1
|
Mokhtar A, Abdelkrim S, Sardi A, Hachemaoui M, Chaibi W, Chergui F, Boukoussa B, Djelad A, Sassi M, Abboud M. A strategy for the efficient removal of acidic and basic dyes in wastewater by organophilic magadiite@alginate beads: Box-Behnken Design optimization. Int J Biol Macromol 2024; 277:134348. [PMID: 39089557 DOI: 10.1016/j.ijbiomac.2024.134348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/24/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
In this study, four adsorbents were developed: layered silicate magadiite material (mag), Hexadecyltrimethylammonium intercalated magadiite (HDTMA@mag), a cross-linked composite of sodium alginate and magadiite (ALG@mag) and a cross-linked composite of sodium alginate and HDTMA@magadiite (ALG@HDTMA@mag). The adsorbents were evaluated for their effectiveness in removing of Methylene Blue (MB) and Eriochrome Black T (EBT) dyes. The prepared adsorbents were characterized using SEM, XRD, FTIR, and zeta potential measurements. Kinetic modeling results indicated that both film diffusion and intraparticle diffusion are useful as rate-determining processes in adsorption for all adsorbents. For both dyes, the Langmuir isotherm model provided a good correlation with the adsorption equilibrium data. ANOVA analysis for the best adsorbent (ALG@HDTMA@mag beads) revealed that MB removal was significantly influenced by the positive individual effects of contact time and ALG@HDTMA@mag dose. However, the individual effect of MB concentration exhibited an antagonistic effect throughout the adsorption process. The optimal parameters for achieving an adsorption capacity of 118.54 mg/g were a dye concentration of 60 ppm, a contact period of 1800 min, and an ALG@HDTMA@mag dose of 50 mg.
Collapse
Affiliation(s)
- Adel Mokhtar
- Département Génie des Procédés, Faculté des Sciences et Technologies, Université de Relizane, 48000 Relizane, Algeria; Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria.
| | - Soumia Abdelkrim
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Institut des Sciences et Techniques Appliquées (ISTA), Université Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Amina Sardi
- Laboratoire de Chimie Physique Macromoléculaire L.C.P.M, Université Oran 1 Ahmed Bella, El-Menaouer, B.P 1524, 31000, Oran, Algeria; Université Hassiba Ben Bouali, Faculté science exacte et informatique, département de chimie, 02010, Ouled Fares, Chlef, Algeria
| | - Mohammed Hachemaoui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Département de Chimie, Faculté des Sciences et Technologies, Université de Relizane, 48000 Relizane, Algeria
| | - Wahiba Chaibi
- Physical and Organic Macromolecular Chemistry Laboratory (LCOPM), Faculty of Exact Sciences, University "Djillali Liabes", BP 89, Sidi Bel Abb, Sidi Bel Abbès, Algeria
| | - Fatma Chergui
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria; Département de Génie des Matériaux, Faculté de Chimie, Université des Sciences et de la Technologie Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Amal Djelad
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Mohammed Sassi
- Laboratoire de Chimie des Matériaux L.C.M, Université Oran1 Ahmed Ben Bella, BP 1524, El Mnaouer, 31000 Oran, Algeria
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
2
|
Hui Y, Liu R, Lan J, Sun T, Xu A. Recyclable chitosan adsorbent: Facile functionalization strategy, excellent removal capacity of dyes and adsorption mechanism. CHEMOSPHERE 2024; 359:142291. [PMID: 38750728 DOI: 10.1016/j.chemosphere.2024.142291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/18/2024] [Accepted: 05/07/2024] [Indexed: 05/19/2024]
Abstract
The development of chitosan-based adsorbents with facile preparation, high adsorption performance and reusability for the removal of contaminant dyes remains a persistent challenge. To overcome this challenge, herein, we have developed a novel and extremely facile one-step strategy by which a new high-performance chitosan/polyethyleneimine/polyethylene glycol diglycidyl ether adsorbent (named as CC/PEI/PGDE) has been successfully fabricated via direct functionalization of CC by PEI at ambient temperature followed by subsequent freeze-drying. The Box-Behnken Design was employed to optimize the concentrations of adsorbent components. Attractively, this adsorbent exhibit outstanding adsorption performances to congo red (RED), acid blue-25 (BLUE) and amino black-10B (BLACK) with 2901 mg g-1 (90.9 %), 3434 mg g-1 (90.9 %), and 1438 mg g-1 (90.1 %) of adsorption capacities (removal efficiencies), respectively, and maintains nearly the same adsorption behaviors to original adsorbent even after 6 cycles of adsorption-desorption processes. Meanwhile, three kinetic models, three isothermal models, and the Vant Hoff model are employed to further investigate the adsorption behaviors of RED, BLUE, and BLACK dyes by CC/PEI/PGDE. The results from SEM, EDS, BET, FT-IR, pHZPC and XPS confirm that hydrogen bond interactions and electrostatic attractions play crucial roles in facilitating dyes adsorption by CC/PEI/PGDE. It is expected that this work can bring forward a new perspective for the facile design of high-performance adsorbent for removing anionic dyes from wastewater.
Collapse
Affiliation(s)
- Yao Hui
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, PR China
| | - Rukuan Liu
- State Key Laboratory of Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha, Hunan, 410004, PR China
| | - Jingwen Lan
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, PR China
| | - Tiantian Sun
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, PR China
| | - Airong Xu
- School of Chemistry and Chemical Engineering, Henan University of Science and Technology, Luoyang, Henan, 471003, PR China.
| |
Collapse
|
3
|
Zhao C, Xu X, Wei X, Yang X, Chen T, Wei H. Optimizing backwash control using data on seasonal changes in the invertebrate community of granular activated carbon filters. ENVIRONMENTAL RESEARCH 2024; 245:117797. [PMID: 38052357 DOI: 10.1016/j.envres.2023.117797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/07/2023]
Abstract
Problems associated with the colonization and leakage of invertebrates in the granular activated carbon (GAC) filters of waterworks have received increased attention in recent years. To study the effect of environmental factors and water quality on invertebrate abundances, and the backwash control for minimizing invertebrate abundance. A survey of the invertebrate community of GAC filters was carried out monthly from March 2021 to May 2022. A pilot-scale GAC system established in the laboratory alongside a lake, with a volume of 35.3 L. 45 invertebrate species were detected, and 40 of these were rotifers. Significant variation in abundance was observed among seasons before and after GAC filtration, the average invertebrate abundance in the inlet water was 11.1 times that in the filtrate. The GAC filter contained invertebrates that might be responsible for the large number of organisms in the filtrate. Invertebrate abundance in the GAC filter decreased gradually with the carbon layer depth, which the mean invertebrate abundances were 6,926, 5,232, and 3818 ind./kg in the top layer (TL), middle layer (ML), and bottom layer (BL), respectively. Invertebrate abundance was correlated with water temperature and varied seasonally. Among eight water quality parameters, chlorophyll a (Chla) and the total plate count (TPC) were most significantly correlated with invertebrate abundance. According to the statistical modeling and the optimization process of response surface methodology (RSM). The predicted optimal values were a flow rate of 6.36 L/h, a backwash cycle of 3.26 d, and a backwash intensity of 14.97 L/(m2·s) for a minimum invertebrate abundance of 3013 ind./kg in the GAC filter. To maintain invertebrate abundance within an acceptable range, some of these measures might need to be modified depending on the actual conditions.
Collapse
Affiliation(s)
- Changshuang Zhao
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China.
| | - Xiaoping Xu
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China; Center of Cooperative Innovation for Recovery and Reconstruction of Degraded Ecosystem in Wanjiang Basin Co-founded By Anhui Province and Ministry of Education, Wuhu, 241000, China.
| | - Xueyu Wei
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Xiaofan Yang
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Tao Chen
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| | - Haoyu Wei
- College of Civil Engineering and Architecture, Anhui Polytechnic University, Wuhu, 241000, China
| |
Collapse
|
4
|
Zhang S, Feng L, Han Y, Xu Z, Xu L, An X, Zhang Q. Revealing the degrading-possibility of methyl red by two azoreductases of Anoxybacillus sp. PDR2 based on molecular docking. CHEMOSPHERE 2024; 351:141173. [PMID: 38232904 DOI: 10.1016/j.chemosphere.2024.141173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/27/2023] [Accepted: 01/08/2024] [Indexed: 01/19/2024]
Abstract
Azo dyes, as the most widely used synthetic dyes, are considered to be one of the culprits of water resources and environmental pollution. Anoxybacillus sp. PDR2 is a thermophilic bacterium with the ability to degrade azo dyes, whose genome contains two genes encoding azoreductases (named AzoPDR2-1 and AzoPDR2-2). In this study, through response surface methodology (RSM), when the initial pH, inoculation volume and Mg2+ addition amount were 7.18, 10.72% and 0.1 g/L respectively, the decolorization rate of methyl red (MR) (200 mg/L) could reach its maximum (98.8%). The metabolites after biodegradation were detected by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and liquid chromatography mass spectrometry (LC-MS/MS), indicating that MR was successfully decomposed into 4-aminobenzoic acid and other small substrates. In homologous modeling, it was found that both azoreductases were flavin-dependent azoreductases, and belonged to the α/β structure, using the Rossmann fold. In their docking results with the cofactor flavin mononucleotide (FMN), FMN bound to the surface of the protein dimer. Nicotinamide adenine dinucleotide (NADH) was superimposed on the plane of the pyrazine ring between FMN and the activity pocket of protein. Besides, both azoreductase complexes (azoreductase-FMN-NADH) exhibited a substrate preference for MR. Asn104 and Tyr74 played an important role in the combination of the azoreductase AzoPDR2-1 complex and the azoreductase AzoPDR2-2 complex with MR, respectively. This provided assistance for studying the mechanism of azoreductase biodegradation of azo dyes in thermophilic bacteria.
Collapse
Affiliation(s)
- Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Linlin Feng
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Yanyan Han
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Luhui Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Jiangxi Engineering Laboratory for the Development and Utilization of Agricultural Microbial Resources, Nanchang, 330045, PR China.
| |
Collapse
|
5
|
Zouari-Mechichi H, Benali J, Alessa AH, Hadrich B, Mechichi T. Efficient Decolorization of the Poly-Azo Dye Sirius Grey by Coriolopsis gallica Laccase-Mediator System: Process Optimization and Toxicity Assessment. Molecules 2024; 29:477. [PMID: 38257390 PMCID: PMC10819905 DOI: 10.3390/molecules29020477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/12/2024] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
The textile industry produces high volumes of colored effluents that require multiple treatments to remove non-adsorbed dyes, which could be recalcitrant due to their complex chemical structure. Most of the studies have dealt with the biodegradation of mono or diazo dyes but rarely with poly-azo dyes. Therefore, the aim of this paper was to study the biodegradation of a four azo-bond dye (Sirius grey) and to optimize its decolorization conditions. Laccase-containing cell-free supernatant from the culture of a newly isolated fungal strain, Coriolopsis gallica strain BS9 was used in the presence of 1-hydroxybenzotriazol (HBT) to optimize the dye decolorization conditions. A Box-Benken design with four factors, namely pH, enzyme concentration, HBT concentration, and dye concentration, was performed to determine optimal conditions for the decolorization of Sirius grey. The optimal conditions were pH 5, 1 U/mL of laccase, 1 mM of HBT, and 50 mg/L of initial dye concentration, ensuring a decolorization yield and rate of 87.56% and 2.95%/min, respectively. The decolorized dye solution showed a decrease in its phytotoxicity (Germination index GI = 80%) compared to the non-treated solution (GI = 29%). This study suggests that the laccase-mediator system could be a promising alternative for dye removal from textile wastewater.
Collapse
Affiliation(s)
- Héla Zouari-Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Jihen Benali
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| | - Abdulrahman H. Alessa
- Department of Biology, Faculty of Science, University of Tabuk, Tabuk 47512, Saudi Arabia;
| | - Bilel Hadrich
- Department of Chemical Engineering, College of Engineering, Imam Mohammad Ibn Saud Islamic University, IMSIU, Riyadh 11432, Saudi Arabia;
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National Engineering School of Sfax (ENIS), University of Sfax, Sfax BP1173 3038, Tunisia; (H.Z.-M.); (J.B.)
| |
Collapse
|
6
|
Mokhtar A, Abdelkrim S, Hachemaoui M, Boukoussa B, Chaibi W, Sardi A, Djelad A, Sassi M, Issam I, Iqbal J, Patole SP, Abboud M. Removal of crystal violet dye using a three-dimensional network of date pits powder/sodium alginate hydrogel beads: Experimental optimization and DFT calculation. Int J Biol Macromol 2023; 251:126270. [PMID: 37582434 DOI: 10.1016/j.ijbiomac.2023.126270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/20/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Biodegradable and very low-cost adsorbent beads were prepared from date pits powder (DP) and sodium alginate (SA). DP to SA ratios was varied (1/2, 1/4 and 1/6) and used to eliminate Crystal violet (CV) a cationic dye. Adsorbents were characterized by FTIR, SEM-EDS, UV-vis DR, TGA and the point of zero charge (pHPZC). The optimal composite beads SA@6DP show high adsorption capacities of 83.565 mg/g toward CV than SA@2DP and SA@4DP. The kinetics investigation showed that the adsorption is well described by the pseudo-second-order kinetic (R2 = 0.998). The thermodynamics and isotherms studies exhibit that the adsorption phenomenon for SA@6DP adsorbent is endothermic and significantly fitted with the Redlich-Peterson model. The experimental adsorption tests were optimized by the Box-Behnken design (BBD) which led to conclude the maximal CV removal efficiency achieved by SA@6DP was 99.873 % using [CV] = 50 mg/L, adsorbent mass = 20 mg and 48 h of contact time. The theoretical calculation proved that the CV molecules favor the mode of attack due to their electrophilic character and can accept the SA@6DP adsorbent electrons more easily to form an anti-bonding orbital. SA@6DP hydrogel beads are therefore an exceptional bio-adsorbent that offers excellent adsorption performance.
Collapse
Affiliation(s)
- Adel Mokhtar
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Department of Process Engineering, Faculty of Science and Technology, University of Relizane, 48000 Relizane, Algeria.
| | - Soumia Abdelkrim
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohammed Hachemaoui
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Bouhadjar Boukoussa
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria; Department of Materials Engineering, Faculty of Chemistry, University of Sciences and Technology Mohamed Boudiaf, BP 1505, El-Mnaouer, 31000 Oran, Algeria
| | - Wahiba Chaibi
- Center for Scientific and Technical Research in Physico-chemical Analysis, BP 384, Zone Industrial Bou-Ismail, RP 42004, Tipaza, Algeria; Physical and Organic Macromolecular Chemistry Laboratory (LCOPM), Faculty of Exact Sciences, University "Djillali Liabes", BP 89, Sidi Bel Abb, Sidi Bel Abbès, Algeria
| | - Amina Sardi
- Department of Chemistry, Faculty of Exact Sciences and Computer Science, University of Hassiba Ben Bouali, Chlef, 02000, Algeria
| | - Amal Djelad
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Mohammed Sassi
- Laboratory of Materials Chemistry L.C.M, University Oran1 Ahmed Ben Bella, BP 1524, El-Mnaouer, 31000 Oran, Algeria
| | - Ismail Issam
- Department of Chemical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Jibran Iqbal
- College of Interdisciplinary Studies, Zayed University, Abu Dhabi, 144534, United Arab Emirates
| | - Shashikant P Patole
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Mohamed Abboud
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| |
Collapse
|
7
|
Lee JW, Han J, Choi YK, Park S, Lee SH. Reswellable alginate/activated carbon/carboxymethyl cellulose hydrogel beads for ibuprofen adsorption from aqueous solutions. Int J Biol Macromol 2023; 249:126053. [PMID: 37517753 DOI: 10.1016/j.ijbiomac.2023.126053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/17/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
In this study, alginate (Alg) composite beads were prepared by blending with activated carbon (AC) to enhance adsorption capacity for ibuprofen and carboxymethyl cellulose (CMC) to create a reswellable hydrogel. The dried Alg/AC/CMC composite beads could be recovered to sizes and morphologies similar to the initial hydrogel states via a simple reswelling process; however, the dried Alg/AC composite beads without CMC could not be recovered to the initial hydrogel state. Following the reswelling process, the dried Alg/AC/CMC beads demonstrated an 86 % recovery (qe = 34.0 mg/g) in the adsorption capacity for ibuprofen compared to the initial hydrogel beads (qe = 39.6). In contrast, the reswelled Alg/AC beads exhibited only 18 % (qe = 8.6) of the initial adsorption capacity (qe = 48.1). We elucidated the effects of the substitution degree of CMC, AC content, and solution pH on the reswelling property and ibuprofen adsorption capacity of the Alg/AC/CMC composite beads. The adsorption kinetics and isotherms of the prepared composite beads in the hydrogel and reswelled states fit the pseudo-second-order and Langmuir models, respectively. Furthermore, the reswelled Alg composite beads exhibited high adsorption capacity (>93 %) after 10 cycles. Taken together, our findings indicate that the Alg/AC/CMC composite beads can be used as adsorbents without a considerable decrease in adsorption performance by reswelling the beads with distilled water after long-term storage in a dry state.
Collapse
Affiliation(s)
- Jeong Woo Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jiwoo Han
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yong-Keun Choi
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea
| | - Saerom Park
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea; R&D Team, ChoiLab Inc., Seoul 01811, Republic of Korea.
| | - Sang Hyun Lee
- Department of Biological Engineering, Konkuk University, Seoul 05029, Republic of Korea.
| |
Collapse
|
8
|
Ansari H, Oladipo AA, Gazi M. Alginate-based porous polyHIPE for removal of single and multi-dye mixtures: Competitive isotherm and molecular docking studies. Int J Biol Macromol 2023; 246:125736. [PMID: 37423450 DOI: 10.1016/j.ijbiomac.2023.125736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/09/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
A novel hydrophilic porous alginate-based polyHIPE (AGA) was synthesized via an oil-in-water emulsion templating approach. AGA was used as an adsorbent for removing methylene blue (MB) dye in single- and multi-dye systems. BET, SEM, FTIR, XRD, and TEM were used to characterize AGA to elucidate its morphology, composition and physicochemical properties. According to the results, 1.25 g/L AGA adsorbed 99 % of 10 mg/L MB in 3 h in a single-dye system. The removal efficiency decreased to 97.2 % in the presence of 10 mg/L Cu2+ ions and 40.2 % when the solution salinity increased to 70 %. In a single-dye system, the experimental data do not match well with the Freundlich isotherm, pseudo-first order, and the Elovich kinetic model, however, in a multi-dye system, it fit well with both extended Langmuir and the Sheindorf-Rebhun-Sheintuch. Notably, AGA removed 66.87 mg/g in a dye solution containing only MB, whereas 50.14-60.01 mg/g adsorption of MB was accomplished in a multiple-dye system. According to the molecular docking analysis, the dye removal process involved chemical bonds between the functional groups of AGA and the dye molecules, hydrogen bonds, hydrophobic and electrostatic interactions. The overall binding score of MB decreased from -26.9 kcal/mol in a single-dye system to -18.3 kcal/mol in a ternary system.
Collapse
Affiliation(s)
- Hoda Ansari
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye
| | - Akeem Adeyemi Oladipo
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye.
| | - Mustafa Gazi
- Polymeric Materials Research Laboratory, Chemistry Department, Faculty of Arts and Science, Eastern Mediterranean University, TR North Cyprus, Famagusta via Mersin 10, Türkiye.
| |
Collapse
|