1
|
Salem MM, Mohamed TM, Shaban AM, Mahmoud YAG, Eid MA, El-Zawawy NA. Optimization, purification and characterization of laccase from a new endophytic Trichoderma harzianum AUMC14897 isolated from Opuntia ficus-indica and its applications in dye decolorization and wastewater treatment. Microb Cell Fact 2024; 23:266. [PMID: 39369235 PMCID: PMC11453076 DOI: 10.1186/s12934-024-02530-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/14/2024] [Indexed: 10/07/2024] Open
Abstract
BACKGROUND Hazardous synthetic dye wastes have become a growing threat to the environment and public health. Fungal enzymes are eco-friendly, compatible and cost-effective approach for diversity of applications. Therefore, this study aimed to screen, optimize fermentation conditions, and characterize laccase from fungal endophyte with elucidating its ability to decolorize several wastewater dyes. RESULTS A new fungal endophyte capable of laccase-producing was firstly isolated from cladodes of Opuntia ficus-indica and identified as T. harzianum AUMC14897 using ITS-rRNA sequencing analysis. Furthermore, the response surface methodology (RSM) was utilized to optimize several fermentation parameters that increase laccase production. The isolated laccase was purified to 13.79-fold. GFC, SDS-PAGE revealed laccase molecular weight at 72 kDa and zymogram analysis elucidated a single band without any isozymes. The peak activity of the pure laccase was detected at 50 °C, pH 4.5, with thermal stability up to 50 °C and half life span for 4 h even after 24 h retained 30% of its activity. The Km and Vmax values were 0.1 mM, 22.22 µmol/min and activation energy (Ea) equal to 5.71 kcal/mol. Furthermore, the purified laccase effectively decolorized various synthetic and real wastewater dyes. CONCLUSION Subsequently, the new endophytic strain produces high laccase activity that possesses a unique characteristic, it could be an appealing candidate for both environmental and industrial applications.
Collapse
Affiliation(s)
- Maha M Salem
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Aya M Shaban
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Yehia A-G Mahmoud
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Mohammed A Eid
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nessma A El-Zawawy
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
2
|
Kumar Parida V, Kavita, Arora R, Sharma T. Unleashing the power of silk-based proteins as biomaterials for cutting-edge drug delivery: a comprehensive review. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-25. [PMID: 39230985 DOI: 10.1080/09205063.2024.2397215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/06/2024]
Abstract
Silk proteins, viz., sericin, fibroin and their modified forms etc., have been thoroughly researched as natural biopolymers for the development of varied nanomaterials exhibiting diverse biomedical applications. The silk proteins are extracted from the cocoons by degumming and treatment with soaps, followed by dissolution and dialysis against water. These proteins exhibit distinct mechanical and physicochemical characteristics including biocompatibility, controlled biodegradability, self-assembling traits, chemical modifiability, and adaptability, thus making it an ideal drug delivery vehicle. In this regard, silk protein-derived drug delivery systems have been reported as efficient carrier to encapsulate and stabilize the wide variety of pharmacological molecules, enzymes, proteins, vaccines, and even DNA, allowing them to remain active for a longer period of time. Further, different delivery carriers researched employing these proteins for multitude of applications include hydrogels, sponges, fibres, scaffolds and particulate delivery systems. Additionally, the chemical modification of silk proteins has further opened avenues for development of other modified silk proteins with improved physicochemical traits and hence exhibiting enormous potential in development of varied bioenhanced carrier systems. The current article thus provides the holistic information of characteristics, types of silk protein-based delivery carriers, and their fabrication techniques, while emphasizing the applications of different silk proteins in biomedicine and drug delivery.
Collapse
Affiliation(s)
| | - Kavita
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Rashmi Arora
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| | - Teenu Sharma
- Chitkara College of Pharmacy, Rajpura, Punjab, India
| |
Collapse
|
3
|
Huang W, Wang S, Feng Z, Zhou D, Bai W. Tyrosinase-Modified UHMW SELP Polymers as Wet and Underwater Adhesives to Achieve Multi-interface Adhesion. ACS Synth Biol 2024; 13:1191-1204. [PMID: 38536670 DOI: 10.1021/acssynbio.3c00644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The presence of a hydration layer in humid and underwater environments challenges adhesive-substrate interactions and prevents effective bonding, which has become a significant obstacle to the development of adhesives in the industrial and biomedical fields. In this study, ultrahigh-molecular-weight (UHMW) silk-elastin-like proteins (SELP) with 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine residues by tyrosinase exhibited excellent adhesive properties on different interfaces, such as glass, aluminum, wood, polypropylene sheets, and pigskin, under both dry and wet conditions. Additionally, by incorporating trace amounts of cross-linking agents like Fe3+, NaIO4, and tris(hydroxymethyl) phosphine (THP), the mussel-inspired adhesives maintained a stable and excellent adhesion, broadening the conditions of application. Notably, the UHMW SELP adhesive exhibited remarkable underwater adhesion properties with a shear strength of 0.83 ± 0.17 MPa on glass. It also demonstrated good adhesion to biological tissues including the kidney, liver, heart, and lungs. In vitro cytocompatibility testing using L929 cells showed minimal toxicity, highlighting its potential application in the biomedical field. The sustainable, cytocompatible, cost-effective, and highly efficient adhesive provides valuable insights for the design and development of a new protein-based underwater adhesive for medical application.
Collapse
Affiliation(s)
- Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Zhaoxuan Feng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Dasen Zhou
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqin Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- National Center of Technology Innovation for Synthetic Biology, 32 West Seventh Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| |
Collapse
|
4
|
Feng Z, Wang S, Huang W, Bai W. A potential bilayer skin substitute based on electrospun silk-elastin-like protein nanofiber membrane covered with bacterial cellulose. Colloids Surf B Biointerfaces 2024; 234:113677. [PMID: 38043505 DOI: 10.1016/j.colsurfb.2023.113677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Skin substitutes are designed to promote wound healing by replacing extracellular matrix. Silk-elastin-like protein is a renewable extracellular matrix-like material that integrated the advantages of silk and elastin-like protein. In this study, electrospun silk-elastin-like protein (SELP) nanofiber membrane covered with bacterial cellulose (BC) was created as a potential skin substitute to mimic gradient structure of epidermis and dermis of skin. The two layers were glued together using adhesive SELP containing 3,4-dihydroxyphenylalanine (DOPA) converted from tyrosine by tyrosinase. Skin topical drugs commonly used in clinical practice can penetrate through the SELP/BC barrier, and the rate of penetration is proportional to drug concentration. BC with dense fibrous structure can act as a barrier to preserve the inner SELP layer and prevent bacterial invasion, with a blocking permeation efficiency over 99% against four species of bacteria. Cell experiments demonstrated that the reticular fibers of SELP could provide an appropriate growth environment for skin cells proliferation and adhesion, which is considered to promote tissue repair and regeneration. The promising results support this strategy to fabricate a silk-elastin-like protein-based biomaterial for skin substitutes in the clinical treatment of full skin injuries and ulcers.
Collapse
Affiliation(s)
- Zhaoxuan Feng
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Sijia Wang
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
| | - Wenxin Huang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenqin Bai
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China.
| |
Collapse
|
5
|
Fan R, Aranko AS. Catcher/Tag Toolbox: Biomolecular Click-Reactions For Protein Engineering Beyond Genetics. Chembiochem 2024; 25:e202300600. [PMID: 37851860 DOI: 10.1002/cbic.202300600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 10/20/2023]
Abstract
Manipulating protein architectures beyond genetic control has attracted widespread attention. Catcher/Tag systems enable highly specific conjugation of proteins in vivo and in vitro via an isopeptide-bond. They provide efficient, robust, and irreversible strategies for protein conjugation and are simple yet powerful tools for a variety of applications in enzyme industry, vaccines, biomaterials, and cellular applications. Here we summarize recent development of the Catcher/Tag toolbox with a particular emphasis on the design of Catcher/Tag pairs targeted for specific applications. We cover the current limitations of the Catcher/Tag systems and discuss the pH sensitivity of the reactions. Finally, we conclude some of the future directions in the development of this versatile protein conjugation method and envision that improved control over inducing the ligation reaction will further broaden the range of applications.
Collapse
Affiliation(s)
- Ruxia Fan
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| | - A Sesilja Aranko
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 16100, 02150, Espoo, Finland
| |
Collapse
|
6
|
Lee KZ, Jeon J, Jiang B, Subramani SV, Li J, Zhang F. Protein-Based Hydrogels and Their Biomedical Applications. Molecules 2023; 28:4988. [PMID: 37446650 DOI: 10.3390/molecules28134988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Hydrogels made from proteins are attractive materials for diverse medical applications, as they are biocompatible, biodegradable, and amenable to chemical and biological modifications. Recent advances in protein engineering, synthetic biology, and material science have enabled the fine-tuning of protein sequences, hydrogel structures, and hydrogel mechanical properties, allowing for a broad range of biomedical applications using protein hydrogels. This article reviews recent progresses on protein hydrogels with special focus on those made of microbially produced proteins. We discuss different hydrogel formation strategies and their associated hydrogel properties. We also review various biomedical applications, categorized by the origin of protein sequences. Lastly, current challenges and future opportunities in engineering protein-based hydrogels are discussed. We hope this review will inspire new ideas in material innovation, leading to advanced protein hydrogels with desirable properties for a wide range of biomedical applications.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Juya Jeon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Bojing Jiang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Shri Venkatesh Subramani
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Jingyao Li
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
- Institute of Materials Science and Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, MI 63130, USA
| |
Collapse
|