applications such as active and smart packaging, thereby improving the environmental friendliness and sustainability of the food supply.
Collapse
Affiliation(s)
- Li Yana
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Chen Zhiwei
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Zhang Yunuo
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Wu Jingxi
- School of Mechanical Engineering, Wuhan Polytechnic University, Wuhan, China
| |
Collapse
|
2
|
Lei L, Jiang S, Yao Z. Antibacterial activities of Adina rubella extract enhanced by fermentation and its application in packaging films. Food Chem 2024; 460:140604. [PMID: 39111038 DOI: 10.1016/j.foodchem.2024.140604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/10/2024] [Accepted: 07/22/2024] [Indexed: 09/06/2024]
Abstract
Food spoilage caused by pathogens pose great threat to food safety and human health. Plastarch-based packaging films with antibacterial activities provide an effective way to control foodborne pathogens. In this study, microbial fermentation dominated by yeast was used for the first time to increase the antibacterial activity of Adina rubella extract (ARE). The best antimicrobial effect of ARE was observed by fermentation for 9 days. The minimum inhibitory concentration of ARE against Listeria monocytogenes was 3.125 mg/mL. ARE destroyed the structure of the cell wall, increased the permeability of the cell membrane, led to the leakage of nucleic acids, and induced the change of ROS level, which caused cell death of Listeria monocytogenes. ARE-based biodegradable films were prepared and their performance in pork packaging application was evaluated. The films showed effective antimicrobial properties and showed great potential for the development of safe and sustainable food packaging films.
Collapse
Affiliation(s)
- Lei Lei
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China
| | - Shanxue Jiang
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| | - Zhiliang Yao
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; State Environmental Protection Key Laboratory of Food Chain Pollution Control, Beijing Technology and Business University, Beijing 100048, China; China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing 100048, China.
| |
Collapse
|
3
|
Drabczyk A, Ciężkowska M, Kałahurska K, Zięba A, Bulowski W, Bucka K, Kasza P, Zbroja K, Putynkowski G, Socha RP. The Application of Ultrasound Pre-Treatment in Low-Temperature Synthesis of Zinc Oxide Nanorods. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4980. [PMID: 39459685 PMCID: PMC11509445 DOI: 10.3390/ma17204980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/30/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Zinc oxide, due to its unique physicochemical properties, including dual piezoelectric and semiconductive ones, demonstrates a high application potential in various fields, with a particular focus on nanotechnology. Among ZnO nanoforms, nanorods are gaining particular interest. Due to their ability to efficiently transport charge carriers and photoelectric properties, they demonstrate significant potential in energy storage and conversion, as well as photovoltaics. They can be prepared via various methods; however, most of them require large energy inputs, long reaction times, or high-cost equipment. Hence, new methods of ZnO nanorod fabrication are currently being sought out. In this paper, an ultrasound-supported synthesis of ZnO nanorods with zinc acetate as a zinc precursor has been described. The fabrication of nanorods included the treatment of the precursor solution with ultrasounds, wherein various sonication times were employed to verify the impact of the sonication process on the effectiveness of ZnO nanorod synthesis and the sizes of the obtained nanostructures. The morphology of the obtained ZnO nanorods was imaged via a scanning electron microscope (SEM) analysis, while the particle size distribution within the precursor suspensions was determined by means of dynamic light scattering (DLS). Additionally, the dynamic viscosity of precursor suspensions was also verified. It was demonstrated that ultrasounds positively affect ZnO nanorod synthesis, yielding longer nanostructures through even reactant distribution. Longer nanorods were obtained as a result of short sonication (1-3 min), wherein prolonged treatment with ultrasounds (4-5 min) resulted in obtaining shorter nanorods. Importantly, the application of ultrasounds increased particle homogeneity within the precursor suspension by disintegrating particle agglomerates. Moreover, it was demonstrated that ultrasonic treatment reduces the dynamic viscosity of precursor suspension, facilitating faster particle diffusion and promoting a more uniform growth of longer ZnO nanorods. Hence, it can be concluded that ultrasounds constitute a promising solution in obtaining homogeneous ZnO nanorods, which is in line with the principles of green chemistry.
Collapse
Affiliation(s)
- Anna Drabczyk
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Magda Ciężkowska
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Katarzyna Kałahurska
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Adam Zięba
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Wojciech Bulowski
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Katarzyna Bucka
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
- Faculty of Non-Ferrous Metals, AGH University of Krakow, Al. Mickiewicza 30, 30-059 Kraków, Poland
| | - Patryk Kasza
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Krzysztof Zbroja
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Grzegorz Putynkowski
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| | - Robert P. Socha
- CBRTP SA—Research and Development Center of Technology for Industry, 3A Ludwika Waryńskiego St., 00-645 Warsaw, Poland; (M.C.); (K.K.); (A.Z.); (W.B.); (K.B.); (P.K.); (K.Z.); (G.P.)
| |
Collapse
|
4
|
Can A, Kızılbey K. Green Synthesis of ZnO Nanoparticles via Ganoderma Lucidum Extract: Structural and Functional Analysis in Polymer Composites. Gels 2024; 10:576. [PMID: 39330178 PMCID: PMC11431147 DOI: 10.3390/gels10090576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/22/2024] [Accepted: 08/25/2024] [Indexed: 09/28/2024] Open
Abstract
Metallic nanoparticles are of growing interest due to their broad applications. This study presents the green synthesis of zinc oxide (ZnO) nanoparticles (ZnNPs) using Ganoderma Lucidum mushroom extract, characterized by DLS, SEM, XRD, and FTIR spectroscopy analyses. The synthesis parameters, including extract/salt ratio and mixing time, significantly influenced nanoparticle yield, size, and polydispersity, with longer mixing times leading to larger, more varied particles. Specifically, the sizes of ZnNPs synthesized at a 1:1 extract/ZnCl2 ratio after 3 h and 24 h were 90.0 nm and 243.3 nm, with PDI values of 48.69% and 51.91%, respectively. At a 1:2 ratio, the sizes were 242.3 nm at 3 h (PDI: 43.19%) and a mixture of 1.5 nm, 117.4 nm, and 647.9 nm at 24 h (PDI: 2.72%, 10.97%, and 12.43%). Polymer films incorporating PVA, chitosan, and ZnNPs were analyzed for their morphological, spectroscopic, and mechanical properties. Chitosan reduced tensile strength and elongation due to its brittleness, while ZnNPs further increased film brittleness and structural degradation. A comparison of the tensile strength of films A and C revealed that the addition of chitosan to the PVA film resulted in an approximately 10.71% decrease in tensile strength. Similarly, the analysis of films B1 and B2 showed that the tensile strength of the B2 film decreased by 10.53%. Swelling tests showed that ZnNPs initially enhanced swelling, but excessive amounts led to reduced capacity due to aggregation. This pioneering study demonstrates the potential of Ganoderma Lucidum extract in nanoparticle synthesis and provides foundational insights for future research, especially in wound dressing applications.
Collapse
Affiliation(s)
- Ayça Can
- Biomedical Engineering Department, Graduate School of Natural and Applied Sciences, Acıbadem University, İstanbul 34752, Türkiye
| | - Kadriye Kızılbey
- Department of Natural Sciences, Faculty of Engineering and Natural Sciences, Acıbadem University, İstanbul 34752, Türkiye
| |
Collapse
|
5
|
Chandrababu V, Parameswaranpillai J, Gopi JA, Pathak C, Midhun Dominic CD, Feng NL, Krishnasamy S, Muthukumar C, Hameed N, Ganguly S. Progress in food packaging applications of biopolymer-nanometal composites - A comprehensive review. BIOMATERIALS ADVANCES 2024; 162:213921. [PMID: 38870740 DOI: 10.1016/j.bioadv.2024.213921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/22/2024] [Accepted: 06/01/2024] [Indexed: 06/15/2024]
Abstract
Eco-friendly nanotechnology-enabled biopolymers are one of the novel concepts of packaging materials to substitute traditional synthetic polymers and their composites. This article succinctly reviews the recent developments of introducing additional functionalities to biopolymers using metal and metal oxide nanoparticles. The functionality of metal nanoparticles such as silver, zinc oxide, titanium dioxide, copper oxide, gold, and magnesium oxide, as food packaging materials were discussed. The addition of nanoparticles in biopolymers improves mechanical properties, gas barrier properties, durability, temperature stability, moisture stability, antimicrobial activity, antioxidant property, and UV absorbance and can prevent the presence of ethylene and oxygen, hence extending the shelf life of foodstuffs. Other than this, the functional activity of these biopolymer composite films helps them to act like smart or intelligent packaging. The selection of metal nanoparticles, particle migration, toxicological effect, and potential future scope in the food packaging industry are also reviewed.
Collapse
Affiliation(s)
- Vibha Chandrababu
- Wimpey Laboratories, Warehouse 1 & 2, Wimpey Building, Plot No: 364-8730, Al Quoz Industrial Area 1, Dubai, United Arab Emirates
| | - Jyotishkumar Parameswaranpillai
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India; AU-Sophisticated Testing and Instrumentation Center, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India.
| | - Jineesh Ayippadath Gopi
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - Chandni Pathak
- Department of Science, Faculty of Science & Technology, Alliance University, Chandapura - Anekal Main Road, Anekal, Bengaluru 562 106, Karnataka, India
| | - C D Midhun Dominic
- Department of Chemistry, Sacred Heart College, Cochin 682013, Kerala, India
| | - Ng Lin Feng
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Senthilkumar Krishnasamy
- Department of Mechanical Engineering, PSG Institute of Technology and Applied Research, Coimbatore 641062, Tamil Nadu, India
| | - Chandrasekar Muthukumar
- SIMCRASH CENTRE, Department of Aerospace Engineering, Hindustan Institute of Technology & Science, Rajiv Gandhi Salai (OMR), Padur, Kelambakkam, Tamil Nadu 603103, India
| | - Nishar Hameed
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, John Street, Hawthorn, Victoria 3122, Australia
| | - Sayan Ganguly
- Bar-Ilan Institute of Nanotechnology & Advanced Materials, Ramat Gan 5290002, Israel
| |
Collapse
|
6
|
Gao X, Sharma M, Bains A, Chawla P, Goksen G, Zou J, Zhang W. Application of seed mucilage as functional biopolymer in meat product processing and preservation. Carbohydr Polym 2024; 339:122228. [PMID: 38823903 DOI: 10.1016/j.carbpol.2024.122228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 06/03/2024]
Abstract
Meat products consumption is rising globally, but concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used for extending the shelf life of meat often carry health and environmental drawbacks. Seed mucilage, natural polysaccharides, possesses unique functional properties like water holding, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the application of seed mucilage from diverse sources (e.g., flaxseed, psyllium, basil) in various meat and meat products processing and preservation. Mucilage's water-holding and emulsifying properties can potentially bind fat and decrease the overall lipid content in meat and meat-based products. Moreover, antimicrobial and film-forming properties of mucilage can potentially inhibit microbial growth and reduce oxidation, extending the shelf life. This review emphasizes the advantages of incorporating mucilage into processing and coating strategies for meat and seafood products.
Collapse
Affiliation(s)
- Xueqin Gao
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Madhu Sharma
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Aarti Bains
- Department of Microbiology, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Prince Chawla
- Department of Food Technology and Nutrition, Lovely Professional University, Phagwara 144411, Punjab, India.
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jian Zou
- College of Food and Biological Engineering, Henan University of Animal Husbandry and Economy, Zhengzhou 450000, China
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
7
|
Eker F, Duman H, Akdaşçi E, Bolat E, Sarıtaş S, Karav S, Witkowska AM. A Comprehensive Review of Nanoparticles: From Classification to Application and Toxicity. Molecules 2024; 29:3482. [PMID: 39124888 PMCID: PMC11314082 DOI: 10.3390/molecules29153482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Nanoparticles are structures that possess unique properties with high surface area-to-volume ratio. Their small size, up to 100 nm, and potential for surface modifications have enabled their use in a wide range of applications. Various factors influence the properties and applications of NPs, including the synthesis method and physical attributes such as size and shape. Additionally, the materials used in the synthesis of NPs are primary determinants of their application. Based on the chosen material, NPs are generally classified into three categories: organic, inorganic, and carbon-based. These categories include a variety of materials, such as proteins, polymers, metal ions, lipids and derivatives, magnetic minerals, and so on. Each material possesses unique attributes that influence the activity and application of the NPs. Consequently, certain NPs are typically used in particular areas because they possess higher efficiency along with tenable toxicity. Therefore, the classification and the base material in the NP synthesis hold significant importance in both NP research and application. In this paper, we discuss these classifications, exemplify most of the major materials, and categorize them according to their preferred area of application. This review provides an overall review of the materials, including their application, and toxicity.
Collapse
Affiliation(s)
- Furkan Eker
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Hatice Duman
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Emir Akdaşçi
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Ecem Bolat
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sümeyye Sarıtaş
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Sercan Karav
- Department of Molecular Biology and Genetics, Çanakkale Onsekiz Mart University, Çanakkale 17000, Türkiye; (F.E.); (H.D.); (E.A.); (E.B.); (S.S.)
| | - Anna Maria Witkowska
- Department of Food Biotechnology, Medical University of Bialystok, 15-089 Bialystok, Poland
| |
Collapse
|
8
|
Baghi F, Gharsallaoui A, Dumas E, Agusti G, Ghnimi S. Characterization of antimicrobial multilayer film based on ethylcellulose-pectin incorporated with nanoemulsions of trans-cinnamaldehyde essential oil. Food Chem X 2024; 22:101261. [PMID: 38486619 PMCID: PMC10937108 DOI: 10.1016/j.fochx.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024] Open
Abstract
In this study, polymer solution casting was utilized to fabricate a multilayer film with ethylcellulose (EC) as the outer layers and trans-cinnamaldehyde-loaded pectin as the inner layer. A significant increase in whiteness and UV-visible light blocking capability and a remarkable decrease in total color difference and yellowness of the films were seen via increasing the thickness of EC outer layers. Scanning electronic microscopy observation showed that the inner and outer layers had a smooth and uniform surfaces with clear boundary. The thicker film has better stretchability and strength, but is less flexible than thinner film. Glass transition temperature did not change remarkably with increasing thickness of EC outer layers, but thermal stability was slightly improved. FTIR-ATR spectra revealed the formation of hydrogen bonds between the two adjacent layers. The multilayer films exhibited excellent antimicrobial efficacy against Gram-positive and Gram-negative foodborne pathogens. The results suggested that this multilayer film has potential applications in active food packaging.
Collapse
Affiliation(s)
- Fatemeh Baghi
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
- ISARA, 23 Rue Jean Baldassini, 69007 Lyon, France
| | - Adem Gharsallaoui
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Emilie Dumas
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Géraldine Agusti
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
| | - Sami Ghnimi
- Univ Lyon, Université Claude Bernard Lyon 1, LAGEPP UMR 5007, F-69622, Villeurbanne, France
- ISARA, 23 Rue Jean Baldassini, 69007 Lyon, France
| |
Collapse
|
9
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Bogahawatta A, Manuda KRJ, Weerasekera M, Kottegoda N. Ilmenite-Grafted Graphene Oxide as an Antimicrobial Coating for Fruit Peels. ACS OMEGA 2024; 9:26568-26581. [PMID: 38911717 PMCID: PMC11191080 DOI: 10.1021/acsomega.4c03231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/09/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Postharvest loss is a significant global challenge that needs to be urgently addressed to sustain food systems. This study describes a simple microwave-assisted green synthesis method in developing a nanohybrid material combining natural ilmenite (FeTiO3) and graphene oxide (GO) as a promising antimicrobial fruit peel coating to reduce postharvest loss. The natural ilmenite was calcined in an inert environment and was mixed with GO in a microwave reactor to obtain the nanohybrid. The nanohybrid was then incorporated into an alginate biopolymer to form the fruit coating. Microscopic images revealed successful grafting of FeTiO3 nanoparticles onto the GO sheets. Spectroscopic measurements of Raman, X-ray photoemission, and infrared provided insights into the interactions between the two matrices. The optical band gap calculated from Tauc's relation using UV-vis data showed a significant reduction in the band gap of the hybrid compared to that of natural ilmenite. The antimicrobial activity was assessed using Escherichia coli, which showed a substantial decrease in colony counts. Bananas coated with the nanohybrid showed a doubling in the shelf life compared with uncoated fruits. Consistent with this, the electronic nose (E-nose) measurements and freshness indicator tests revealed less deterioration of the physicochemical properties of the coated bananas. Overall, the results show promising applications for the ilmenite-grafted GO nanohybrid as a food coating capable of minimizing food spoilage due to microbial activity.
Collapse
Affiliation(s)
- Piyumi Kodithuwakku
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Imalka Munaweera
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
- Instrument
Center, Faculty of Applied Sciences, University
of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Randika Jayasinghe
- Department
of Civil and Environmental Technology, Faculty of Technology, University of Sri Jayewardenepura, Pitipana, Nugegoda 10100, Sri Lanka
| | - Tharanga Thoradeniya
- Department
of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Kynsey Road, Colombo 003000, Sri Lanka
| | - Achala Bogahawatta
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | | | - Manjula Weerasekera
- Department
of Microbiology, Faculty of Medical Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| | - Nilwala Kottegoda
- Department
of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Sri Soratha Mawatha, Nugegoda 10250, Sri Lanka
| |
Collapse
|
10
|
Sathianathan RV, Joseph J, Bhaskaran A, Chan Bose S. Hybrid Metal Oxide (Ag-ZnO) Impregnated Biocomposite in the Development of an Eco-Friendly Sustainable Film. ACS APPLIED BIO MATERIALS 2024; 7:3854-3864. [PMID: 38820558 DOI: 10.1021/acsabm.4c00225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Nanotechnology offers an innovative application as an eco-friendly food packaging film fabricated along with a degradable active mixture (AM). The AM is an assortment of alloyed metal oxide nanoparticles (Ag-ZnO), citron powder (AA), and Curcuma peel powder (CPP). Alloyed nanoparticles (NPs) were observed to exhibit a hexagonal structure from the experimental X-ray diffraction. Compositional and morphological study of the NPs (22.69 nm) and AM (32 nm) was done using energy-dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, and ζ- potential was observed to be -14.7 mV, indicating the stability of NPs. The prepared film was observed to be more effective with antibacterial analysis against Escherichia coli, exhibiting 72% of inhibition and antioxidant activity with IC50: 51.56% using the 2,2 diphenyl-1-picrylhydrazyl (DPPH) assay. Film 1, Film 2, Film 3, and Film 4 were fabricated with the AM and observed to be perfectly encapsulated by PVA using XRD. FESEM images of the film exhibit the aggregation of NPs with biocomposites in perfect distribution. The mechanical properties such as Young's modulus, elongation at break, tensile strength, and ultimate tensile strength (UTS- 5.37 MPa) were experimented for the films. The degradation rate was observed to be 6.12% for film 1 using the soil burial method. The study emphasizes that NPs along with biocomposite upgrade the sustainability of the packaging film with improved mechanical and physicochemical properties. The synthesized film with biomaterials could be used as a "green" food package to store fruits, vegetables, and sweets in the food industry.
Collapse
Affiliation(s)
- Rubalya Valantina Sathianathan
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Jasline Joseph
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Ashika Bhaskaran
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| | - Sweshna Chan Bose
- Department of Physics, School of Electrical and Electronics Engineering, SASTRA Deemed University, Thirumalaisamudhram, Thanjavur 613401, India
| |
Collapse
|
11
|
Zhang W, Khan A, Ezati P, Priyadarshi R, Sani MA, Rathod NB, Goksen G, Rhim JW. Advances in sustainable food packaging applications of chitosan/polyvinyl alcohol blend films. Food Chem 2024; 443:138506. [PMID: 38306905 DOI: 10.1016/j.foodchem.2024.138506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/19/2023] [Accepted: 01/17/2024] [Indexed: 02/04/2024]
Abstract
Researchers are addressing environmental concerns related to petroleum-based plastic packaging by exploring biopolymers from natural sources, chemical synthesis, and microbial fermentation. Despite the potential of individual biopolymers, they often exhibit limitations like low water resistance and poor mechanical properties. Blending polymers emerges as a promising strategy to overcome these challenges, creating films with enhanced performance. This review focuses on recent advancements in chitosan/polyvinyl alcohol (PVA) blend food packaging films. It covers molecular structure, properties, strategies for performance improvement, and applications in food preservation. The blend's excellent compatibility and intermolecular interactions make it a promising candidate for biodegradable films. Future research should explore large-scale thermoplastic technologies and investigate the incorporation of additives like natural extracts and nanoparticles to enhance film properties. Chitosan/PVA blend films offer a sustainable alternative to petroleum-based plastic packaging, with potential applications in practical food preservation.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Parya Ezati
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Ruchir Priyadarshi
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mahmood Alizadeh Sani
- Division of Food Safety and Hygiene, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Nikheel Bhojraj Rathod
- Department of Post Harvest Management of Meat, Poultry and Fish, PG Institute of Post Harvest Management (Dr. Balasaheb Sawant Konkan Krishi Vidyapeeth), Killa-Roha, Raigad, Maharashtra State 402 116, India
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Jong-Whan Rhim
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
12
|
Jieying S, Tingting L, Caie W, Dandan Z, Gongjian F, Xiaojing L. Paper-based material with hydrophobic and antimicrobial properties: Advanced packaging materials for food applications. Compr Rev Food Sci Food Saf 2024; 23:e13373. [PMID: 38778547 DOI: 10.1111/1541-4337.13373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
The environmental challenges posed by plastic pollution have prompted the exploration of eco-friendly alternatives to disposable plastic packaging and utensils. Paper-based materials, derived from renewable resources such as wood pulp, non-wood pulp (bamboo pulp, straw pulp, reed pulp, etc.), and recycled paper fibers, are distinguished by their recyclability and biodegradability, making them promising substitutes in the field of plastic food packaging. Despite their merits, challenges like porosity, hydrophilicity, limited barrier properties, and a lack of functionality have restricted their packaging potential. To address these constraints, researchers have introduced antimicrobial agents, hydrophobic substances, and other functional components to improve both physical and functional properties. This enhancement has resulted in notable improvements in food preservation outcomes in real-world scenarios. This paper offers a comprehensive review of recent progress in hydrophobic antimicrobial paper-based materials. In addition to outlining the characteristics and functions of commonly used antimicrobial substances in food packaging, it consolidates the current research landscape and preparation techniques for hydrophobic paper. Furthermore, the paper explores the practical applications of hydrophobic antimicrobial paper-based materials in agricultural produce, meat, and seafood, as well as ready-to-eat food packaging. Finally, challenges in production, application, and recycling processes are outlined to ensure safety and efficacy, and prospects for the future development of antimicrobial hydrophobic paper-based materials are discussed. Overall, the emergence of hydrophobic antimicrobial paper-based materials stands out as a robust alternative to plastic food packaging, offering a compelling solution with superior food preservation capabilities. In the future, paper-based materials with antimicrobial and hydrophobic functionalities are expected to further enhance food safety as promising packaging materials.
Collapse
Affiliation(s)
- Shi Jieying
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Li Tingting
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wu Caie
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Zhou Dandan
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Fan Gongjian
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Li Xiaojing
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
13
|
Alizadeh Sani M, Khezerlou A, McClements DJ. Zeolitic imidazolate frameworks (ZIFs): Advanced nanostructured materials to enhance the functional performance of food packaging materials. Adv Colloid Interface Sci 2024; 327:103153. [PMID: 38604082 DOI: 10.1016/j.cis.2024.103153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 02/01/2024] [Accepted: 04/06/2024] [Indexed: 04/13/2024]
Abstract
Zeolite imidazole framework (ZIF) materials are a class of metallic organic framework (MOF) materials that have several potential applications in the food and other industries. They consist of metal ions or clusters of metal ions coordinated with imidazole-based organic linkers, creating a three-dimensional solid structure with well-defined pores and channels. ZIFs possess several important features, including high porosity, tunable pore sizes, high surface areas, adjustable surface chemistries, and good stabilities. These characteristics make them highly versatile materials that can be used in a variety of applications, including smart and active food packaging. Based on their controllable compositions, dimensions, and pore sizes, the properties of ZIFs can be tailored for a diverse range of applications, including energy storage, sensing, separation, encapsulation, and catalysis. In this article, we focus on recent progress and potential applications of ZIFs in food packaging materials. Previous studies have shown that ZIFs can significantly improve the optical, mechanical, barrier, thermal, sustainability, and preservative properties of packaging materials. Moreover, ZIFs can be used as carriers to encapsulate, protect, and control the release of bioactive agents in packaging materials. ZIFs are capable of selectively adsorbing and releasing molecules based on their size, shape, and surface properties. These unique characteristics make them particularly suitable for smart or active food packaging applications. By selectively removing gases (such as oxygen, carbon dioxide, water, or ethylene) ZIFs can improve the shelf life and quality of packaged foods. In addition, they can be employed to control the growth of spoilage microorganisms and minimize oxidation reactions, thereby enhancing the freshness and extending the shelf life of foods. They may also be used to create sensors capable of detecting and indicating food spoilage. For instance, ZIFs that change color or release specific compounds when spoilage products are present can provide visual or chemical indications of food deterioration. This feature is especially valuable in ensuring the safety and quality of packaged food, as it enables consumers and retailers to easily identify spoiled products. ZIFs can be functionalized using various additives, including antioxidants, antimicrobials, pigments, and flavors, which can improve the preservative and sensory properties of packaged foods. Moreover, ZIF-based packaging materials offer sustainability benefits. Unlike traditional plastic packaging, ZIFs are biodegradable and can easily be disposed of without causing harm to the environment, thereby reducing the adverse effects of plastic waste materials. The application of ZIFs in smart/active food packaging offers exciting possibilities for enhancing the shelf life, quality, and safety of foods. With further research and development, ZIF-based packaging could become a sustainable alternative to plastic-based packaging in the food industry. An important aim of this review article is to stimulate further research on the development and application of ZIFs within food packaging materials.
Collapse
Affiliation(s)
- Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Khezerlou
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
14
|
Kokkuvayil Ramadas B, Rhim JW, Roy S. Recent Progress of Carrageenan-Based Composite Films in Active and Intelligent Food Packaging Applications. Polymers (Basel) 2024; 16:1001. [PMID: 38611259 PMCID: PMC11014226 DOI: 10.3390/polym16071001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Recently, as concerns about petrochemical-derived polymers increase, interest in biopolymer-based materials is increasing. Undoubtedly, biopolymers are a better alternative to solve the problem of synthetic polymer-based plastics for packaging purposes. There are various types of biopolymers in nature, and mostly polysaccharides are used in this regard. Carrageenan is a hydrophilic polysaccharide extracted from red algae and has recently attracted great interest in the development of food packaging films. Carrageenan is known for its excellent film-forming properties, high compatibility and good carrier properties. Carrageenan is readily available and low cost, making it a good candidate as a polymer matrix base material for active and intelligent food packaging films. The carrageenan-based packaging film lacks mechanical, barrier, and functional properties. Thus, the physical and functional properties of carrageenan-based films can be enhanced by blending this biopolymer with functional compounds and nanofillers. Various types of bioactive ingredients, such as nanoparticles, natural extracts, colorants, and essential oils, have been incorporated into the carrageenan-based film. Carrageenan-based functional packaging film was found to be useful for extending the shelf life of packaged foods and tracking spoilage. Recently, there has been plenty of research work published on the potential of carrageenan-based packaging film. Therefore, this review discusses recent advances in carrageenan-based films for applications in food packaging. The preparation and properties of carrageenan-based packaging films were discussed, as well as their application in real-time food packaging. The latest discussion on the potential of carrageenan as an alternative to traditionally used synthetic plastics may be helpful for further research in this field.
Collapse
Affiliation(s)
- Bharath Kokkuvayil Ramadas
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| | - Jong-Whan Rhim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144411, India;
| |
Collapse
|
15
|
Pino P, Vigani B, Valentino C, Ianev D, Ruggeri M, Boselli C, Cornaglia AI, Grisoli P, Onida B, Bosco F, Sandri G, Rossi S. Sustainable whey proteins-nanostructured zinc oxide-based films for the treatment of chronic wounds: New insights from biopharmaceutical studies. Int J Biol Macromol 2024; 263:130655. [PMID: 38453117 DOI: 10.1016/j.ijbiomac.2024.130655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 01/22/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Chronic wounds represent silent epidemic affecting a large portion of the world population, especially the elders; in this context, the development of advanced bioactive dressings is imperative to accelerate wound healing process, while contrasting or preventing infections. The aim of the present work was to provide a deep characterization of the functional and biopharmaceutical properties of a sustainable thin and flexible films, composed of whey proteins alone (WPI) and added with nanostructured zinc oxide (WPZ) and intended for the management of chronic wounds. The potential of whey proteins-based films as wound dressings has been confirmed by their wettability, hydration properties, elastic behavior upon hydration, biodegradation propensity and, when added with nanostructured zinc oxide, antibacterial efficacy against both Gram-positive and Gram-negative pathogens, i.e. Staphylococcus aureus and Escherichia coli. In-vitro experiments, performed on normal human dermal fibroblasts, confirmed film cytocompatibility, also revealing the possible role of Zn2+ ions in promoting fibroblast proliferation. Finally, in-vivo studies on rat model confirmed film suitability to act as wound dressing, since able to ensure a regular healing process while providing effective protection from infections. In particular, both films WPI and WPZ are responsible for the formation in the wound bed of a continuous collagen layer similar to that of healthy skin.
Collapse
Affiliation(s)
- Paolo Pino
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Barbara Vigani
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Caterina Valentino
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Daiana Ianev
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Marco Ruggeri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Cinzia Boselli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Antonia Icaro Cornaglia
- Department of Public Health Experimental and Forensic Medicine, University of Pavia, 27100 Pavia, Italy
| | - Pietro Grisoli
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Barbara Onida
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
| | - Giuseppina Sandri
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| | - Silvia Rossi
- Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
16
|
Taheri-Yeganeh A, Ahari H, Mashak Z, Jafari SM. Monitor the freshness of shrimp by smart halochromic films based on gelatin/pectin loaded with pistachio peel anthocyanin nanoemulsion. Food Chem X 2024; 21:101217. [PMID: 38426072 PMCID: PMC10901912 DOI: 10.1016/j.fochx.2024.101217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024] Open
Abstract
This paper focuses on the combination of gelatin (Gel), pectin (Pec), and Pistachio peel anthocyanins (PSAs) to develop a halochromic film for food applications (shrimp). The results of spectroscopic properties showed that the film components had proper interaction and compatibility. Furthermore, the addition of PSAs and Pec improved the thermal stability of films. The addition of Pec and PSAs significantly improved the physical properties and mechanical resistance of the films. So that, the permeability to water vapor and oxygen reduced from 2.81 to 2.74 (g‧s-1‧Pa-1‧m-1) and 5.25 to 4.70 (meq/kgO2), respectively. In addition, the strength and flexibility of halochromic film reached 0.7 MPa and 56 % compared to Gel film (0.62 MPa, and 46.96 %). Most importantly, the color changes of the smart film from cherry/pink to yellow/brown, which were proportional to the color changes of the anthocyanin solution at different pHs, were able to monitor the shrimp freshness and spoilage at room (20 °C) and refrigerated (4 °C) temperature for 14 days.
Collapse
Affiliation(s)
- Alireza Taheri-Yeganeh
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamed Ahari
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Zohreh Mashak
- Department of Food Hygiene, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials & Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| |
Collapse
|
17
|
Momtaz F, Momtaz E, Mehrgardi MA, Momtaz M, Narimani T, Poursina F. Enhanced antibacterial properties of polyvinyl alcohol/starch/chitosan films with NiO-CuO nanoparticles for food packaging. Sci Rep 2024; 14:7356. [PMID: 38548906 PMCID: PMC10978958 DOI: 10.1038/s41598-024-58210-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 03/26/2024] [Indexed: 04/01/2024] Open
Abstract
Packaging is very important to maintain the quality of food and prevent the growth of microbes. Therefore, the use of food packaging with antimicrobial properties protects the food from the growth of microorganisms. In this study, antibacterial nanocomposite films of polyvinyl alcohol/starch/chitosan (PVA/ST/CS) together with nickel oxide-copper oxide nanoparticles (NiO-CuONPs) are prepared for food packaging. NiO-CuONPs were synthesized by the co-precipitation method, and structural characterization of nanoparticles (NPs) was carried out by XRD, FTIR, and SEM techniques. Composites of PVA/ST/CS, containing different percentages of NPs, were prepared by casting and characterized by FTIR and FESEM. The mechanical properties, diffusion barrier, and thermal stability were determined. The nanoparticles have a round structure with an average size of 6.7 ± 1.2 nm. The cross-section of PVA/ST/CS film is dense, uniform, and without cracks. In the mechanical tests, the addition of NPs up to 1% improved the mechanical properties (TS = 31.94 MPa), while 2% of NPs lowered TS to 14.76 MPa. The fibroblast cells toxicity and the films antibacterial activity were also examined. The films displayed stronger antibacterial effects against Gram-positive bacteria (Staphylococcus aureus) compared to Gram-negative bacteria (Escherichia coli). Furthermore, these films have no toxicity to fibroblast cells and the survival rate of these cells in contact with the films is more than 84%. Therefore, this film is recommended for food packaging due to its excellent mechanical and barrier properties, good antibacterial activity, and non-toxicity.
Collapse
Affiliation(s)
- Fatemeh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Elham Momtaz
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran
| | - Masoud A Mehrgardi
- Department of Chemistry, University of Isfahan, Isfahan, 8174673441, Iran.
| | - Mahdieh Momtaz
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Tahmineh Narimani
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran
| | - Farkhondeh Poursina
- Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, 81746-73461, Iran.
| |
Collapse
|
18
|
Pan Z, Zhong W, Xu J, Li D, Lin J, Wu W, Pang J, Wu C. Effects of oregano essential oil Pickering emulsion and ZnO nanoparticles on the properties and antibacterial activity of konjac glucomannan/carboxymethyl chitosan nanocomposite films. RSC Adv 2024; 14:6548-6556. [PMID: 38390510 PMCID: PMC10882515 DOI: 10.1039/d3ra07845k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/02/2024] [Indexed: 02/24/2024] Open
Abstract
Green and environmentally friendly natural bio-based food packaging films are increasingly favored by consumers. This study incorporated carboxylated-cellulose nanocrystal stabilized oregano essential oil (OEO) Pickering emulsion and ZnO nanoparticles (ZNPs) into konjac glucomannan (KGM)/carboxymethyl chitosan (CMCS) complexes to develop active food packaging films. The effects of OEO Pickering emulsion and ZNPs on the physical, structural, and antimicrobial activities of the nanocomposite films were evaluated. The OEO Pickering emulsion had a droplet size of 48.43 ± 3.56 μm and showed excellent dispersion and stability. Fourier transform infrared and X-ray diffraction analyses suggested that the interactions between the Pickering emulsion, ZNPs and KGM/CMCS matrix were mainly through hydrogen bonding. SEM observations confirmed that the Pickering emulsion and ZNPs were well incorporated into the KGM/CMCS matrix, forming tiny pores within the nanocomposite films. The incorporation of the OEO Pickering emulsion and/or ZNPs obviously increased the light and water vapor barrier ability, thermal stability, mechanical strength and antimicrobial properties of the KGM/CMCS nanocomposite film. Notably, KGM/CMCS/ZNPs/OEO Pickering emulsion films exhibited the highest barrier, and mechanical and antimicrobial activities due to the synergistic effect between the OEO Pickering emulsion and ZNPs. These results suggest that KGM/CMCS/ZNPs/OEO Pickering emulsion films can be utilized as novel active food packaging materials to extend the shelf life of packaged foods.
Collapse
Affiliation(s)
- Zhibin Pan
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Weiquan Zhong
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Jingting Xu
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Danjie Li
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Junhan Lin
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Weibin Wu
- Fujian Vocational College of Bioengineering No. 42, Hongshan Bridge Zhongdian, Cangshan District Fuzhou 350007 China
| | - Jie Pang
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| | - Chunhua Wu
- College of Food Science, Fujian Agriculture and Forestry University Fuzhou Fujian 350002 China
| |
Collapse
|
19
|
Li J, Wang W, Wu H, Peng F, Gao H, Guan Y. Preparation and characterization of hemicellulose films reinforced with amino polyhedral oligomeric silsesquioxane for biodegradable packaging. Int J Biol Macromol 2024; 254:127795. [PMID: 37939756 DOI: 10.1016/j.ijbiomac.2023.127795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/28/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
Biomass is one of the powerful alternatives to petroleum-based packaging materials. Herein, carboxymethyl hemicellulose (CMH) based films (CPF) were prepared using a convenient strategy. The chains of CMH provided the necessary supporting matrix, and the aminopropyl polyhedral oligomeric silsesquioxane (POSS-NH2) regulated the thermal and barrier properties of the CPF. The secondary amide groups and hydrogen bond were appeared in chemical structure, and SEM-EDS results indicated the preferable dispersion and compatibility of POSS-NH2 in CPFs. The thermal degradation temperature (Tonset > 260 °C), the coefficient of linear thermal expansion and glass transition temperature (Tg > 130 °C) have been improved by introduction of POSS-NH2. The tensile strength of CPF showed a higher level of 39.43 MPa with the POSS-NH2 loading of 20 wt%, which was 18.8 % higher than that of CMH film. More importantly, water vapor barrier property of films almost improved by two times, and its value is reduced to 18.82 g m-2 h-1. The shelf life of blueberry was effectively extended by the CPF coating for one week compared with commercial PE film. Therefore, CPF films displayed effective thermal performances, water vapor barrier characteristic and biodegradability, which might be exploited in packaging material for food application.
Collapse
Affiliation(s)
- Jing Li
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Wei Wang
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Han Wu
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China
| | - Feng Peng
- College of Materials Science and Technology, Beijing Forestry University, Beijing 100083, PR China.
| | - Hui Gao
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| | - Ying Guan
- School of Forestry and Landscape Architecture, Anhui Agricultural University, Hefei 230036, PR China.
| |
Collapse
|
20
|
Muzeza C, Ngole-Jeme V, Msagati TAM. The Mechanisms of Plastic Food-Packaging Monomers' Migration into Food Matrix and the Implications on Human Health. Foods 2023; 12:3364. [PMID: 37761073 PMCID: PMC10529129 DOI: 10.3390/foods12183364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Accepted: 08/23/2023] [Indexed: 09/29/2023] Open
Abstract
The development of packaging technology has become a crucial part of the food industry in today's modern societies, which are characterized by technological advancements, industrialization, densely populated cities, and scientific advancements that have increased food production over the past 50 years despite the lack of agricultural land. Various types of food-packaging materials are utilized, with plastic being the most versatile. However, there are certain concerns with regards to the usage of plastic packaging because of unreacted monomers' potential migration from the polymer packaging to the food. The magnitude of monomer migration depends on numerous aspects, including the monomer chemistry, type of plastic packaging, physical-chemical parameters such as the temperature and pH, and food chemistry. The major concern for the presence of packaging monomers in food is that some monomers are endocrine-disrupting compounds (EDCs) with a capability to interfere with the functioning of vital hormonal systems in the human body. For this reason, different countries have resolved to enforce guidelines and regulations for packaging monomers in food. Additionally, many countries have introduced migration testing procedures and safe limits for packaging monomer migration into food. However, to date, several research studies have reported levels of monomer migration above the set migration limits due to leaching from the food-packaging materials into the food. This raises concerns regarding possible health effects on consumers. This paper provides a critical review on plastic food-contact materials' monomer migration, including that from biodegradable plastic packaging, the monomer migration mechanisms, the monomer migration chemistry, the key factors that affect the migration process, and the associated potential EDC human health risks linked to monomers' presence in food. The aim is to contribute to the existing knowledge and understanding of plastic food-packaging monomer migration.
Collapse
Affiliation(s)
- Celia Muzeza
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Veronica Ngole-Jeme
- Department of Environmental Science, College of Agriculture and Environmental Sciences, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa;
| | - Titus Alfred Makudali Msagati
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, Science Campus, Roodepoort, Johannesburg 1709, South Africa
| |
Collapse
|
21
|
Tabassum Z, Girdhar M, Kumar A, Malik T, Mohan A. ZnO Nanoparticles-Reinforced Chitosan-Xanthan Gum Blend Novel Film with Enhanced Properties and Degradability for Application in Food Packaging. ACS OMEGA 2023; 8:31318-31332. [PMID: 37663466 PMCID: PMC10468839 DOI: 10.1021/acsomega.3c03763] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023]
Abstract
Nations all over the world are imposing ban on single-use plastics, which are difficult to recycle and lead to creations of nonsustainable and nondegradable piles. To match the requirement in the market, suitable food packaging alternatives have to be developed that are biodegradable and environment-friendly. The current work is designed for the fabrication of a novel nanocomposite by blending xanthan gum in a chitosan matrix and reinforcing it with ZnO nanoparticles, through a solution casting method. Surface morphology of the film was investigated through field emission scanning electron microscopy, along with energy-dispersive X-ray spectroscopy mapping, and characterized through thermogravimetric analysis, Fourier transform infrared (FTIR) spectroscopy, mechanical testing, and ultraviolet spectroscopy. FTIR spectroscopy analysis corroborated the interaction between the components and the H-bond formation. Polyelectrolyte complex formation materializes between the oppositely charged chitosan and xanthan gum, and further nanoparticle incorporation significantly improves the mechanical properties. The synthesized nanocomposite was found to have increases in the tensile strength and elongation at break of pure chitosan by up to 6.65 and 3.57 times, respectively. The transmittance percentage of the bionanocomposite film was reduced compared to that of the pure chitosan film, which aids in lowering the oxidative damage brought on by UV radiation in packed food products. Moreover, the film also showed an enhanced barrier property against water vapor and oxygen gas. The film was totally biodegradable in soil burial at the end of the second month; it lost almost around 88% of its initial weight. The fabricated film does not pose a threat to the environment and hence has great potential for application in the future sustainable food packaging industry.
Collapse
Affiliation(s)
- Zeba Tabassum
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| | - Madhuri Girdhar
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| | - Anil Kumar
- Gene
Regulation Laboratory, National Institute
of Immunology, New Delhi 110067, India
| | - Tabarak Malik
- Department
of Biomedical Sciences, Institute of Health, Jimma University, Jimma 0000, Ethiopia
| | - Anand Mohan
- School
of Bioengineering and Biosciences, Lovely
Professional University, Phagwara 144401, Punjab, India
| |
Collapse
|
22
|
Zhang W, Hadidi M, Karaca AC, Hedayati S, Tarahi M, Assadpour E, Jafari SM. Chitosan-grafted phenolic acids as an efficient biopolymer for food packaging films/coatings. Carbohydr Polym 2023; 314:120901. [PMID: 37173040 DOI: 10.1016/j.carbpol.2023.120901] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/02/2023] [Accepted: 04/08/2023] [Indexed: 05/15/2023]
Abstract
Chitosan (CS), a bio-renewable natural material, has the potential to be utilized as a biopolymer for food packaging films (PFs)/coatings. However, its low solubility in dilute acid solutions and poor antioxidant and antimicrobial activities limit its application in PFs/coatings. To address these restrictions, chemical modification of CS has garnered increasing interest, with graft copolymerization being the most extensively used method. Phenolic acids (PAs) as natural small molecules are used as excellent candidates for CS grafting. This work focuses on the progress of CS grafted PA (CS-g-PA) based films, introducing the chemistry and methods of preparing CS-g-PA, particularly the effects of different PAs grafting on the properties of CS films. In addition, this work discusses the application of different CS-g-PA functionalized PFs/coatings for food preservation. It is concluded that the food preservation capability of CS-based films/coatings can be improved by modifying the properties of CS-based films through PA grafting.
Collapse
Affiliation(s)
- Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Milad Hadidi
- Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, 13071 Ciudad Real, Spain
| | - Asli Can Karaca
- Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, 34469 Istanbul, Turkey
| | - Sara Hedayati
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Tarahi
- Nutrition Research Center, School of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Assadpour
- Food Industry Research Co., Gorgan, Iran; Food and Bio-Nanotech International Research Center (Fabiano), Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran.
| |
Collapse
|
23
|
Zhang H, Pan Q, Cai W, Shi X, Yang DP, Lin H, Qiu E. C-doped ZnO nanocomposites molecularly imprinted photoelectrochemical sensor for ultrasensitive and selective detection of oxytetracycline in milk. Food Chem 2023; 426:136535. [PMID: 37331139 DOI: 10.1016/j.foodchem.2023.136535] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/20/2023]
Abstract
Antibiotic monitoring remains vital to ensure human health and safety in the environment and foods. As the most popular detection method, photoelectrochemical (PEC) sensor can achieve rapid and accurate detection of antibiotics with the advantages of high sensitivity, easy-to-preparation process, as well as high selectivity. Herein, an extremely-efficient visible-light responsible ZnO/C nanocomposite was prepared and combined with acetylene black (as an enhanced conductive matrix), and the electron migration efficiency was greatly accelerated. Meanwhile, a molecularly imprinted polymer obtained by electrical agglomeration was conjugated as a specific recognizing site for target. Furthermore, the as-prepared rMIP-PEC sensor showed a low detection limit (8.75 pmol L-1, S/N = 3) in a wide linear detection range of 0.01-1000 nmol L-1 for oxytetracycline (OTC), with excellent selectivity and long-term stability. Our work shed light on applying C-doped ZnO semiconductor and molecularly imprinted polymer as photoelectric active sensing materials for rapid and accurate analysis of antibiotics in foods and environment.
Collapse
Affiliation(s)
- Huafang Zhang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Qinghong Pan
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China
| | - Wanying Cai
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Xiaowei Shi
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China
| | - Da-Peng Yang
- Key Laboratory of Chemical Materials and Green Nanotechnology, College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, Fujian 362000, China; School of Rehabilitation Science and Engineering, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266024, China.
| | - Hetong Lin
- College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China.
| | - Enhui Qiu
- The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian 362000, China.
| |
Collapse
|