1
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Enhancing the Biodegradability, Water Solubility, and Thermal Properties of Polyvinyl Alcohol through Natural Polymer Blending: An Approach toward Sustainable Polymer Applications. Polymers (Basel) 2024; 16:2141. [PMID: 39125167 PMCID: PMC11314078 DOI: 10.3390/polym16152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/16/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
The escalating environmental crisis posed by single-use plastics underscores the urgent need for sustainable alternatives. This study provides an approach to introduce biodegradable polymer blends by blending synthetic polyvinyl alcohol (PVA) with natural polymers-corn starch (CS) and hydroxypropyl methylcellulose (HPMC)-to address this challenge. Through a comprehensive analysis, including of the structure, mechanical strength, water solubility, biodegradability, and thermal properties, we investigated the enhanced performance of PVA-CS and PVA-HPMC blends over conventional polymers. Scanning electron microscopy (SEM) findings of pure PVA and its blends were studied, and we found a complete homogeneity between the PVA and both types of natural polymers in the case of a high concentration of PVA, whereas at lower concentration of PVA, some granules of CS and HMPC appear in the SEM. Blending corn starch (CS) with PVA significantly boosts its biodegradability in soil environments, since adding starch of 50 w/w duplicates the rate of PVA biodegradation. Incorporating hydroxypropyl methylcellulose (HPMC) with PVA not only improves water solubility but also enhances biodegradation rates, as the addition of HPMC increases the biodegradation of pure PVA from 10 to 100% and raises the water solubility from 80 to 100%, highlighting the significant acceleration of the biodegradation process and water solubility caused by HPMC addition, making these blends suitable for a wide range of applications, from packaging and agricultural films to biomedical engineering. The thermal properties of pure PVA and its blends with natural were studied using diffraction scanning calorimetry (DSC). It is found that the glass transition temperature (Tg) increases after adding natural polymers to PVA, referring to an improvement in the molecular weight and intermolecular interactions between blend molecules. Moreover, the amorphous structure of natural polymers makes the melting temperature ™ lessen after adding natural polymer, so the blends require lower temperature to remelt and be recycled again. For the mechanical properties, both types of natural polymer decrease the tensile strength and elongation at break, which overall weakens the mechanical properties of PVA. Our findings offer a promising pathway for the development of environmentally friendly polymers that do not compromise on performance, marking a significant step forward in polymer science's contribution to sustainability. This work presents detailed experimental and theoretical insights into novel polymerization methods and the utilization of biological strategies for advanced material design.
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, P.O. Box 832, Shatby, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, UK
| |
Collapse
|
2
|
Deng H, Su J, Zhang W, Khan A, Sani MA, Goksen G, Kashyap P, Ezati P, Rhim JW. A review of starch/polyvinyl alcohol (PVA) blend film: A potential replacement for traditional plastic-based food packaging film. Int J Biol Macromol 2024; 273:132926. [PMID: 38851610 DOI: 10.1016/j.ijbiomac.2024.132926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 05/24/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
In recent years, the development of environmentally friendly packaging materials using biodegradable polymers has emerged as a key challenge for scientists and consumers in response to resource depletion and environmental issues caused by plastic packaging materials. Starch and polyvinyl alcohol (PVA) are being recognized as excellent candidates for producing biodegradable food packaging films. Polymer blending has emerged as a practical approach to overcome the limitations of biopolymer films by developing films with unique properties and enhancing overall performance. This review briefly introduces the molecular structure and properties of starch and PVA, summarizes the common preparation methods and properties of starch/PVA blend films, and focuses on different strategies used to enhance starch/PVA blend films, including nanoparticles, plant extracts, and cross-linking agents. Additionally, this study summarizes the application of starch/PVA blend films as active and smart packaging in food preservation systems. This study demonstrates that starch and PVA blends have potential in manufacturing biodegradable food films with excellent properties due to their excellent compatibility and intermolecular interactions, and can be used as packaging films for a variety of foods to extend their shelf life.
Collapse
Affiliation(s)
- Hao Deng
- Key Laboratory of Tropical Fruit and Vegetable Cold-Chain of Hainan Province, Institute of Agro-Products of Processing and Design, Hainan Academy of Agricultural Sciences, Haikou 571100, PR China
| | - Jiaqi Su
- Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Wanli Zhang
- School of Food Science and Engineering, Hainan University, Haikou 570228, PR China.
| | - Ajahar Khan
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mahmood Alizadeh Sani
- Department of Food Science and Technology, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Gulden Goksen
- Department of Food Technology, Vocational School of Technical Sciences, Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100 Mersin, Turkey
| | - Piyush Kashyap
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara 144401, Punjab, India
| | - Parya Ezati
- Department of Food Science, University of Guelph, ON N1G2W1, Canada
| | - Jong-Whan Rhim
- BioNanocomposite Research Center and Department of Food and Nutrition, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Wu H, Li W, Liang Z, Gan T, Hu H, Huang Z, Qin Y, Zhang Y. Mechanical activation-enhanced metal-organic coordination strategy to fabricate high-performance starch/polyvinyl alcohol films by extrusion blowing. Carbohydr Polym 2024; 333:121982. [PMID: 38494234 DOI: 10.1016/j.carbpol.2024.121982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/29/2024] [Accepted: 02/23/2024] [Indexed: 03/19/2024]
Abstract
The production of high-performance starch-based packaging films by extrusion blowing is challenging, ascribed to poor processability of the blend precursors. In this study, a new strategy of mechanical activation (MA)-enhanced metal-organic coordination was proposed to improve the processability of starch (St)/polyvinyl alcohol (PVA) blend precursor, with calcium acetate (CA) as a chelating agent and glycerol as a plasticizer. MA pretreatment activated the hydroxyl groups of starch and PVA for constructing strong metal-organic coordination between CA and St/PVA during reactive extrusion, which effectively enhanced the melt processing properties of the blend precursor, contributing to the fabrication of high-performance St/PVA films by the extrusion-blowing method. The as-prepared St/PVA films exhibited excellent mechanical properties (tensile strength of 34.5 MPa; elongation at break of 271.8 %), water vapor barrier performance (water vapor permeability of 0.704 × 10-12 g·cm-1·s-1·Pa-1), and oxygen barrier performance (oxygen transmission rate of 0.7 cm3/(m2·day·bar)), along with high transmittance and good uniformity. These outstanding characteristics and performances can be attributed to the improved interfacial interaction and compatibility between the two matrix phases. This study uncovers the mechanism of MA-enhanced metal-organic coordination for improving the properties of starch-based films, which provides a convenient and eco-friendly technology for the preparation of high-performance biodegradable films.
Collapse
Affiliation(s)
- Hongrui Wu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Wanhe Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Zirong Liang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tao Gan
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Huayu Hu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China
| | - Zuqiang Huang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| | - Yuben Qin
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yanjuan Zhang
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China; Key Laboratory of New Low-carbon Green Chemical Technology, Education Department of Guangxi Zhuang Autonomous Region, Nanning 530004, China.
| |
Collapse
|
4
|
Mu Z, Zhang W, Chai DF, Lv Q, Tan X, Yuan R, Dong G. Preparation and characterization of slow-release urea fertilizer encapsulated by a blend of starch derivative and polyvinyl alcohol with desirable biodegradability and availability. Int J Biol Macromol 2024; 271:132693. [PMID: 38806086 DOI: 10.1016/j.ijbiomac.2024.132693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/22/2024] [Accepted: 05/25/2024] [Indexed: 05/30/2024]
Abstract
In this study, a novel double-layer slow-release fertilizer (SRF) was developed utilizing stearic acid (SA) as a hydrophobic inner coating and a blend of starch phosphate carbamate (abbreviated as SPC) and polyvinyl alcohol (PVA) as a hydrophilic outer coating (designated as SPCP). The mass ratios of SPC and PVA in the SPCP matrices were systematically optimized by comprehensively checking the water absorbency, water contact angle (WCA), water retention property (WR), and mechanical properties such as percentage elongation at break and tensile strength with FTIR, XRD, EDS, and XPS techniques, etc. Moreover, the optimal SPCP/5:5 demonstrated superior water absorbency with an 80.2 % increase for the total mass compared to natural starch/PVA(NSP), along with desirable water retention capacity in the soil, exhibiting a weight loss of only 48 % over 13 d. Relative to pure urea and SA/NSPU/5:5, SA/SPCPU/5:5 released 50.3 % of its nutrient within 15 h, leading to nearly complete release over 25 h in the aqueous phase, while only 46.6 % of urea was released within 20 d in soil, extending to approximately 30 d. The slow release performance of urea reveals that the diffusion rate of urea release shows a significant decrease with an increase in coating layers. Consequently, this work demonstrated a prospective technology for the exploration of environmentally friendly SRF by integrating biodegradable starch derivatives with other polymers.
Collapse
Affiliation(s)
- Zhonghua Mu
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China; College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China
| | - Wenzhi Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| | - Dong-Feng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Qihang Lv
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Xiaoxiao Tan
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China
| | - Ruixia Yuan
- College of Chemistry and Chemical Engineering, Northeast Petroleum University, Daqing 163318, PR China.
| | - Guohua Dong
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, PR China.
| |
Collapse
|
5
|
Elgharbawy AS, El Demerdash AGM, Sadik WA, Kasaby MA, Lotfy AH, Osman AI. Synthetic Degradable Polyvinyl Alcohol Polymer and Its Blends with Starch and Cellulose-A Comprehensive Overview. Polymers (Basel) 2024; 16:1356. [PMID: 38794547 PMCID: PMC11124784 DOI: 10.3390/polym16101356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Approximately 50% of global plastic wastes are produced from plastic packaging, a substantial amount of which is disposed of within a few minutes of its use. Although many plastic types are designed for single use, they are not always disposable. It is now widely acknowledged that the production and disposal of plastics have led to a plethora of negative consequences, including the contamination of both groundwater and soil resources and the deterioration of human health. The undeniable impact of excessive plastic manufacturing and waste generation on the global plastic pollution crisis has been well documented. Therefore, degradable polymers are a crucial solution to the problem of the non-degradation of plastic wastes. The disadvantage of degradable polymers is their high cost, so blending them with natural polymers will reduce the cost of final products and maximize their degradation rate, making degradable polymers competitive with industrial polymers that are currently in use daily. In this work, we will delineate various degradable polymers, including polycaprolactone, starch, and cellulose. Furthermore, we will elucidate several aspects of polyvinyl alcohol (PVA) and its blends with natural polymers to show the effects of adding natural polymers on PVA properties. This paper will study cost-effective and ecologically acceptable polymers by combining inexpensive natural polymers with readily accessible biodegradable polymers such as polyvinyl alcohol (PVA).
Collapse
Affiliation(s)
- Abdallah S. Elgharbawy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
- The Egyptian Ethylene and Derivatives Company (Ethydco), Alexandria 21544, Egypt
| | - Abdel-Ghaffar M. El Demerdash
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Wagih A. Sadik
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Mosaad A. Kasaby
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed H. Lotfy
- Materials Science Department, Institute of Graduate Studies and Research (IGSR), Alexandria University, 163 Horrya Avenue, Shatby, P.O. Box 832, Alexandria 21526, Egypt; (A.S.E.)
| | - Ahmed I. Osman
- School of Chemistry and Chemical Engineering, Queen’s University Belfast, Belfast BT9 5AG, Northern Ireland, UK
| |
Collapse
|
6
|
Gómez-Bachar L, Vilcovsky M, González-Seligra P, Famá L. Effects of PVA and yerba mate extract on extruded films of carboxymethyl cassava starch/PVA blends for antioxidant and mechanically resistant food packaging. Int J Biol Macromol 2024; 268:131464. [PMID: 38702248 DOI: 10.1016/j.ijbiomac.2024.131464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/25/2024] [Accepted: 04/06/2024] [Indexed: 05/06/2024]
Abstract
Global concerns over environmental damage caused by non-biodegradable single-use packaging have sparked interest in developing biomaterials. The food packaging industry is a major contributor to non-degradable plastic waste. This study investigates the impact of incorporating different concentrations of polyvinyl alcohol (PVA) and yerba mate extract as a natural antioxidant into carboxymethyl cassava starch films to possibly use as active degradable packaging to enhance food shelf life. Films with starch and PVA blends (SP) at different ratios (SP radios of 100:0, 90:10, 80:20 and 70:30) with and without yerba mate extract (Y) were successfully produced through extrusion and thermoforming. The incorporation of up to 20 wt% PVA improved starch extrusion processing and enhanced film transparency. PVA played a crucial role in improving the hydrophobicity, tensile strength and flexibility of the starch films but led to a slight deceleration in their degradation in compost. In contrast, yerba mate extract contributed to better compost degradation of the blend films. Additionally, it provided antioxidant activity, particularly in hydrophilic and lipophilic food simulants, suggesting its potential to extend the shelf life of food products. Starch-PVA blend films with yerba mate extract emerged as a promising alternative for mechanically resistant and active food packaging.
Collapse
Affiliation(s)
- Luca Gómez-Bachar
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Maia Vilcovsky
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina
| | - Paula González-Seligra
- Instituto de Ingenierías y Nuevas Tecnologías, Universidad Nacional del Oeste, San Antonio de Padua, Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lucía Famá
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Física, Laboratorio de Polímeros y Materiales Compuestos, Buenos Aires, Argentina; CONICET - Universidad de Buenos Aires, Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina.
| |
Collapse
|
7
|
Wang K, Tan C, Tao H, Yuan F, Guo L, Cui B. Effect of different screw speeds on the structure and properties of starch straws. Carbohydr Polym 2024; 328:121701. [PMID: 38220338 DOI: 10.1016/j.carbpol.2023.121701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
To illustrate the action mechanism of screw speed on the performance of starch-based straws during the extrusion process, starch-based straws at different screw speeds were prepared using a twin-screw extruder and the structures and characteristics were compared. The results indicated that as screw speeds improved from 3 Hz to 13 Hz, the A chain of amylopectin increased from 25.47 % to 28.87 %, and the B3 chain decreased from 6.34 % to 3.47 %. The absorption peak of hydroxyl group shifted from 3296 cm-1 to 3280 cm-1. The relative crystallinity reduced from 13.49 % to 9.89 % and the gelatinization enthalpy decreased from 3.5 J/g to 0.2 J/g. The performance of starch straws did not increase linearly with increasing screw speeds. The starch straw produced at screw speed of 7 Hz had the largest amylose content, the highest gelatinization temperature, the minimum bending strength, and the lowest water absorption rate in hot water (80 °C). Screw speed had a remarkable impact on the mechanical strength, toughness and hydrophobicity of starch-based straws. This study revealed the mechanism of screw speed on the mechanical strength and water resistance of starch straws in the thermoplastic extrusion process and created the theoretical basis for the industrial production of starch-based straws.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Congping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Haiteng Tao
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Fang Yuan
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Li Guo
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| | - Bo Cui
- State Key Laboratory of Biobased Material and Green Papermaking, School of Food Sciences and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.
| |
Collapse
|
8
|
Liu F, Ren J, Yang Q, Zhang Q, Zhang Y, Xiao X, Cao Y. Improving water resistance and mechanical properties of starch-based films by incorporating microcrystalline cellulose in a dynamic network structure. Int J Biol Macromol 2024; 260:129404. [PMID: 38224807 DOI: 10.1016/j.ijbiomac.2024.129404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/28/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
The widespread use of starch-based films is hindered by inadequate tensile strength and high water sensitivity. To address these limitations, a novel starch film with a dynamic network structure was produced via the dehydration-condensation reaction of N, N'-methylene diacrylamide (MBA) and microcrystalline cellulose (MCC). The improvement in mechanical properties was enhanced by the incorporation of MCC, which was achieved through intermolecular hydrogen bonding and chemical crosslinking. To verify the interactions among MCC, MBA, and starch, x-ray photoelectron spectroscopy (XPS), fourier transform infrared spectroscopy (FTIR), and x-ray diffraction (XRD) were conducted. The results established the predicted interactions. The dynamic network structure of the film reduced the water absorption capacity (WAC) of starch and MCC hydroxyl groups, as confirmed by differential scanning calorimeter (DSC) and dynamic mechanical thermal analysis (DMTA). These analyses showed a restriction in the mobility of starch chains, resulting in a higher glass transition temperature (Tg) of 69.26 °C. The modified starch films exhibited excellent potential for packaging applications, demonstrating a higher contact angle (CA) of 89.63°, the lowest WAC of 4.73 g/g, and the lowest water vapor transmission rate (WVTR) of 13.13 g/m2/d, along with improved mechanical properties and identical light transmittance compared to pure starch films.
Collapse
Affiliation(s)
- Fengsong Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jiahao Ren
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qiyue Yang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Qi Zhang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yue Zhang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China
| | - Xinglong Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; The College of Life and Geographic Sciences, Kashgar University, Kashi 844000, China.
| | - Yifang Cao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Yang D, Fan B, Sun G, He YC, Ma C. Ultraviolet blocking ability, antioxidant and antibacterial properties of newly prepared polyvinyl alcohol-nanocellulose‑silver nanoparticles-ChunJian peel extract composite film. Int J Biol Macromol 2023; 252:126427. [PMID: 37598821 DOI: 10.1016/j.ijbiomac.2023.126427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 08/17/2023] [Indexed: 08/22/2023]
Abstract
In this work, nanocellulose (CNC) from waste water chestnut (WCT) shell was firstly used for preparing nanocomposite films, by using ChunJian peel extract (CJPE) as a green reducing agent to synthesize silver nanoparticles (AgNPs), and then loading them into polyvinyl alcohol-nanocellulose (PVA-CNC) matrix, a multifunctional nanocomposite material that could be used in food packaging was developed. The prepared films were tested for mechanical strength, barrier properties, thermal properties, antibacterial, antioxidant and biocompatibility through various characterizations. The PVA-CNC-AgNPs-CJPE film had good thermostability, mechanical strength, barrier properties, and biocompatibility. Compared with pure PVA film and PVA-CNC film, PVA-CNC-AgNPs-CJPE could shield over 95 % of the UVB (320-275 nm) spectrum and UVC (275-200 nm) spectrum and most of the UVA (400-320 nm). By disk diffusion analysis, the inhibition zones of PVA-CNC-AgNPs-CJPE film against E. coli, P. aeruginosa, S. aureus and E. faecalis were 22.3 mm, 25.0 mm, 22.0 mm and 19.3 mm, respectively. The milk antibacterial simulation test confirmed that PVA-CNC-AgNPs-CJPE film could effectively limit bacterial reproduction and prolong the shelf life of milk. PVA-CNC-AgNPs-CJPE film had excellent UV barrier properties, good antioxidant properties and high-efficiency antibacterial activity, which is expected to be widely used in sustainable nanocomposite food packaging.
Collapse
Affiliation(s)
- Dan Yang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Bo Fan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Guangting Sun
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China; State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| | - Cuiluan Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Lifes, Hubei University, Wuhan 430062, China.
| |
Collapse
|
10
|
Zhang Z, He YC, Liu Y. Efficient antibacterial and dye adsorption by novel fish scale silver biochar composite gel. Int J Biol Macromol 2023; 248:125804. [PMID: 37453636 DOI: 10.1016/j.ijbiomac.2023.125804] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
A silver-loaded carbon-chitosan-polyvinyl alcohol gel (C/CTS/PVA) was designed for suppressing microbial growth and dye adsorption. The antibacterial test results showed that C/CTS/PVA gel had a good antibacterial ability against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa. The inhibition rate in water was 100 %, and the antibacterial rate remained above 95 % within 35 days after preparation. The tight spatial structure provided by the adhesive effect of PVA and CTS effectively prevented water loss and enhanced the stability of the gel. The adsorption curves of the gel were fitted by establishing the pseudo-first order and pseudo-second order kinetic models. The adsorption curves were more consistent with the pseudo-second-order kinetic model. The best adsorption effect for Malachite green was 128.12 mg/g. C/CTS/PVA gel had a remarkable adsorption effect on Malachite green, Congo red, Methyl orange, and Methylene blue. In general, C/CTS/PVA gels have great potential for the treatment of sewage in the future.
Collapse
Affiliation(s)
- Zhichao Zhang
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China; School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Yu-Cai He
- School of Pharmacy & School of Biological and Food Engineering, National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, Changzhou University, Changzhou 213164, China.
| | - Youyan Liu
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China.
| |
Collapse
|