1
|
Li Y, Zhang Y, He G, Qiao Z, Yang R, Zhou X, Chen L, Feng X. Soy protein isolate ameliorate gel properties by regulating the non-covalent interaction between epigallocatechin-3-gallate and myofibrillar protein. Food Chem 2024; 460:140655. [PMID: 39128365 DOI: 10.1016/j.foodchem.2024.140655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024]
Abstract
This study primarily investigated the improvement of high-dose Epigallocatechin-3-Gallate (EGCG)-induced deterioration of MP gel by soy protein isolate (SPI) addition. The results showed that EGCG could interact with MP, SPI, and HSPI (heated), indicating the competitive ability of SPI/HSPI against EGCG with MP. EGCG was encapsulated by SPI/HSPI with high encapsulation efficiency and antioxidation, with antioxidant activities of 78.5% ∼ 79.2%. FTIR and molecular docking results revealed that MP, SPI, and HSPI interacted with EGCG through hydrogen bonding and hydrophobic interactions. SPI/HSPI competed with MP for EGCG, leading to the restoration of MHC and Actin bands, alleviating the aggregation caused by EGCG and oxidation. Additionally, SPI/HSPI-E significantly reduced the high cooking loss (23.71 and 26.65%) and gel strength (13.60 and 17.02%) induced by EGCG. Hence, SPI competed with MP for EGCG binding site to ameliorate MP gel properties, thereby alleviating the detrimental changes in MP caused by high-dose EGCG and oxidation.
Collapse
Affiliation(s)
- Ying Li
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Yijun Zhang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Gongchen He
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Ziyan Qiao
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Rong Yang
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Xi Zhou
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China
| | - Lin Chen
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| | - Xianchao Feng
- College of Food Science and Engineering, Northwest A&F University, No. 22 Xinong Road, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Huang J, Zhang S, Liu D, Wang Q, Feng X, Chu L. Coenzyme Q10-loaded microcapsules stabilized by glyceryl monostearate and soy protein isolates-flaxseed gum: Characterization, in vitro release and digestive behavior. Int J Biol Macromol 2024; 278:134680. [PMID: 39142479 DOI: 10.1016/j.ijbiomac.2024.134680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 06/20/2024] [Accepted: 08/10/2024] [Indexed: 08/16/2024]
Abstract
This study aimed to stabilize microcapsules with core materials of glyceryl monostearate (GMS) and octyl and decyl glycerate, and wall materials of soy protein isolates (SPI) and flaxseed gum (FG) by complex coacervation method to overcome the drawbacks of coenzyme Q10 (CoQ10). It was demonstrated by the study that the obtained microcapsules were irregular aggregates. Differential scanning calorimetry and x-ray diffraction patterns indicated that CoQ10 was entrapped inside the disordered semisolid cores of microcapsules. The CoQ10 loading and encapsulation efficiency analysis revealed that GMS and FG helped CoQ10 better encapsulated inside the microcapsules. The in vitro release curve showed a "burst" release of CoQ10 absorbed on the surface of microcapsules for the first 180 min, followed by a sustained release of the encapsulated CoQ10. GMS and FG contributed to the sustained release and the release mechanism of the microcapsules was Fickian diffusion. The in vitro simulated digestion demonstrated that the constructed microcapsules improved the bio-accessibility of CoQ10. Finally, due to the protection of GMS and FG, microcapsules had good storage stability. In conclusion, this study emphasized the potential of using new microcapsules to deliver and protect lipophilic ingredients, providing valuable information for developing functional foods with higher bioavailability.
Collapse
Affiliation(s)
- Juan Huang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China; The East China Science and Technology Research Institute of Changshu Company Limited, Changshu 215500, China.
| | - Shuo Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Dongchen Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Qingding Wang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Xuan Feng
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu 215500, China
| | - Lanling Chu
- Faculty of Food Science and Engineering, School of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
3
|
Zhao J, Chen Y, Xu S, Fang X, Yang F, Li Y. High internal phase emulsion stabilized by soy protein isolate-Rutin complex: Rheological properties, bioaccessibility and in vitro release kinetics. Int J Biol Macromol 2024; 280:135748. [PMID: 39299418 DOI: 10.1016/j.ijbiomac.2024.135748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/02/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
High internal phase emulsions (HIPEs) are promising carrier materials for encapsulating and delivering hydrophobic bioactive compounds. By strategically adjusting the composition, particle size, or charge of HIPEs, it is possible to enhance both their stability and the bioaccessibility of hydrophobic polyphenols encapsulated within them. In this study, different soy protein isolate (SPI)-rutin (SPI-R) complexes (formed under various preheating temperatures) were used to stabilize HIPEs, while the particle size, and charge of HIPEs was further adjusted through different homogenization rates. The results demonstrated that an optimal preheating temperature of 70 °C for the complex and a homogenization rate of 15,000 rpm for HIPEs enhanced the stability of the entire emulsion system by producing more uniform and smaller droplet distribution with improved rheological properties. Furthermore, in vitro digestion experiments showed that HIPEs stabilized by the SPI-R complexes (HSR) at optimal homogenization rate had better loading efficiency (98.68 %) and bioaccessibility compared to other groups. Additionally, fitting results from release kinetics confirmed that rutin encapsulated by HSR could achieve sustained release effect. Overall, these findings suggest that HSR has great potential as an effective vehicle for delivering hydrophobic bioactive compounds like rutin within the food industry.
Collapse
Affiliation(s)
- Juyang Zhao
- College of Tourism and Cuisine, Harbin University of Commerce, Harbin, Heilongjiang 150028, China; Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China.
| | - Yiyu Chen
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Shuo Xu
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Xuwei Fang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Feiran Yang
- Postdoctoral Programme of Meteria Medical Institute, Harbin University of Commerce, Harbin 150028, China
| | - Yuanyuan Li
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing 100125, China.
| |
Collapse
|
4
|
Cui Q, Song X, Zhou L, Dong J, Wei Y, Liu Z, Wu X. Fabrication of resveratrol-loaded soy protein isolate-glycyrrhizin nanocomplex for improving bioavailability via pH-responsive hydrogel properties. Int J Biol Macromol 2024; 258:128950. [PMID: 38143068 DOI: 10.1016/j.ijbiomac.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 12/03/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Resveratrol (RES) is a functional polyphenol that suffers from low water solubility and poor bioavailability. A novel RES-loaded soy protein isolate-dipotassium glycyrrhizinate (SPI-DG) nanocomplex (RES@SPI-DG) was designed and evaluated in this study. RES@SPI-DG was prepared using a simple but novel self-assembly ultrasonic-assisted pH-driven method. The interactions between RES and SPI-DG were non-covalent bonds, including hydrophobic interactions, hydrogen bonds, and van der Waals interactions. RES@SPI-DG exhibited high encapsulation efficiency (97.60 ± 0.38 %) and loading capacity (8.74 ± 0.03 %) of RES with a uniform small size (68.39 ± 1.10 nm). RES in RES@SPI-DG was in an amorphous state and demonstrated a 24-h apparent solubility 482.53-fold higher than bare RES. RES@SPI-DG also showed strong in vitro antioxidant properties. The pH-responsive hydrogel character of SPI-DG makes it an effective intestine-targeted delivery system that could retard the release of RES in a simulated stomach and accelerate it in a simulated intestine. In animal experiments, the bioavailability of RES@SPI-DG was 5.17 times higher than that of bare RES, and the biodistribution was also significantly improved. RES@SPI-DG demonstrated a strong hepatoprotective effect against overdose acetaminophen-induced liver injury. The SPI-DG complex might be a promising nano-platform for enhancing the bioavailability and efficacy of hydrophobic polyphenols such as RES.
Collapse
Affiliation(s)
- Qingchen Cui
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China
| | - Xiaoying Song
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Liping Zhou
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Junjie Dong
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Yanjun Wei
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Viwit Pharmaceutical Co., Ltd., Zaozhuang, Shandong, China
| | - Zongtao Liu
- Affiliated Qingdao Third People's Hospital, Qingdao University, Qingdao 266021, China.
| | - Xianggen Wu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
5
|
Kong Y, Sun L, Wu Z, Li Y, Kang Z, Xie F, Yu D. Effects of ultrasonic treatment on the structural, functional properties and beany flavor of soy protein isolate: Comparison with traditional thermal treatment. ULTRASONICS SONOCHEMISTRY 2023; 101:106675. [PMID: 37925914 PMCID: PMC10656237 DOI: 10.1016/j.ultsonch.2023.106675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/24/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
This research explored the influences of ultrasonic and thermal treatments on the structure, functional properties, and beany flavor of soy protein isolate (SPI). In comparison with traditional thermal treatment, ultrasonic treatment effectively induced protein structural unfolding and exposure of hydrophobic groups, which reduced relative content of α-helix, increased relative content of β-turn, β-sheet and random coil, and improved the solubility, emulsifying and foaming properties of SPI. Both treatments significantly decreased the species and contents of flavor compounds, such as hexanal, (E)-2-nonenal, (Z)-2-heptenal and (E)-2-hexenal in SPI. The relative content of hexanal in the major beany flavor compound decreased from 11.69% to 6.13% and 5.99% at 350 W ultrasonic power and 150 s thermal treatment procedure, respectively. After ultrasonic treatment, structural changes in SPI were significantly correlated with functional properties but showed a weak correlation with flavor. Conversely, the opposite trend was observed for thermal treatment. Thus, using ultrasonic treatment to induce and stabilise the denatured state of proteins is feasible to improve the functional properties and beany flavor of SPI.
Collapse
Affiliation(s)
- Yue Kong
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Lina Sun
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zenan Wu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Yanhui Li
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zimeng Kang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Fengying Xie
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Dianyu Yu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
6
|
Zheng C, Chen M, Chen Y, Qu Y, Shi W, Shi L, Qiao Y, Li X, Guo X, Wang L, Wu W. Preparation of polysaccharide-based nanoparticles by chitosan and flaxseed gum polyelectrolyte complexation as carriers for bighead carp (Aristichthys nobilis) peptide delivery. Int J Biol Macromol 2023; 249:126121. [PMID: 37541467 DOI: 10.1016/j.ijbiomac.2023.126121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 07/07/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
Polysaccharide-based nanoparticles formed by the polyelectrolyte complexation between chitosan (CS) and flaxseed gum (FG) was developed in this work, and it was further used as a carrier for bighead carp peptide (BCP) delivery. The CS molecular weight (MW) of 50 kDa and CS/FG mass ratio of 1:2 at pH 3.5 were optimal conditions for the NP preparation, with the minimum particle size (∼155.1 nm) and the maximum BCP encapsulation efficiency (60.3 %). The BCP-loaded CS/FG NPs exhibited the smallest particle size (175.8 nm). Both CS/FG NPs and CS/FG-BCP NPs exhibited roughly uniform spherical shape. FT-IR spectra confirmed the existence of hydrogen bonds and electrostatic interactions in the nanoparticles. The BCP-loaded NPs displayed a higher thermal stability than BCP. Moreover, the release of BCP was controllable and dose-dependent, following a first-order kinetics model. These findings suggested that our CS/FG NPs are a promising carrier for bioactive peptide delivery.
Collapse
Affiliation(s)
- Changliang Zheng
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Mengting Chen
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yashu Chen
- Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yinghong Qu
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Wenzheng Shi
- College of Food Sciences and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Liu Shi
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yu Qiao
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xin Li
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiaojia Guo
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Lan Wang
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Wenjin Wu
- Key Laboratory of Agricultural Products Cold Chain Logistics, Ministry of Agriculture and Rural Affairs, Institute of Agro-Products Processing and Nuclear agricultural Technology, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| |
Collapse
|
7
|
Kew B, Holmes M, Liamas E, Ettelaie R, Connell SD, Dini D, Sarkar A. Transforming sustainable plant proteins into high performance lubricating microgels. Nat Commun 2023; 14:4743. [PMID: 37550321 PMCID: PMC10406910 DOI: 10.1038/s41467-023-40414-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/26/2023] [Indexed: 08/09/2023] Open
Abstract
With the resource-intensive meat industry accounting for over 50% of food-linked emissions, plant protein consumption is an inevitable need of the hour. Despite its significance, the key barrier to adoption of plant proteins is their astringent off-sensation, typically associated with high friction and consequently poor lubrication performance. Herein, we demonstrate that by transforming plant proteins into physically cross-linked microgels, it is possible to improve their lubricity remarkably, dependent on their volume fractions, as evidenced by combining tribology using biomimetic tongue-like surface with atomic force microscopy, dynamic light scattering, rheology and adsorption measurements. Experimental findings which are fully supported by numerical modelling reveal that these non-lipidic microgels not only decrease boundary friction by an order of magnitude as compared to native protein but also replicate the lubrication performance of a 20:80 oil/water emulsion. These plant protein microgels offer a much-needed platform to design the next-generation of healthy, palatable and sustainable foods.
Collapse
Affiliation(s)
- Ben Kew
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Melvin Holmes
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| | - Evangelos Liamas
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
- Unilever Research & Development Port Sunlight, Quarry Road East, Bebington, Merseyside, CH63 3JW, UK
| | - Rammile Ettelaie
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Simon D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK.
| | - Daniele Dini
- Department of Mechanical Engineering, Imperial College London, London, SW7 2AZ, UK
| | - Anwesha Sarkar
- Food Colloids and Processing Group, School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
8
|
Aussanasuwannakul A, Boonbumrung S, Pantoa T. Valorization of Soybean Residue (Okara) by Supercritical Carbon Dioxide Extraction: Compositional, Physicochemical, and Functional Properties of Oil and Defatted Powder. Foods 2023; 12:2698. [PMID: 37509790 PMCID: PMC10378935 DOI: 10.3390/foods12142698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
In the context of food waste valorization, the purpose of this study is to demonstrate the complete valorization of soybean residue (okara) through supercritical carbon dioxide extraction (SCE). Okara oil (OKO) was separated from full-fat powder (FFP) using SCE with and without ethanol (EtOH) as a cosolvent. The kinetics of extraction, chemical composition, and physicochemical, functional, and health-promoting properties of OKO and defatted powder (DFP) were determined. The process yielded 18.5% oil after 450 min. The soluble dietary fiber and protein of the DFP increased significantly; its water and oil absorption capacities increased despite the decrease in swelling capacity corresponding to particle size reduction. The OKO was rich in linoleic and oleic acids, with a ratio of ω6-to-ω3 fatty acids = 9.53, and EtOH increased its phenolic content (0.45 mg GAE/g), aglycone content (239.6 μg/g), and antioxidant capacity (0.195 mg TE/g). The DFP paste showed gel-like consistency and shear-thinning flow behavior, whereas the OKO showed characteristic transition of the product and affected lubrication at contact zones. Both fractions showed potential as food ingredients based on their nutritional and functional properties, as well as the capability of modifying the microstructure of a model food system.
Collapse
Affiliation(s)
- Aunchalee Aussanasuwannakul
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| | - Sumitra Boonbumrung
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| | - Thidarat Pantoa
- Department of Food Chemistry and Physics, Institute of Food Research and Product Development, Kasetsart University, Bangkok 10903, Thailand
| |
Collapse
|
9
|
Chen C, Ma P, Jiang S, Bourouis I, Pang Z, Liu X, Wang P. Effect of Flaxseed Gum on the Textural, Rheological, and Tribological Properties of Acid-Induced Soy Protein Isolate Gels. Polymers (Basel) 2023; 15:2834. [PMID: 37447480 DOI: 10.3390/polym15132834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/22/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
This study aimed to investigate the effects of incorporating different concentrations of flaxseed gum (FG) into acid-induced soy protein isolate (SPI) gels. The investigation focused on assessing the effects of FG on the textural, rheological, and tribological properties of the resultant SPI gels. The results showed that adding a small amount of FG (0.05%) to the SPI gel system increased the storage modulus (G') and enhanced gelation while improving textural properties including hardness, viscosity, elasticity, and adhesion. Moreover, these gels exhibited strong water-holding capacity, a desirable property in various food products. However, when the concentration was increased to 0.3%, the WHC of the gel decreased, as did the hardness and cohesiveness. The particle size of the gel also increased with increasing concentration. Tribological investigations revealed that at 0.05-0.2% FG addition, the coefficient of friction (μ) of the composite gel was decreased compared to the pure SPI gel. In the sliding speed range of 1-100 mm/s, the coefficient of friction gradually increased with increasing concentration. When the FG concentration was 0.05%, the μ of the gel system was the lowest. In summary, low concentration of FG (0.05%) was found to play an important role in improving the properties of SPI gel, including enhancing textural, rheological, and lubricating properties.
Collapse
Affiliation(s)
- Cunshe Chen
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Peipei Ma
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Siyuan Jiang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Imane Bourouis
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Zhihua Pang
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Xinqi Liu
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100083, China
| | - Pengjie Wang
- Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| |
Collapse
|