1
|
Zhang K, Yue L, Cong J, Zhang J, Feng Z, Yang Q, Lu X. Increased production of pullulan in Aureobasidium pullulans YQ65 through reduction of intracellular glycogen content. Carbohydr Polym 2025; 352:123196. [PMID: 39843098 DOI: 10.1016/j.carbpol.2024.123196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/22/2024] [Accepted: 12/27/2024] [Indexed: 01/24/2025]
Abstract
Environmental pH is an important parameter that impacts the growth, reproduction, and carbohydrate metabolism of Aureobasidium spp.. This study identifies the ApGph1 gene (encoded with Glycogen Phosphatase) reflecting significant carbohydrate metabolism difference through transcriptome analysis of Aureobasidium Pullulans YQ65 cultured under different pH. It is subsequently analyzed using the Conserved Domains and Expasy tools. It has been found that compared with its wild type, the △ApGph1 strain exhibits no significant differences in its growth pattern and morphology but a production volume of pullulan inversely proportional to its glycogen content. In addition, through fed-batch fermentation, an over-expressed ApGph1 strain can produce 42.7 g/L of pullulan within 144 h, which is related to the increased expression of key genes involved in pullulan synthesis. The results can provide a guide for the industrial production of pullulan.
Collapse
Affiliation(s)
- Kai Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China; School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China
| | - Lei Yue
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jingxian Cong
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Jianlong Zhang
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China
| | - Zhibin Feng
- School of Life Science, Ludong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| | - Qian Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin 150006, China; State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Xuechun Lu
- LuDong University, 186 Hongqi Road, Yantai, Shandong 264025, China.
| |
Collapse
|
2
|
Gao J, Liao X, Ma H, Bai W. Transcriptome analysis of Aureobasidium pullulans BL06 and identification of key factors affecting pullulan production. Carbohydr Polym 2025; 349:122984. [PMID: 39643415 DOI: 10.1016/j.carbpol.2024.122984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/30/2024] [Accepted: 11/12/2024] [Indexed: 12/09/2024]
Abstract
Pullulan, a versatile water-soluble polysaccharide, is widely used across various industries. To minimize byproduct interference, Aureobasidium pullulans BL06ΔPMAs was engineered, resulting in a higher yield and a lower molecular weight (MW) than the parent strain A. pullulans BL06. Comparative transcriptomic analysis revealed differentially expressed genes (DEGs) involved in sucrose metabolism, gluconeogenesis, glyoxylate metabolism, and amino acid metabolism. These DEGs may influence substrate consumption, energy production, and membrane composition, ultimately impacting pullulan synthesis. Additionally, further experimental validations were conducted on the genes with the most significant differential expression. Overexpressing glycosyltransferase gene (gta1, the third most differentially expressed gene) in A. pullulans BL06 increased pullulan production by 8.1 %, indicating its role in short α-1,4-glucan synthesis. Overexpression of the transmembrane transporter gene (st1, the most significantly differentially expressed gene) reduced pullulan molecular weight by 25 %, which potentially influences cell membrane fluidity and pullulan secretion. Furthermore, amylase (Amy1) was found to significantly impact molecular weight (MW) within the first 48 h of fermentation, an effect not previously reported for amylase, while its knockout resulted in a remarkable 7.6-fold increase in pullulan MW. These findings provide valuable insights for regulating pullulan yield and MW, offering innovative genetic targets for strains engineering in future industrial applications.
Collapse
Affiliation(s)
- Jiaqi Gao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China
| | - Xiaoping Liao
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China
| | - Hongwu Ma
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; Biodesign Center, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China
| | - Wenqin Bai
- National Center of Technology Innovation for Synthetic Biology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China; Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin Airport Economic Area, 32 West 7th Avenue, Tianjin 300308, China.
| |
Collapse
|
3
|
Feng L, Zhang J, Ma C, Li K, Zhai J, Cai S, Yin J. Application prospect of polysaccharide in the development of vaccine adjuvants. Int J Biol Macromol 2025; 297:139845. [PMID: 39824409 DOI: 10.1016/j.ijbiomac.2025.139845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/26/2024] [Accepted: 01/12/2025] [Indexed: 01/20/2025]
Abstract
Vaccination is an effective strategy for preventing infectious diseases. Subunit vaccines offer more precise targeting and safer protection compared with traditional inactivated virus vaccines. However, due to their poor immunogenicity, subunit vaccines necessitate the use of adjuvants to stimulate the immune system. Adjuvants have long been incorporated into vaccines to enhance the body's immune response, allowing for reduced dosage and lower production costs. Despite the development of numerous vaccine adjuvants, few exhibit the necessary potency and low toxicity for clinical use, often due to limited efficacy or adverse side effects. This underscores the urgent need for novel human vaccine adjuvants that are safe, effective, and cost-efficient. Recent studies have identified certain natural polysaccharides as promising human vaccine adjuvants due to their immunostimulatory properties, low toxicity, and high safety profiles, which enhance both humoral and cellular immunity. These natural polysaccharides are primarily derived from traditional Chinese medicine (TCM) plants, bacteria, and yeast. This review comprehensively analyzes several promising polysaccharide adjuvants, discussing their clinical applications, market potential, and immunoregulatory activities. In summary, the future prospects of polysaccharides provide valuable insights for the application and development of vaccine adjuvants.
Collapse
Affiliation(s)
- Lei Feng
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jiarui Zhang
- Department of Intensive Care Medicine, the First Hospital of China Medical University, Shenyang 110001, China
| | - Chunyan Ma
- Department of Cardiovascular Ultrasound, the First Hospital of China Medical University, Shenyang 110001, China
| | - Kai Li
- Department of Oncology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Jianxiu Zhai
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Shuang Cai
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China; School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Jun Yin
- Department of Pharmacognosy and Utilization Key Laboratory of Northeast Plant Materials, School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
4
|
Li S, Wu X, Meng J. Draft genome sequence of Aureobasidium pullulans ATCC15233. Microbiol Resour Announc 2024:e0075624. [PMID: 39679733 DOI: 10.1128/mra.00756-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Aureobasidium pullulans is a well-studied polyextremotolerant generalist fungus with a ubiquitous distribution, which can efficiently secret extracellular polysaccharides, especially pullulan. Here, we reported the draft genome of A. pullulans ATCC15233, whose genome length is 30,444,007 bp, with a GC content of 50.63%.
Collapse
Affiliation(s)
- Shuang Li
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Xiuyun Wu
- The State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong, China
| | - Jing Meng
- Jinan Maternity and Child Care Hospital, Jinan, Shandong, China
| |
Collapse
|
5
|
Zhang Z, Hu W, Yu A, Bi H, Wang J, Wang X, Kuang H, Wang M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int J Biol Macromol 2024; 282:136975. [PMID: 39476919 DOI: 10.1016/j.ijbiomac.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Rosa rugosa Thunb. (R. rugosa) has been used as food and medicine and not just as ornamental plant for nearly a thousand years, its nutritional and medicinal value have been recognized by people. It contains a variety of biological active ingredients that are beneficial to the human body. R. rugosa polysaccharides are also one of the main bioactive ingredients, which have many health benefits such as anti-diabetes, antioxidation, anti-inflammation, anti-tumour, moisture-preserving and anti-alcoholic liver disease. This review summarizes the extraction, purification, structural characteristics, health benefits, and structure-activity relationships of R. rugosa polysaccharides. In addition, current and potential applications of R. rugosa polysaccharides are analyzed and supplemented, hoping to provide some valuable insights for further research and development of functional food additives, nutritional supplements, additives for daily chemical products, and even pharmaceuticals.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haizheng Bi
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jingyuan Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xingyu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
6
|
Wang Q, Yang S, Huang L, Liu S, Liu C, Xu J. Research Progress of Application and Interaction Mechanism of Polymers in Mineral Flotation: A Review. Polymers (Basel) 2024; 16:3335. [PMID: 39684080 DOI: 10.3390/polym16233335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/18/2024] Open
Abstract
Polymers are composed of many smaller units connected by covalent bonds, with higher molecular weight and larger molecular structure. Due to their economical efficiency and easy modification, researchers have discovered the potential of polymers as the flotation reagent in mineral processing, including the roles of depressant, flocculant, and frother. This paper provides a comprehensive review of the utilization of polymers in mineral flotation, emphasizing their current applications and mechanistic investigations. The study categorizes polymers into three types: natural polymers, modified polymers, and synthesized polymers. Detailed discussions include the polymers structures, functional properties, adsorption mechanisms and specific application examples of each reagent are shown in the main text, which will provide a vital reference for the development of highly efficient and environmentally friendly reagents in mineral flotation.
Collapse
Affiliation(s)
- Qianqian Wang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Siyuan Yang
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Lingyun Huang
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Shuo Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Cheng Liu
- Key Laboratory of Green Utilization of Critical Non-Metallic Mineral Resources, Ministry of Education, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Jinyue Xu
- SLon Magnetic Separator Ltd., Shahe Industrial Park, Ganzhou 341000, China
| |
Collapse
|
7
|
Bhirud D, Bhattacharya S, Prajapati BG. Bioengineered carbohydrate polymers for colon-specific drug release: Current trends and future prospects. J Biomed Mater Res A 2024; 112:1860-1872. [PMID: 38721841 DOI: 10.1002/jbm.a.37732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/15/2024] [Accepted: 04/25/2024] [Indexed: 09/03/2024]
Abstract
The worldwide health burden of colorectal cancer is still substantial, and traditional chemotherapeutic drugs sometimes have poor selectivity, which can result in systemic toxicity and unfavorable side effects. For colon-specific medication delivery, bioengineered carbohydrate polymers have shown promise as carriers. They may enhance treatment effectiveness while minimizing systemic exposure and associated side effects. The unique properties of these manufactured or naturally occurring biopolymers, such as hyaluronic acid, chitosan, alginate, and pectin, enable targeted medicine release. These qualities can be changed to meet the physiological needs of the colon. In the context of colorectal cancer therapy, this article provides a comprehensive overview of current developments and prospective future directions in the field of bioengineered carbohydrate polymer synthesis for colon-specific drug delivery. We discuss numerous techniques for achieving colon-targeted drug release, including enzyme-sensitive polymers, pH-responsive devices, and microbiota-activated processes. To increase tumor selectivity and cellular uptake, we also examine the inclusion of active targeting approaches, such as conjugating specific ligands. Furthermore, we discuss the potential of combination treatment strategies, which use the coadministration of numerous therapeutic medications to target multiple pathways implicated in cancer growth and address drug resistance mechanisms. We address recent biomimetic advances that potentially improve the biocompatibility, cellular uptake, and tumor penetration of carbohydrate polymer-based nanocarriers. These methods involve protein corona engineering and cell membrane coating. Furthermore, we look at the possibility of intelligent and sensitive systems that may adjust their behaviors in response to certain inputs or feedback loops, allowing for precise and regulated drug distribution.
Collapse
Affiliation(s)
- Darshan Bhirud
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKM's NMIMS Deemed-to-be University, Shirpur, Maharashtra, India
| | - Bhupendra G Prajapati
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Shree S.K. Patel College of Pharmaceutical Education & Research, Mehsana, Gujarat, India
| |
Collapse
|
8
|
He Q, Ding X, Deng J, Zhang Y, Wang X, Zhan D, Okoro OV, Yan L, Shavandi A, Nie L. Fabrication of injectable, adhesive, self-healing, superabsorbent hydrogels based on quaternary ammonium chitosan and oxidized pullulan. Heliyon 2024; 10:e38577. [PMID: 39435091 PMCID: PMC11491910 DOI: 10.1016/j.heliyon.2024.e38577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Injectable hydrogels, which are polymeric materials that are characterized by their ability to be injected in a liquid form into cavities and subsequently undergo in situ solidification, have garnered significant attention. These materials are extensively used in a range of biomedical applications. This study synthesized several injectable composite hydrogels through the mild Schiff base reaction while imposing different concentrations of quaternary ammonium chitosan and oxidized pullulan. Subsequent characterizations revealed a consistent and coherent porous structure within the hydrogels with smooth inner walls. The hydrogels were also determined to possess good adhesion, mechanical properties, self-healing ability, and injectability. Furthermore, antimicrobial tests against Escherichia coli and Staphylococcus aureus demonstrated antibacterial properties, which improved with increasing concentrations of quaternary ammonium chitosan. Co-culturing with skin fibroblasts demonstrated that the injectable hydrogels exhibited favourable biocompatibility and the capacity to boost cellular activity, thus underscoring its potential for use in biomedical applications.
Collapse
Affiliation(s)
- Qian He
- Emergency Department, Wuhan No.7 Hospital, Wuchang District, 430061, Wuhan, China
| | - Xiaoyue Ding
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Jun Deng
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Yanze Zhang
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| | - Xiaoyi Wang
- Department of Nutrition, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Dan Zhan
- Health Management and Physical Examination Department, Hubei Third People's Hospital, Jianghan University, Qiaokou district, 430030, Wuhan, China
| | - Oseweuba Valentine Okoro
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lizhao Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Armin Shavandi
- Université libre de Bruxelles (ULB), École polytechnique de Bruxelles - BioMatter unit, Avenue F.D. Roosevelt, 50 - CP 165/61, 1050, Brussels, Belgium
| | - Lei Nie
- College of Life Sciences, Xinyang Normal University (XYNU), Xinyang, 464000, China
| |
Collapse
|
9
|
Ali A, Rahul, Jori C, Kumar J, Kumar A, Kanika, Ansari MM, Ahmad A, Ali N, Yadav P, Parvez S, Navik U, Son YO, Khan R. Sinapic acid-pullulan based inflammation responsive nanomicelles for the local treatment of experimental inflammatory arthritis. Int J Biol Macromol 2024; 278:134903. [PMID: 39168211 DOI: 10.1016/j.ijbiomac.2024.134903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/13/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disorder of joints. It is one of the major causes of disability and morbidity worldwide. Administration of conventional drugs through the systemic route restricts the bioavailability of drugs, systemic toxicity, and reduced efficacy. We have introduced Rebamipide (Reb)-loaded Sinapic acid (SA)-Pullulan (PL) nanomicelles (Reb@SA-PL NMs), a nanotechnology based drug delivery system for the treatment of inflammatory arthritis. PL is a polysaccharide obtained from the fungus Aureobasidium pullulans, and SA is a bioactive polyphenol found in various plants. Both are classified by US-FDA Generally Recognised as Safe (GRAS) materials. Reb@SA-PL NMs found to be cytocompatible. Subsequently, intra-articular administration of Reb@SA-PL NMs enhances the anti-arthritic potential compared to free Reb drug in collagen-induced experimental inflammatory arthritis rat model. Reb@SA-PL NMs reduced the expression of RANKL receptor and Nf-κB. Reb@SA-PL NMs reverses the breakdown of type II collagen, MMP-13, and inhibits the pro-inflammatory markers. Reb@SA-PL NMs prevented bone erosion, cartilage degradation, joint oedema, and synovial inflammation. The results of the study demonstrated that Reb@SA-PL NMs, an enzyme-responsive drug delivery system, has excellent potential for alleviating inflammatory arthritis by blocking MMP-13 and RANKL.
Collapse
Affiliation(s)
- Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Rahul
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Jattin Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India
| | - Md Meraj Ansari
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, South Korea. Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea; Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Poonam Yadav
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi 110 062, India
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda 151401, Punjab, India
| | - Young-Ok Son
- Department of Animal Biotechnology, Faculty of Biotechnology, College of Applied Life Sciences, Jeju National University, Jeju Special Self-Governing Province, 63243, South Korea. Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali 140306, Punjab, India.
| |
Collapse
|
10
|
Yang J, Sun N, Wang W, Zhang R, Sun S, Li B, Shi Y, Zeng J, Jia S. Genomic analysis and mechanisms exploration of a stress tolerance and high-yield pullulan producing strain. Front Genet 2024; 15:1469600. [PMID: 39371418 PMCID: PMC11449735 DOI: 10.3389/fgene.2024.1469600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/10/2024] [Indexed: 10/08/2024] Open
Abstract
Pullulan is a kind of natural polymer, which is widely used in medicine and food because of its solubility, plasticity, edible, non-toxicity and good biocompatibility. It is of great significance to improve the yield of pullulan by genetic modification of microorganisms. It was previously reported that Aureobasidium melanogenum TN3-1 isolated from honey-comb could produce high-yield of pullulan, but the molecular mechanisms of its production of pullulan had not been completely solved. In this study, the reported strains of Aureobasidium spp. were further compared and analyzed at genome level. It was found that genome duplication and genome genetic variations might be the crucial factors for the high yield of pullulan and stress resistance. This particular phenotype may be the result of adaptive evolution, which can adapt to its environment through genetic variation and adaptive selection. In addition, the TN3-1 strain has a large genome, and the special regulatory sequences of its specific genes and promoters may ensure a unique characteristics. This study is a supplement of the previous studies, and provides basic data for the research of microbial genome modification in food and healthcare applications.
Collapse
Affiliation(s)
- Jing Yang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ning Sun
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- First clinical medical college, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenru Wang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Ruihua Zhang
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Siqi Sun
- Department of Cardiology, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Biqi Li
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yue Shi
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junfeng Zeng
- School of Basic Medicine, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Shulei Jia
- School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| |
Collapse
|
11
|
Nguyen HT, Pham TT, Nguyen PT, Le-Buanec H, Rabetafika HN, Razafindralambo HL. Advances in Microbial Exopolysaccharides: Present and Future Applications. Biomolecules 2024; 14:1162. [PMID: 39334928 PMCID: PMC11430787 DOI: 10.3390/biom14091162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Microbial exopolysaccharides (EPSs) are receiving growing interest today, owing to their diversity in chemical structure and source, multiple functions, and immense potential applications in many food and non-food industries. Their health-promoting benefits for humans deserve particular attention because of their various biological activities and physiological functions. The aim of this paper is to provide a comprehensive review of microbial EPSs, covering (1) their chemical and biochemical diversity, including composition, biosynthesis, and bacterial sources belonging mainly to lactic acid bacteria (LAB) or probiotics; (2) their technological and analytical aspects, especially their production mode and characterization; (3) their biological and physiological aspects based on their activities and functions; and (4) their current and future uses in medical and pharmaceutical fields, particularly for their prebiotic, anticancer, and immunobiotic properties, as well as their applications in other industrial and agricultural sectors.
Collapse
Affiliation(s)
- Huu-Thanh Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Thuy-Trang Pham
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Phu-Tho Nguyen
- Department of Biotechnology, An Giang University, Vietnam National University, 18 Ung Van Khiem, Long Xuyen City 880000, Vietnam
- Vietnam National University Ho Chi Minh, Thu Duc City, HCM City 71308, Vietnam
| | - Hélène Le-Buanec
- INSERM U976-HIPI Hôpital Saint Louis, 1 Avenue Claude Vellefaux, 75010 Paris, France
| | | | - Hary L Razafindralambo
- ProBioLab, 5004 Namur, Belgium
- TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liege, Avenue de la Faculté 2B, 5030 Gembloux, Belgium
| |
Collapse
|
12
|
Iwaniec J, Niziołek K, Polanowski P, Słota D, Kosińska E, Sadlik J, Miernik K, Jampilek J, Sobczak-Kupiec A. Polyethylene Glycol/Pullulan-Based Carrier for Silymarin Delivery and Its Potential in Biomedical Applications. Int J Mol Sci 2024; 25:9972. [PMID: 39337459 PMCID: PMC11432400 DOI: 10.3390/ijms25189972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024] Open
Abstract
Restoring the structures and functions of tissues along with organs in human bodies is a topic gathering attention nowadays. These issues are widely discussed in the context of regenerative medicine. Excipients/delivery systems play a key role in this topic, guaranteeing a positive impact on the effectiveness of the drugs or therapeutic substances supplied. Advances in materials engineering, particularly in the development of hydrogel biomaterials, have influenced the idea of creating an innovative material that could serve as a carrier for active substances while ensuring biocompatibility and meeting all the stringent requirements imposed on medical materials. This work presents the preparation of a natural polymeric material based on pullulan modified with silymarin, which belongs to the group of flavonoids and derives from a plant called Silybum marianum. Under UV light, matrices with a previously prepared composition were crosslinked. Before proceeding to the next stage of the research, the purity of the composition of the matrices was checked using Fourier-transform infrared (FT-IR) spectroscopy. Incubation tests lasting 19 days were carried out using incubation fluids such as simulated body fluid (SBF), Ringer's solution, and artificial saliva. Changes in pH, electrolytic conductivity, and weight were observed and then used to determine the sorption capacity. During incubation, SBF proved to be the most stable fluid, with a pH level of 7.6-7.8. Sorption tests showed a high sorption capacity of samples incubated in both Ringer's solution and artificial saliva (approximately 350%) and SBF (approximately 300%). After incubation, the surface morphology was analyzed using an optical microscope for samples demonstrating the greatest changes over time. The active substance, silymarin, was released using a water bath, and then the antioxidant capacity was determined using the Folin-Ciocâlteu test. The tests carried out proved that the material produced is active and harmless, which was shown by the incubation analysis. The continuous release of the active ingredient increases the biological value of the biomaterial. The material requires further research, including a more detailed assessment of its balance; however, it demonstrates promising potential for further experiments.
Collapse
Affiliation(s)
- Julia Iwaniec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Karina Niziołek
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Patryk Polanowski
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Dagmara Słota
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Edyta Kosińska
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Julia Sadlik
- Cracow University of Technology, CUT Doctoral School, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Krzysztof Miernik
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| | - Josef Jampilek
- Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 842 15 Bratislava, Slovakia
- Department of Chemical Biology, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Agnieszka Sobczak-Kupiec
- Cracow University of Technology, Faculty of Materials Engineering and Physics, Department of Materials Science, 37 Jana Pawła II Av., 31-864 Krakow, Poland
| |
Collapse
|
13
|
Bai R, Chen J, Hao Y, Dong Y, Ren K, Gao T, Zhang S, Xu F, Zhao H. ARTP mutagenesis of Aureobasidium pullulans RM1603 for high pullulan production and transcriptome analysis of mutants. Arch Microbiol 2024; 206:375. [PMID: 39141138 DOI: 10.1007/s00203-024-04094-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/15/2024]
Abstract
Pullulan is a microbial exopolysaccharide produced by Aureobasidium spp. with excellent physical and chemical properties, resulting in great application value. In this study, a novel strain RM1603 of Aureobasidium pullulans with high pullulan production of 51.0 ± 1.0 g·L- 1 isolated from rhizosphere soil was subjected to atmospheric and room temperature plasma (ARTP) mutagenesis, followed by selection of mutants to obtain pullulan high-producing strains. Finally, two mutants Mu0816 and Mu1519 were obtained, with polysaccharide productions of 58.7 ± 0.8 and 60.0 ± 0.8 g∙L- 1 after 72-h fermentation, representing 15.1 and 17.6% increases compared with the original strain, respectively. Transcriptome analysis of the two mutants and the original strain revealed that the high expression of α/β-hydrolase (ABHD), α-amylase (AMY1), and sugar porter family MFS transporters (SPF-MFS) in the mutants may be related to the synthesis and secretion of pullulan. These results demonstrated the effectiveness of ARTP mutagenesis in A. pullulans, providing a basis for the investigation of genes related to pullulan synthesis and secretion.
Collapse
Affiliation(s)
- Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yaqiao Hao
- Anshan Health School, Anshan, 114013, China
| | - Yiheng Dong
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Keyao Ren
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
14
|
Bao Q, Zhang X, Hao Z, Li Q, Wu F, Wang K, Li Y, Li W, Gao H. Advances in Polysaccharide-Based Microneedle Systems for the Treatment of Ocular Diseases. NANO-MICRO LETTERS 2024; 16:268. [PMID: 39136800 PMCID: PMC11322514 DOI: 10.1007/s40820-024-01477-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 07/06/2024] [Indexed: 08/16/2024]
Abstract
The eye, a complex organ isolated from the systemic circulation, presents significant drug delivery challenges owing to its protective mechanisms, such as the blood-retinal barrier and corneal impermeability. Conventional drug administration methods often fail to sustain therapeutic levels and may compromise patient safety and compliance. Polysaccharide-based microneedles (PSMNs) have emerged as a transformative solution for ophthalmic drug delivery. However, a comprehensive review of PSMNs in ophthalmology has not been published to date. In this review, we critically examine the synergy between polysaccharide chemistry and microneedle technology for enhancing ocular drug delivery. We provide a thorough analysis of PSMNs, summarizing the design principles, fabrication processes, and challenges addressed during fabrication, including improving patient comfort and compliance. We also describe recent advances and the performance of various PSMNs in both research and clinical scenarios. Finally, we review the current regulatory frameworks and market barriers that are relevant to the clinical and commercial advancement of PSMNs and provide a final perspective on this research area.
Collapse
Affiliation(s)
- Qingdong Bao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Xiaoting Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China
| | - Zhankun Hao
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Qinghua Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Fan Wu
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China
| | - Kaiyuan Wang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
| | - Yang Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, People's Republic of China.
| | - Wenlong Li
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| | - Hua Gao
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Eye Institute of Shandong First Medical University, Qingdao, 266071, People's Republic of China.
- Eye Hospital of Shandong First Medical University, Jinan, 250021, People's Republic of China.
- College of Ophthalmology, Shandong First Medical University, Jinan, 250000, People's Republic of China.
| |
Collapse
|
15
|
Xu X, Ding Z, Pu C, Kong C, Chen S, Lu W, Zhang J. The structural characterization and UV-protective properties of an exopolysaccharide from a Paenibacillus isolate. Front Pharmacol 2024; 15:1434136. [PMID: 39185320 PMCID: PMC11341463 DOI: 10.3389/fphar.2024.1434136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024] Open
Abstract
Introduction Overexposure to ultraviolet (UV) light is known to cause damage to the skin, leading to sunburn and photo-aging. Chemical sunscreen products may give rise to health risks including phototoxicity, photosensitivity, and photosensitivity. Natural polysaccharides have attracted considerable interests due to diverse biological activities. Methods A novel polysaccharide isolated was purified and structurally characterized using chemical methods followed by HPLC, GLC-MS, as well as 1D and 2D NMR spectroscopy. The photoprotective effect of the EPS on UVB-induced damage was assessed in vitro using cultured keratinocytes and in vivo using C57BL/6 mouse models. Results The average molecular weight of the EPS was 5.48 × 106 Da, composed of glucose, mannose and galactose residues at a ratio of 2:2:1. The repeating units of the EPS were →3)-β-D-Glcp (1→3) [β-D-Galp (1→2)-α-D-Glcp (1→2)]-α-D-Manp (1→3)-α-D-Manp (1→. In cultured keratinocytes, the EPS reduced cytotoxicity and excessive ROS production induced by UVB irradiation. The EPS also exhibits an inhibitory effect on oxidative stress, inflammation, and collagen degradation found in the photodamage in mice. 1H NMR-based metabolomics analysis for skin suggested that the EPS partly reversed the shifts of metabolic profiles of the skin in UVB-exposed mice. Conclusion The EPS exhibits skin photoprotective effects through regulating oxidative stress both in vivo and in vitro. Our findings highlight that the EPS is a potential candidate in sunscreen formulations for an efficient solution to UVB radiation.
Collapse
Affiliation(s)
- Xiaodong Xu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Zhao Ding
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Chunlin Pu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Changchang Kong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Shijunyin Chen
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Weiling Lu
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
- Key Laboratory of Metabolic Engineering and Biosynthesis Technology, Ministry of Industry and Information Technology, Nanjing, China
| |
Collapse
|
16
|
Xiao D, Driller M, Dielentheis‐Frenken M, Haala F, Kohl P, Stein K, Blank LM, Tiso T. Advances in Aureobasidium research: Paving the path to industrial utilization. Microb Biotechnol 2024; 17:e14535. [PMID: 39075758 PMCID: PMC11286673 DOI: 10.1111/1751-7915.14535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 07/31/2024] Open
Abstract
We here explore the potential of the fungal genus Aureobasidium as a prototype for a microbial chassis for industrial biotechnology in the context of a developing circular bioeconomy. The study emphasizes the physiological advantages of Aureobasidium, including its polyextremotolerance, broad substrate spectrum, and diverse product range, making it a promising candidate for cost-effective and sustainable industrial processes. In the second part, recent advances in genetic tool development, as well as approaches for up-scaled fermentation, are described. This review adds to the growing body of scientific literature on this remarkable fungus and reveals its potential for future use in the biotechnological industry.
Collapse
Affiliation(s)
- Difan Xiao
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marielle Driller
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Marie Dielentheis‐Frenken
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Frederick Haala
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Philipp Kohl
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Karla Stein
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Lars M. Blank
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| | - Till Tiso
- iAMB – Institute of Applied Microbiology, ABBt – Aachen Biology and BiotechnologyRWTH Aachen UniversityAachenGermany
| |
Collapse
|
17
|
Nakanishi K, Akasaka T, Hayashi H, Yoshihara K, Nakamura T, Nakamura M, Meerbeek BV, Yoshida Y. From Tooth Adhesion to Bioadhesion: Development of Bioabsorbable Putty-like Artificial Bone with Adhesive to Bone Based on the New Material "Phosphorylated Pullulan". MATERIALS (BASEL, SWITZERLAND) 2024; 17:3671. [PMID: 39124335 PMCID: PMC11313254 DOI: 10.3390/ma17153671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/13/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Bioabsorbable materials have a wide range of applications, such as scaffolds for regenerative medicine and cell transplantation therapy and carriers for drug delivery systems. Therefore, although many researchers are conducting their research and development, few of them have been used in clinical practice. In addition, existing bioabsorbable materials cannot bind to the body's tissues. If bioabsorbable materials with an adhesive ability to biological tissues can be made, they can ensure the mixture remains fixed to the affected area when mixed with artificial bone or other materials. In addition, if the filling material in the bone defect is soft and uncured, resorption is rapid, which is advantageous for bone regeneration. In this paper, the development and process of a new bioabsorbable material "Phosphorylated pullulan" and its capability as a bone replacement material were demonstrated. Phosphorylated pullulan, which was developed based on the tooth adhesion theory, is the only bioabsorbable material able to adhere to bone and teeth. The phosphorylated pullulan and β-TCP mixture is a non-hardening putty. It is useful as a new resorbable bone replacement material with an adhesive ability for bone defects around implants.
Collapse
Affiliation(s)
- Ko Nakanishi
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan; (K.N.); (T.A.)
| | - Tsukasa Akasaka
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan; (K.N.); (T.A.)
| | - Hiroshi Hayashi
- Section for Dental Innovation, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan;
| | - Kumiko Yoshihara
- Health and Medical Research Institute, National Institute of Advanced Industrial Science and Technology, 2217-14 Hayashi-Cho, Takamaysu 761-0395, Kagawa, Japan;
| | - Teppei Nakamura
- Department of Applied Veterinary Science, Faculty of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Hokkaido, Japan;
| | - Mariko Nakamura
- School of Clinical Psychology, Kyushu University of Medical Science, 1714-1 Yoshinocho, Nobeoka 882-8508, Miyazaki, Japan;
| | - Bart Van Meerbeek
- KU Leuven, Department of Oral Health Sciences, BIOMAT & UZ Leuven, Dentistry, 3000 Leuven, Belgium;
| | - Yasuhiro Yoshida
- Department of Biomaterials and Bioengineering, Faculty of Dental Medicine, Hokkaido University, Kita 13, Nishi 7, Kita-ku, Sapporo 060-8586, Hokkaido, Japan; (K.N.); (T.A.)
| |
Collapse
|
18
|
Zhang H, Li Y, Fu Y, Jiao H, Wang X, Wang Q, Zhou M, Yong YC, Liu J. A structure-functionality insight into the bioactivity of microbial polysaccharides toward biomedical applications: A review. Carbohydr Polym 2024; 335:122078. [PMID: 38616098 DOI: 10.1016/j.carbpol.2024.122078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
Microbial polysaccharides (MPs) are biopolymers secreted by microorganisms such as bacteria and fungi during their metabolic processes. Compared to polysaccharides derived from plants and animals, MPs have advantages such as wide sources, high production efficiency, and less susceptibility to natural environmental influences. The most attractive feature of MPs lies in their diverse biological activities, such as antioxidative, anti-tumor, antibacterial, and immunomodulatory activities, which have demonstrated immense potential for applications in functional foods, cosmetics, and biomedicine. These bioactivities are precisely regulated by their sophisticated molecular structure. However, the mechanisms underlying this precise regulation are not yet fully understood and continue to evolve. This article presents a comprehensive review of the most representative species of MPs, including their fermentation and purification processes and their biomedical applications in recent years. In particular, this work presents an in-depth analysis into the structure-activity relationships of MPs across multiple molecular levels. Additionally, this review discusses the challenges and prospects of investigating the structure-activity relationships, providing valuable insights into the broad and high-value utilization of MPs.
Collapse
Affiliation(s)
- Hongxing Zhang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yan Li
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yinyi Fu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Haixin Jiao
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Xiangyu Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Qianqian Wang
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Mengbo Zhou
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jun Liu
- Biofuels Institute, School of Environment and Safety Engineering, c/o School of Emergency Management, Jiangsu University, Zhenjiang 212013, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
19
|
Yu Y, Yang M, Zhao H, Zhang C, Liu K, Liu J, Li C, Cai B, Guan F, Yao M. Natural blackcurrant extract contained gelatin hydrogel with photothermal and antioxidant properties for infected burn wound healing. Mater Today Bio 2024; 26:101113. [PMID: 38933414 PMCID: PMC11201118 DOI: 10.1016/j.mtbio.2024.101113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Burns represent a prevalent global health concern and are particularly susceptible to bacterial infections. Severe infections may lead to serious complications, posing a life-threatening risk. Near-infrared (NIR)-assisted photothermal antibacterial combined with antioxidant hydrogel has shown significant potential in the healing of infected wounds. However, existing photothermal agents are typically metal-based, complicated to synthesize, or pose biosafety hazards. In this study, we utilized plant-derived blackcurrant extract (B) as a natural source for both photothermal and antioxidant properties. By incorporating B into a G-O hydrogel crosslinked through Schiff base reaction between gelatin (G) and oxidized pullulan (O), the resulting G-O-B hydrogel exhibited good injectability and biocompatibility along with robust photothermal and antioxidant activities. Upon NIR irradiation, the controlled temperature (around 45-50 °C) generated by the G-O-B hydrogel resulted in rapid (10 min) and efficient killing of Staphylococcus aureus (99 %), Escherichia coli (98 %), and Pseudomonas aeruginosa (82 %). Furthermore, the G-O-B0.5 hydrogel containing 0.5 % blackcurrant extract promoted collagen deposition, angiogenesis, and accelerated burn wound closure conclusively, demonstrating that this well-designed and extract-contained hydrogel dressing holds immense potential for enhancing the healing process of bacterial-infected burn wounds.
Collapse
Affiliation(s)
- Yachao Yu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Mengyu Yang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Hua Zhao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Jingmei Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Chenghao Li
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Bingjie Cai
- Department of Dermatology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou, 450001, China
| |
Collapse
|
20
|
Satomi T, Ochi Y, Okihara T, Fujii H, Yoshida Y, Mominoki K, Hirayama H, Toyosawa J, Yamasaki Y, Kawano S, Kawahara Y, Okada H, Otsuka M, Matsukawa A. Innovative submucosal injection solution for endoscopic resection with phosphorylated pullulan: a preclinical study. Gastrointest Endosc 2024; 99:1039-1047.e1. [PMID: 38224821 DOI: 10.1016/j.gie.2024.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/25/2023] [Accepted: 01/10/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND AND AIMS A submucosal injection solution is used to assist in endoscopic surgery. The high viscosity of current solutions makes them difficult to inject. In the present study, we developed an extremely low-viscosity, easy-to-use submucosal injection solution using phosphorylated pullulan (PPL). METHODS The PPL solutions were prepared at different concentrations, and their viscosities were measured. The mucosal elevation capacity was evaluated using excised porcine stomachs. Controls included 0.4% sodium hyaluronate (SH), 0.6% sodium alginate (SA), and saline. To evaluate the practicality, the catheter injectability of 0.7% PPL was measured, and EMR and endoscopic submucosal dissection (ESD) were performed using the stomach and colorectum of live pigs. As controls, 0.4% SH and saline were used. RESULTS The PPL solutions were of extremely low viscosity compared to the solutions of 0.4% SH and 0.6% SA. Nevertheless, the mucosal elevation capacity of PPL solutions for up to 0.7% concentration was similar to that of 0.4% SH, and 0.7% PPL was less resistant to catheter infusion than 0.4% SH and 0.6% SA. In live pig experiments with endoscopic mucosal resection and ESD, snaring after submucosal injection of 0.7% PPL was easier than with 0.4% SH, ESD with 0.7% PPL produced less bubble formation than with 0.4% SH, and the procedure time tended to be shorter with 0.7% PPL than with 0.4% SH because of the shorter injection time. CONCLUSIONS The PPL solution is an innovative and easy-to-use submucosal injection solution.
Collapse
Affiliation(s)
- Takuya Satomi
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan
| | - Yukari Ochi
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takumi Okihara
- Faculty of Environmental, Life, Natural Science and Technology, Okayama University, Okayama, Japan
| | - Hiroki Fujii
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Yasuhiro Yoshida
- Faculty of Dental Medicine, Department of Biomaterials and Bioengineering, Hokkaido University, Sapporo, Japan
| | - Katsumi Mominoki
- Department of Animal Resources, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Haruko Hirayama
- Department of Animal Resources, Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Junki Toyosawa
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan
| | - Yasushi Yamasaki
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan
| | - Seiji Kawano
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan
| | - Yoshiro Kawahara
- Department of Practical Gastrointestinal Endoscopy, Okayama University, Okayama, Japan
| | - Hiroyuki Okada
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan; Department of Internal Medicine, Japanese Red Cross Society Himeji Hospital, Himeji, Japan
| | - Motoyuki Otsuka
- Department of Gastroenterology and Hepatology, Okayama University, Okayama, Japan
| | - Akihiro Matsukawa
- Department of Pathology and Experimental Medicine, Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
21
|
Nie C, Liang Q, Gao Q. Preparation of Eudragit S100-pullulan/hydroxypropyl-β-cyclodextrin complex-Eudragit S100 multilayer nanofiber film for resveratrol colon delivery. Int J Biol Macromol 2024; 270:132388. [PMID: 38754685 DOI: 10.1016/j.ijbiomac.2024.132388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/06/2024] [Accepted: 05/13/2024] [Indexed: 05/18/2024]
Abstract
Cyclodextrin-based electrospun nanofibers are promising for encapsulating and preserving unstable compounds, but quick dissolution of certain nanofibers hinders their delivery application. In this study, hydroxypropyl-β-cyclodextrin (HPβCD) was used as an effective carrier of resveratrol (RSV) to obtain the RSV/HPβCD inclusion complex (HPIC), which was then incorporated into pullulan nanofibers. For enhancement of RSV release toward colon target, multilayer structure with a pullulan/HPIC film sandwiched between two layers of hydrophobic Eudragit S100 (ES100) nanofibers was employed. The relationship between the superiority of the ES100-pullulan/HPIC-ES100 film and its multilayer structure was verified. The intimate interactions of hydrogen bonds between two adjacent layers enhanced thermal stability, and the hydrophobic outer layers improved water contact resistance. According to release results, multilayer films also showed excellent colon-targeted delivery property and approximately 78.58 % of RSV was observed to release in colon stage. In terms of release mechanism, complex mechanism best described RSV colonic release. Additionally, ES100-pullulan/HPIC-ES100 multilayer films performed higher encapsulation efficiency when compared to the structures without HPIC, which further increased the antioxidant activity and total release amount of RSV. These results suggest a promising strategy for designing safe colonic delivery systems based on multilayer and HPIC structures with superior preservation for RSV.
Collapse
Affiliation(s)
- Congyi Nie
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qian Liang
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China
| | - Qunyu Gao
- Carbohydrate Laboratory, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Guangzhou 510640, PR China.
| |
Collapse
|
22
|
Zhang Z, Yu A, Hu W, Wu L, Yang D, Fu L, Wang Z, Kuang H, Wang M. A review on extraction, purification, structural characteristics, biological activities, applications of polysaccharides from Hovenia dulcis Thunb. (Guai Zao). Int J Biol Macromol 2024; 265:131097. [PMID: 38537845 DOI: 10.1016/j.ijbiomac.2024.131097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/18/2024] [Accepted: 03/20/2024] [Indexed: 04/18/2024]
Abstract
Hovenia dulcis Thunb. (H. dulcis) is a widely distributed plant with a long history of cultivation and consumption. As a common plant, it has economic, edible and medicinal value. H. dulcis polysaccharides are one of their main bioactive ingredients and have many health benefits, such as anti-diabetes, antioxidation, anti-glycosylation, anti-fatigue, immune regulation activities and alcoholic liver disease protection activity. In this paper, the research progress of H. dulcis polysaccharides in extraction, purification, structural characteristics, biological activities, existing and potential applications were reviewed, which could provide new valuable insights for future studies.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lihong Wu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Deqiang Yang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Lei Fu
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Zhibin Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao (Heilongjiang University of Chinese Medicine), Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
23
|
Ganie SA, Rather LJ, Assiri MA, Li Q. Recent innovations (2020-2023) in the approaches for the chemical functionalization of curdlan and pullulan: A mini-review. Int J Biol Macromol 2024; 260:129412. [PMID: 38262826 DOI: 10.1016/j.ijbiomac.2024.129412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/04/2024] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
Chemical modification represents a highly efficacious approach for enhancing the physicochemical characteristics and biological functionalities of natural polysaccharides. However, not all polysaccharides have considerable pharmacologic activity; so, appropriate chemical modification strategies can be selected in accordance with the distinct structural properties of polysaccharides to aid in improving and encouraging the presentation of their biological activities. Hence, there has been a growing interest in the chemical alteration of polysaccharides due to their various properties such as antioxidant, anticoagulant, antiviral, anticancer, biomedical, antibacterial, and immunomodulatory effects. This paper offers a comprehensive examination of recent scientific advancements produced over the past four years in the realm of unique chemical and functional modifications in curdlan and pullulan structures. This review aims to provide readers with an overview of the structural activity correlations observed in the backbone structures of curdlan and pullulan, as well as the diverse chemical modification processes employed for these polysaccharides. Additionally, the review aims to examine the effects of combining various bioactive molecules with chemically modified curdlan and pullulan and explore their potential applications in various important fields.
Collapse
Affiliation(s)
- Showkat Ali Ganie
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Luqman Jameel Rather
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China
| | - Mohammed A Assiri
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia.
| | - Qing Li
- State Key Laboratory of Resource Insects, Chongqing Engineering Research Centre for Biomaterial Fiber and Modern Textile, College of Sericulture, Textile and Biomass Science, Southwest University, 400715 Chongqing, PR China.
| |
Collapse
|
24
|
Rashid A, Qayum A, Liang Q, Kang L, Ekumah JN, Han X, Ren X, Ma H. Exploring the potential of pullulan-based films and coatings for effective food preservation: A comprehensive analysis of properties, activation strategies and applications. Int J Biol Macromol 2024; 260:129479. [PMID: 38237831 DOI: 10.1016/j.ijbiomac.2024.129479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 12/09/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Pullulan is naturally occurring polysaccharide exhibited potential applications for food preservation has gained increasing attention over the last half-century. Recent studies focused on efficient preservation and targeted inhibition using active composite ingredients and advanced technologies. This has led to the emergence of pullulan-based biofilm preservation. This review extensively studied the characteristics of pullulan-based films and coatings, including their mechanical strength, water vapor permeability, thermal stability, and potential as a microbial agent. Furthermore, the distinct characteristics of pullulan, production methods, and activation strategies, such as pullulan derivatization, various compounded ingredients (plant extracts, microorganisms, and animal additives), and other technologies (e.g., ultrasound), are thoroughly studied for the functional property enhancement of pullulan-based films and coatings, ensuring optimal preservation conditions for diverse food products. Additionally, we explore hypotheses that further illuminate pullulan's potential as an eco-friendly bioactive material for food packaging applications. In addition, this review evaluates various methods to improve the efficiency of the film-forming mechanism, such as improving the direct coating process, bioactive packaging films, and implementing layer-by-layer coatings. Finally, current analyses put forward suggestions for future advancement in pullulan-based bioactive films, with the aim of expanding their range of potential applications.
Collapse
Affiliation(s)
- Arif Rashid
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Abdul Qayum
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Qiufang Liang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Lixin Kang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - John-Nelson Ekumah
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xu Han
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| | - Xiaofeng Ren
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China; Institute of Food Physical Processing, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China.
| | - Haile Ma
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, PR China
| |
Collapse
|
25
|
Rensink S, van Nieuwenhuijzen EJ, Sailer MF, Struck C, Wösten HAB. Use of Aureobasidium in a sustainable economy. Appl Microbiol Biotechnol 2024; 108:202. [PMID: 38349550 PMCID: PMC10864419 DOI: 10.1007/s00253-024-13025-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Aureobasidium is omnipresent and can be isolated from air, water bodies, soil, wood, and other plant materials, as well as inorganic materials such as rocks and marble. A total of 32 species of this fungal genus have been identified at the level of DNA, of which Aureobasidium pullulans is best known. Aureobasidium is of interest for a sustainable economy because it can be used to produce a wide variety of compounds, including enzymes, polysaccharides, and biosurfactants. Moreover, it can be used to promote plant growth and protect wood and crops. To this end, Aureobasidium cells adhere to wood or plants by producing extracellular polysaccharides, thereby forming a biofilm. This biofilm provides a sustainable alternative to petrol-based coatings and toxic chemicals. This and the fact that Aureobasidium biofilms have the potential of self-repair make them a potential engineered living material avant la lettre. KEY POINTS: •Aureobasidium produces products of interest to the industry •Aureobasidium can stimulate plant growth and protect crops •Biofinish of A. pullulans is a sustainable alternative to petrol-based coatings •Aureobasidium biofilms have the potential to function as engineered living materials.
Collapse
Affiliation(s)
- Stephanie Rensink
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands.
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands.
| | - Elke J van Nieuwenhuijzen
- Faculty of Technology, Amsterdam University of Applied Sciences, Rhijnspoorplein 2, 1091 GC, Amsterdam, The Netherlands
| | - Michael F Sailer
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Christian Struck
- Department of Business, Building and Technology, Sustainable Building Technology, Saxion University of Applied Sciences, M.H. Tromplaan 28, 7513 AB, Enschede, the Netherlands
| | - Han A B Wösten
- Department of Biology, Microbiology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| |
Collapse
|
26
|
Liang W, Ge X, Lin Q, Niu L, Zhao W, Muratkhan M, Li W. Ternary composite degradable plastics based on Alpinia galanga essential oil Pickering emulsion templates: A potential multifunctional active packaging. Int J Biol Macromol 2024; 257:128580. [PMID: 38052283 DOI: 10.1016/j.ijbiomac.2023.128580] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/01/2023] [Indexed: 12/07/2023]
Abstract
To reduce the use of petroleum-based plastics and explore multifunctional plastics, this study was conducted to prepare ternary composite plastics by doping Pickering emulsions containing Alpinia galanga essential oil into a polymer network consisting of poly(vinyl alcohol)-acetylated pullulan polysaccharides. Scanning electron microscopy results showed that although incompatible components were present in the composite plastic, compatibility improved with the addition of pullulan polysaccharides, resulting in smooth surfaces and cross-sections, which was consistent with the observation of continuous dark zones and low relative roughness (Ra = 5.51) in Atomic force microscopy. Further, Fourier transform spectroscopy and X-ray diffraction characterization revealed that the composite plastic disrupted the molecular and crystalline structures of the pure PVA, causing the stretching vibration of -OH and the decrease of relative crystallinity. Moreover, this plastic performed optimally at a PVA to pullulan polysaccharide ratio of 75:25, exhibiting good thermal (13.12 J/g) and mechanical properties, low water absorption (70.71 %) and water vapor transmission (1.80 × 10-3 g/m2 s), as well as excellent degradability. In addition, Alpinia galanga essential oil components in the composite plastic provided favorable antioxidant scavenging of DPPH and ABTS and inhibitory effects against Escherichia coli and Staphylococcus aureus. Chicken meat packaging revealed that the plastic maintained sensory parameters such as pH and color by inhibiting the oxidation of proteins and lipids during shelf-life. The findings provide insights into developing innovative, green, multifunctional packaging and broaden the in-depth application of Alpinia galanga essential oil.
Collapse
Affiliation(s)
- Wei Liang
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xiangzhen Ge
- Food Science School, Guangdong Pharmaceutical University, Zhongshan, Guangdong Province 528458, China
| | - Qian Lin
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Niu
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Wenqing Zhao
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Marat Muratkhan
- Kazakh Agrotechnical University, Nur-Sultan, Zhenis avenue, 62, 010011, Republic of Kazakhstan
| | - Wenhao Li
- Shaanxi Union Research Center of University and Enterprise for Grain Processing Technologies, College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
27
|
Zorin IM, Fetin PA, Mikusheva NG, Lezov AA, Perevyazko I, Gubarev AS, Podsevalnikova AN, Polushin SG, Tsvetkov NV. Pullulan-Graft-Polyoxazoline: Approaches from Chemistry and Physics. Molecules 2023; 29:26. [PMID: 38202609 PMCID: PMC10780122 DOI: 10.3390/molecules29010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024] Open
Abstract
An approach to the preparation of pullulan-graft-poly(2-methyl-2-oxazoline)s based on Cu-catalyzed azide-alkyne cycloaddition with polyoxazoline-azide was applied. All of the obtained polymers were characterized through classical molecular hydrodynamic methods and NMR. The formation of graft copolymers was accomplished by oxidative degradation of pullulan chains. Nevertheless, graft copolymers were obtained as uniform products with varied side chain lengths and degrees of substitution.
Collapse
Affiliation(s)
- Ivan M. Zorin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Petr A. Fetin
- Institute of Chemistry, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia;
| | - Nina G. Mikusheva
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexey A. Lezov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Igor Perevyazko
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Anna N. Podsevalnikova
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Sergey G. Polushin
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| | - Nikolai V. Tsvetkov
- Department of Molecular Biophysics and Polymer Physics, Saint-Petersburg State University, Universitetskaya Nab. 7/9, 199034 Saint-Petersburg, Russia; (N.G.M.); (A.A.L.); (I.P.); (A.S.G.); (A.N.P.); (S.G.P.)
| |
Collapse
|
28
|
Ahmed Omar N, Roque J, Galvez P, Siadous R, Chassande O, Catros S, Amédée J, Roques S, Durand M, Bergeaut C, Bidault L, Aprile P, Letourneur D, Fricain JC, Fenelon M. Development of Novel Polysaccharide Membranes for Guided Bone Regeneration: In Vitro and In Vivo Evaluations. Bioengineering (Basel) 2023; 10:1257. [PMID: 38002381 PMCID: PMC10669683 DOI: 10.3390/bioengineering10111257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023] Open
Abstract
INTRODUCTION Guided bone regeneration (GBR) procedures require selecting suitable membranes for oral surgery. Pullulan and/or dextran-based polysaccharide materials have shown encouraging results in bone regeneration as bone substitutes but have not been used to produce barrier membranes. The present study aimed to develop and characterize pullulan/dextran-derived membranes for GBR. MATERIALS AND METHODS Two pullulan/dextran-based membranes, containing or not hydroxyapatite (HA) particles, were developed. In vitro, cytotoxicity evaluation was performed using human bone marrow mesenchymal stem cells (hBMSCs). Biocompatibility was assessed on rats in a subcutaneous model for up to 16 weeks. In vivo, rat femoral defects were created on 36 rats to compare the two pullulan/dextran-based membranes with a commercial collagen membrane (Bio-Gide®). Bone repair was assessed radiologically and histologically. RESULTS Both polysaccharide membranes demonstrated cytocompatibility and biocompatibility. Micro-computed tomography (micro-CT) analyses at two weeks revealed that the HA-containing membrane promoted a significant increase in bone formation compared to Bio-Gide®. At one month, similar effects were observed among the three membranes in terms of bone regeneration. CONCLUSION The developed pullulan/dextran-based membranes evidenced biocompatibility without interfering with bone regeneration and maturation. The HA-containing membrane, which facilitated early bone regeneration and offered adequate mechanical support, showed promising potential for GBR procedures.
Collapse
Affiliation(s)
- Naïma Ahmed Omar
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Jéssica Roque
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Paul Galvez
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Robin Siadous
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Olivier Chassande
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Sylvain Catros
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| | - Joëlle Amédée
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
| | - Samantha Roques
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Marlène Durand
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Céline Bergeaut
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Laurent Bidault
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
| | - Paola Aprile
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Didier Letourneur
- Siltiss, SA, Zac de la Nau, 19240 Saint-Viance, France; (C.B.); (L.B.)
- Laboratory for Vascular Translational Science (LVTS), X Bichat Hospital, University Paris Cité & University Sorbonne Paris Nord, INSERM 1148, F-75018 Paris, France
| | - Jean-Christophe Fricain
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
- Centre d’Investigation Clinique de Bordeaux (CIC 1401), University Hospital of Bordeaux, INSERM, F-33000 Bordeaux, France (M.D.)
| | - Mathilde Fenelon
- Laboratory for Tissue Bioengineering, University of Bordeaux, INSERM 1026, F-33076 Bordeaux, France; (N.A.O.); (O.C.); (M.F.)
- Department of Oral Surgery, University Hospital of Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
29
|
Santamaría E, Anjinho de Barros L, González C, Maestro A. Rheological Study of the Formation of Pullulan Hydrogels and Their Use as Carvacrol-Loaded Nanoemulsion Delivery Systems. Gels 2023; 9:644. [PMID: 37623099 PMCID: PMC10453457 DOI: 10.3390/gels9080644] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/26/2023] Open
Abstract
Hydrogels have been extensively studied as delivery systems for lipophilic compounds. Pullulan hydrogels were prepared, and their gelation kinetics were studied over time. Pullulan exhibited a relatively slow gelling reaction in basic medium (KOH) using trisodium metaphosphate (STMP) as a cross-linking agent, so capsules cannot be obtained by dripping as easily as in the case of alginate and chitosan. The kinetics of pullulan gelation were studied through rheological analysis over time. An optimal [Pullulan]/[KOH] ratio was found for a fixed [Pullulan]/[STMP] ratio. For this given relationship, gelling time measurements indicated that when the concentration of pullulan increased, the gelation time decreased from 60 min for 6% w/w pullulan to 10 min for 10% w/w. After the gel point, a hardening of the hydrogel was observed over the next 5 h. The formed hydrogels presented high degrees of swelling (up to 1800%). Freeze-dried gels were capable of being rehydrated, obtaining gels with rheological characteristics and visual appearance similar to fresh gels, which makes them ideal to be freeze-dried for storage and rehydrated when needed. The behavior of the hydrogels obtained as active ingredient release systems was studied. In this case, the chosen molecule was carvacrol (the main component of oregano oil). As carvacrol is hydrophobic, it was incorporated into the droplets of an oil-in-water nanoemulsion, and the nanoemulsion was incorporated into the hydrogel. The release of the oil was studied at different pHs. It was observed that as the pH increased (from pH 2 to pH 7), the released amount of carvacrol for the gel with pullulan 10% w/w reached 100%; for the other cases, the cumulative release amount was lower. It was attributed to two opposite phenomena in the porous structure of the hydrogel, where more porosity implied a faster release of carvacrol but also a higher degree of swelling that promoted a higher entry of water flow in the opposite direction. This flow of water prevented the active principle from spreading to the release medium.
Collapse
Affiliation(s)
- Esther Santamaría
- Chemical Engineering and Analytical Chemistry Department, Faculty of Chemistry, Universitat de Barcelona Marti i Franques, 1, 08028 Barcelona, Spain; (L.A.d.B.); (C.G.); (A.M.)
| | | | | | | |
Collapse
|
30
|
Cruz-Santos MM, Antunes FAF, de Arruda GL, Shibukawa VP, Prado CA, Ortiz-Silos N, Castro-Alonso MJ, Marcelino PRF, Santos JC. Production and applications of pullulan from lignocellulosic biomass: Challenges and perspectives. BIORESOURCE TECHNOLOGY 2023:129460. [PMID: 37423546 DOI: 10.1016/j.biortech.2023.129460] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/02/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023]
Abstract
Pullulan is an exopolysaccharide produced by Aureobasidium pullulans, with interesting characteristics which lead to its application in industries such as pharmaceuticals, cosmetics, food, and others. To reduce production costs for industrial applications, cheaper raw materials such as lignocellulosic biomass can be utilized as a carbon and nutrient source for the microbial process. In this study, a comprehensive and critical review was conducted, encompassing the pullulan production process and the key influential variables. The main properties of the biopolymer were presented, and different applications were discussed. Subsequently, the utilization of lignocellulosics for pullulan production within the framework of a biorefinery concept was explored, considering the main published works that deal with materials such as sugarcane bagasse, rice husk, corn straw, and corn cob. Next, the main challenges and future prospects in this research area were highlighted, indicating the key strategies to favor the industrial production of pullulan from lignocellulosic biomasses.
Collapse
Affiliation(s)
- Mónica María Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | | | - Gabriel Leda de Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Vinicius Pereira Shibukawa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Carina Aline Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - Nayeli Ortiz-Silos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | - María José Castro-Alonso
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| | | | - Júlio César Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Zip Code 12602-810, Lorena, Brazil
| |
Collapse
|
31
|
Ari B, Sahiner M, Suner SS, Demirci S, Sahiner N. Super-Macroporous Pulluan Cryogels as Controlled Active Delivery Systems with Controlled Degradability. MICROMACHINES 2023; 14:1323. [PMID: 37512634 PMCID: PMC10385955 DOI: 10.3390/mi14071323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
Here, super-macroporous cryogel from a natural polysaccharide, pullulan was synthesized using a cryo-crosslinking technique with divinyl sulfone (DVS) as a crosslinker. The hydrolytic degradation of the pullulan cryogel in various simulated body fluids (pH 1.0, 7.4, and 9.0 buffer solutions) was evaluated. It was observed that the pullulan cryogel degradation was much faster in the pH 9 buffer solution than the pH 1.0 and 7.4 buffer solutions in the same time period. The weight loss of the pullulan cryogel at pH 9.0 within 28 days was determined as 31% ± 2%. To demonstrate the controllable drug delivery potential of pullulan cryogels via degradation, an antibiotic, ciprofloxacin, was loaded into pullulan cryogels (pullulan-cipro), and the loading amount of drug was calculated as 105.40 ± 2.6 µg/mg. The release of ciprofloxacin from the pullulan-cipro cryogel was investigated in vitro at 37.5 °C in physiological conditions (pH 7.4). The amount of drug released within 24 h was determined as 39.26 ± 3.78 µg/mg, which is equal to 41.38% ± 3.58% of the loaded drug. Only 0.1 mg of pullulan-cipro cryogel was found to inhibit half of the growing Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) colonies for 10 min and totally eradicated within 2 h by the release of the loaded antibiotic. No significant toxicity was determined on L929 fibroblast cells for 0.1 mg drug-loaded pullulan cryogel. In contrast, even 1 mg of drug-loaded pullulan cryogel revealed slight toxicity (e.g., 66% ± 9% cell viability) because of the high concentration of released drug.
Collapse
Affiliation(s)
- Betul Ari
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Mehtap Sahiner
- Bioengineering Department, Faculty of Engineering, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Selin Sagbas Suner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Sahin Demirci
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
| | - Nurettin Sahiner
- Department of Chemistry, Faculty of Science, Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Nanoscience and Technology Research and Application Center (NANORAC), Canakkale Onsekiz Mart University, Terzioglu Campus, 17100 Canakkale, Turkey
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, University of South Florida, Tampa, FL 33620, USA
- Department of Ophthalmology, Morsani College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd, MDC21, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Song Y, Li S, Gong H, Yip RCS, Chen H. Biopharmaceutical applications of microbial polysaccharides as materials: A review. Int J Biol Macromol 2023; 239:124259. [PMID: 37003381 DOI: 10.1016/j.ijbiomac.2023.124259] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/06/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Biological characteristics of natural polymers make microbial polysaccharides an excellent choice for biopharmaceuticals. Due to its easy purifying procedure and high production efficiency, it is capable of resolving the existing application issues associated with some plant and animal polysaccharides. Furthermore, microbial polysaccharides are recognized as prospective substitutes for these polysaccharides based on the search for eco-friendly chemicals. In this review, the microstructure and properties of microbial polysaccharides are utilized to highlight their characteristics and potential medical applications. From the standpoint of pathogenic processes, in-depth explanations are provided on the effects of microbial polysaccharides as active ingredients in the treatment of human diseases, anti-aging, and drug delivery. In addition, the scholarly developments and commercial applications of microbial polysaccharides as medical raw materials are also discussed. The conclusion is that understanding the use of microbial polysaccharides in biopharmaceuticals is essential for the future development of pharmacology and therapeutic medicine.
Collapse
Affiliation(s)
- Yige Song
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Shuxin Li
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Hao Gong
- SDU-ANU Joint Science College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China
| | - Ryan Chak Sang Yip
- Center for Nanomedicine, Department of Anesthesiology, Perioperative and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Hao Chen
- Marine College, Shandong University, NO. 180 Wenhua West Road, Gao Strict, Weihai 264209, PR China.
| |
Collapse
|
33
|
Elangwe CN, Morozkina SN, Olekhnovich RO, Polyakova VO, Krasichkov A, Yablonskiy PK, Uspenskaya MV. Pullulan-Based Hydrogels in Wound Healing and Skin Tissue Engineering Applications: A Review. Int J Mol Sci 2023; 24:ijms24054962. [PMID: 36902394 PMCID: PMC10003054 DOI: 10.3390/ijms24054962] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Wound healing is a complex process of overlapping phases with the primary aim of the creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated to protect the wound and accelerate the healing process. Biomaterials used to design dressing of wounds could be natural or synthetic as well as the combination of both materials. Polysaccharide polymers have been used to fabricate wound dressings. The applications of biopolymers, such as chitin, gelatin, pullulan, and chitosan, have greatly expanded in the biomedical field due to their non-toxic, antibacterial, biocompatible, hemostatic, and nonimmunogenic properties. Most of these polymers have been used in the form of foams, films, sponges, and fibers in drug carrier devices, skin tissue scaffolds, and wound dressings. Currently, special focus has been directed towards the fabrication of wound dressings based on synthesized hydrogels using natural polymers. The high-water retention capacity of hydrogels makes them potent candidates for wound dressings as they provide a moist environment in the wound and remove excess wound fluid, thereby accelerating wound healing. The incorporation of pullulan with different, naturally occurring polymers, such as chitosan, in wound dressings is currently attracting much attention due to the antimicrobial, antioxidant and nonimmunogenic properties. Despite the valuable properties of pullulan, it also has some limitations, such as poor mechanical properties and high cost. However, these properties are improved by blending it with different polymers. Additionally, more investigations are required to obtain pullulan derivatives with suitable properties in high quality wound dressings and tissue engineering applications. This review summarizes the properties and wound dressing applications of naturally occurring pullulan, then examines it in combination with other biocompatible polymers, such chitosan and gelatin, and discusses the facile approaches for oxidative modification of pullulan.
Collapse
Affiliation(s)
- Collins N. Elangwe
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Correspondence:
| | - Svetlana N. Morozkina
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Roman O. Olekhnovich
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| | - Victoria O. Polyakova
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Alexander Krasichkov
- Department of Radio Engineering Systems, Electrotechnical University “LETI”, Prof. Popova Street 5F, 197022 Saint-Petersburg, Russia
| | - Piotr K. Yablonskiy
- Saint Petersburg Research Institute of Phthisiopulmonology, Ligovsky Prospekt 2-4, 191036 Saint-Petersburg, Russia
| | - Mayya V. Uspenskaya
- Chemical Engineering Center, ITMO University, Kronverkskiy Prospekt, 49A, 197101 Saint-Petersburg, Russia
| |
Collapse
|