1
|
Abdin M, Arafa SG, El-Beltagy AE, Naeem MA, Hamed YS, Ayyash M. Development of anti-bacterial bio-transfer double sheet layer of polyvinyl alcohol/carboxymethyl cellulose films infused with Astragalus tribuloides leaf extract for beef burgers preservation. Int J Biol Macromol 2025; 284:138196. [PMID: 39617233 DOI: 10.1016/j.ijbiomac.2024.138196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/26/2024] [Accepted: 11/28/2024] [Indexed: 12/16/2024]
Abstract
This study was conducted to develop biodegradable films using a combination of carboxymethyl cellulose (CMC), polyvinyl alcohol (PVA) and purified leaves extract of Astragalus tribuloides (ATE). Various traits of the films, including their morphology description, thermal behavior, tensile/elongation properties and physical characteristics were examined. The scanning electron microscope (SEM) photographs showed smooth surface with small amounts of ATE, but rougher with higher concentrations of 1.4 %. The Fourier-transform infrared spectroscopy (FTIR) showed a direct relationship between the ATE extract and the PVA/CMC matrix. The films also showed thermal stability behaviors. The study found that the addition of ATE up to 0.8 % caused the films to become opaquer in color and raised their opacity up to 3.909. As a result, the films exhibited reduced moisture absorption (8.21 %) and solubility (27.11 %), making them retard penetrating water vapor up to (1.785 × 10-10 g.m-1 s-1 Pa-1) and could preserve the thiobarbituric acid reactive substances (TBARS) and overall color discrepancies of burger in refrigerated storage.
Collapse
Affiliation(s)
- Mohamed Abdin
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates.
| | - Salwa Gamal Arafa
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Kafr el-Sheikh, Egypt
| | - A E El-Beltagy
- Department of Food Science and Nutrition, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal, Ismailia 41522, Egypt
| | - Mutamed Ayyash
- Department of Food Science, College of Agriculture and Veterinary Medicine, United Arab Emirates University (UAEU), Al-Ain, United Arab Emirates.
| |
Collapse
|
2
|
Yu K, Yang L, Zhang S, Zhang N, Zhu D, He Y, Cao X, Liu H. Tough, antibacterial, antioxidant, antifogging and washable chitosan/nanocellulose-based edible coatings for grape preservation. Food Chem 2024; 468:142513. [PMID: 39700797 DOI: 10.1016/j.foodchem.2024.142513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/08/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
This study focused on extracting nanocellulose from food processing waste to create a multi-functional edible coating for preserving grapes. Nanocellulose, in the form of short rods with diameters ranging from 30 to 130 nm, was extracted from soy hulls. Edible coatings were then prepared through an ion cross-linking method. Results revealed that the film surfaces and cross-sections were smooth, flat and pore-free, with monomers cross-linked through hydrogen bonding, ester bonds and electrostatic interactions. Further, the incorporation of soy-hull nanocellulose (2 g) effectively improved the mechanical strength (elongation = 281.03 % and tensile strength = 114.88 MPa), barrier properties and antifogging and antibacterial properties (95.55 %) of SCT composite films. Moreover, compared with the control, the SCT-3 coating can extend the shelf life of grapes to 10 d at 25 °C. This study offers a new perspective on the high-value use of agricultural by-products and development of edible films.
Collapse
Affiliation(s)
- Kejin Yu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| | - Siyu Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ning Zhang
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Yutang He
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - Xuehui Cao
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, Liaoning 121013, China.
| |
Collapse
|
3
|
Ismail SA, Abozed SS, Taie HAA, Hassan AA. Preservation of freshly-cut lemon slices using alginate-based coating functionalized with antioxidant enzymatically hydrolyzed rice straw-hemicellulose. Sci Rep 2024; 14:27176. [PMID: 39511274 PMCID: PMC11543928 DOI: 10.1038/s41598-024-77670-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/24/2024] [Indexed: 11/15/2024] Open
Abstract
Food coatings are efficient preservative measures, a crucially needed approach to meet hunger growth as well as food management. In the current study, the construction of an efficient coating using alginate polymer fortified with antioxidant rice straw-hemicellulose hydrolysate was examined. Rice straw hemicellulose fraction was extracted under thermal alkaline conditions with a recovery percentage of 15.8%. The extracted hemicellulose fraction was enzymatically hydrolyzed with microbial xylanase with hydrolysis percentage of 53.8%. Characterization of the produced hydrolysate was performed with the aid of thin layer chromatographic analysis (TLC), high-performance liquid chromatographic analysis (HPLC), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) analysis. The reported data showed that xylobiose (240.68 mg/g) in addition to coumaric (383.33 µg/g) and ferulic acid (298.77 µg/g) as the main constituents of the carbohydrate and the polyphenolic contents, respectively. The hydrolysate possessed antioxidant capacity that significantly increased in a direct correlation with the concentration of the hydrolysate. Finally, the prepared coating solution effectiveness in the preservation of lemon slices against fungal growth was monitored up to 20 days with a significant concentration dependent decrease in weight loss and an increase in its antioxidant activity. The combination of xylooligosaccharide-rich rice straw hydrolysate with alginate-based coating not only improved the storage shelf-life of fresh fruits and vegetables but also provided microbial safety and potential benefits for human health.
Collapse
Affiliation(s)
- Shaymaa A Ismail
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt.
| | - Safaa S Abozed
- Food Technology Department, Food Industry and Nutrition Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Hanan A A Taie
- Plant Biochemistry Department, Agricultural and Biology Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| | - Amira A Hassan
- Department of Chemistry of Natural and Microbial Products, Pharmaceutical and Drug Industries Research Institute, National Research Centre, 33 El Bohouth St., Dokki, 12622, Giza, Egypt
| |
Collapse
|
4
|
Liu A, Wu H, Dong Z, Fan Q, Huang J, Jin Z, Xiao N, Liu H, Li Z, Ming L. Recent trends in nanocellulose: Metabolism-related, gastrointestinal effects, and applications in probiotic delivery. Carbohydr Polym 2024; 343:122442. [PMID: 39174123 DOI: 10.1016/j.carbpol.2024.122442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 06/26/2024] [Indexed: 08/24/2024]
Abstract
Nanocellulose, a versatile and sustainable nanomaterial derived from cellulose fibers, has attracted considerable attention in various fields due to its unique properties. Similar to dietary fibers, nanocellulose is difficult to digest in the human gastrointestinal tract. The indigestible nanocellulose is fermented by gut microbiota, producing metabolites and potentially exhibiting prebiotic activity in intestinal diseases. Additionally, nanocellulose can serve as a matrix material for probiotic protection and show promising prospects for probiotic delivery. In this review, we summarize the classification of nanocellulose, including cellulose nanocrystals (CNC), cellulose nanofibers (CNF), and bacterial nanocellulose (BNC), highlighting their distinct characteristics and applications. We discuss the metabolism-related characteristics of nanocellulose from oral ingestion to colon fermentation and introduce the prebiotic activity of nanocellulose in intestinal diseases. Furthermore, we provide an overview of commonly used nanocellulose-based encapsulation techniques, such as emulsification, extrusion, freeze drying, and spray drying, as well as the delivery systems employing nanocellulose matrix materials, including microcapsules, emulsions, and hydrogels. Finally, we discuss the challenges associated with nanocellulose metabolism, prebiotic functionality, encapsulation techniques, and delivery systems using nanocellulose matrix material for probiotics. This review will provide new insight into the application of nanocellulose in the treatment of intestinal diseases and probiotic delivery.
Collapse
Affiliation(s)
- Ao Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hailian Wu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zishu Dong
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Qimeng Fan
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Jia Huang
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Zhengji Jin
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Nan Xiao
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China
| | - Hongning Liu
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Zhe Li
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| | - Liangshan Ming
- Institute for Advanced Study, Key Laboratory of Modern Preparation of TCM, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang 330004, Jiangxi, China.
| |
Collapse
|
5
|
Zhao Y, Ma X, Wang G, Gao L, Zhang M, Ding Y, Lv S. Pomegranate peel extract incorporated soy protein isolate/Artemisia sphaerocephala Krasch. gum composite films for fresh-cut apples preservation. Int J Biol Macromol 2024; 280:135649. [PMID: 39284472 DOI: 10.1016/j.ijbiomac.2024.135649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
The objective of this study was to prepare an active packaging film using phosphorylated soy protein isolate (PPS) and Artemisia sphaerocephala Krasch. gum (ASKG) as film matrices, with the incorporation of pomegranate peel extract (PPE) to preserve fresh-cut apples. The results showed that PA-PPE (PPS/ASKG-PPE) films significantly increased thickness by 24.47 %, tensile strength by 58.76 %, and elongation at break by 30.48 %. Additionally, water vapor permeability and oxygen permeability decreased significantly to 6.17 × 10-13 and 0.62 × 10-13 Kg•m•m-2•s-1•Pa-1, respectively. FTIR, XRD, and SEM analyses confirmed the formation of intermolecular hydrogen bonds between PPS, ASKG, and polyphenols extracted from pomegranate peel, indicating excellent compatibility. Furthermore, radical scavenging activity experiments demonstrated that these films exhibited a remarkable ability to scavenge DPPH and ABTS+ radicals up to 70.44 % and 74.28 %, respectively, when the PPE content was at 3 wt%. Moreover, PPS could achieve a sustained release effect on polyphenols with a relatively low release rate (63.83 %) even after seven days' time elapsed. Finally, the PA-PPE film displayed superior performance in reducing the weight loss and browning index of fresh-cut apples within 24 h of storage. The development of PA-PPE film could promote sustainable resource protection and demonstrate promising prospects in the field of fresh-cut fruit packaging.
Collapse
Affiliation(s)
- Yucong Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Xueli Ma
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Guohua Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Le Gao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Mengyao Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Yong Ding
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China
| | - Shenghua Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi 710021, China.
| |
Collapse
|
6
|
Abdin M, Naeem MA, Aly-Aldin MM. Enhancing the bioavailability and antioxidant activity of natamycin E235-ferulic acid loaded polyethylene glycol/carboxy methyl cellulose films as anti-microbial packaging for food application. Int J Biol Macromol 2024; 266:131249. [PMID: 38569998 DOI: 10.1016/j.ijbiomac.2024.131249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 04/05/2024]
Abstract
This study investigated the development of biodegradable films made from a combination of polyethylene glycol (PEG), carboxymethyl cellulose (CMC) and mixtures from natamycin and ferulic acid. The films were characterized for their surface microstructure, antioxidant activity, thermal stability, mechanical properties, permeability and antifungal/bacterial activity. The addition of natamycin and ferulic acid to the film matrix enhanced antioxidant activity, thermal stability, antimicrobial activity, reduced the water vapor permeability (WVP) to 1.083 × 10-10 g × m-1s-1Pa-1, imparted opaque color and increased opacity up to 3.131 A mm-1. The attendance of natamycin and ferulic acid inside films created a clear roughness shape with agglomerates on the surface of films and caused a clear inhibition zone for Aspergillus niger, E. coli and C. botulinum. The utilization of PG/CMC/N-F packaging material on Ras cheese had a noticeable effect, resulting in a slight decrease in moisture content from 34.23 to 29.17 %. Additionally, it helped maintain the titrable acidity within the range of 0.99 % to 1.11 % and the force required for puncture from 0.035 to 0.052 N with non-significant differences. Importantly, these changes did not significantly affect the sensory qualities of Ras cheese during the storage period.
Collapse
Affiliation(s)
- Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| | - Mohamed Ahmed Naeem
- Nutrition and Food Science of Ain Shams University Specialized Hospital, Ain Shams University, Cairo, Egypt
| | - Mohamed M Aly-Aldin
- Department of Food Science and Technology, Faculty of Agriculture, Menoufia University, Shibin El-Kom, Egypt
| |
Collapse
|
7
|
Alshehri AA, Kamel RM, Gamal H, Sakr H, Saleh MN, El-Bana M, El-Dreny ESG, El Fadly E, Abdin M, Salama MA, Elsayed M. Sodium alginate films incorporated with Lepidium sativum (Garden cress) extract as a novel method to enhancement the oxidative stability of edible oil. Int J Biol Macromol 2024; 265:130949. [PMID: 38508545 DOI: 10.1016/j.ijbiomac.2024.130949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 03/22/2024]
Abstract
This study addresses the growing interest in bio-based active food packaging by infusing Lepidium sativum (Garden cress) seeds extract (GRCE) into sodium alginate (SALG) films at varying concentrations (1, 3, and 5 %). The GRCE extract revealed six phenolic compounds, with gallic and chlorogenic acids being prominent, showcasing substantial total phenolic content (TPC) of 139.36 μg GAE/mg and total flavonoid content (TFC) of 26.46 μg RE/mg. The integration into SALG films significantly increased TPC, reaching 30.73 mg GAE/g in the film with 5 % GRCE. This enhancement extended to DPPH and ABTS activities, with notable rises to 66.47 and 70.12 %, respectively. Physical properties, including tensile strength, thickness, solubility, and moisture content, were positively affected. A reduction in water vapor permeability (WVP) was reported in the film enriched with 5 % GRCE (1.389 × 10-10 g H2O/m s p.a.). FT-IR analysis revealed bands indicating GRCE's physical interaction with the SALG matrix, with thermal stability of the films decreasing upon GRCE integration. SALG/GRCE5 effectively lowered the peroxide value (PV) of sunflower oil after four weeks at 50 °C compared to the control, with direct film-oil contact enhancing this reduction. Similar trends were observed in the K232 and K270 values.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, Abha, King Khalid University, Kingdom of Saudi Arabia
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Dokki, Giza 12611, Egypt
| | - Heba Gamal
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mohamed El-Bana
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Kafr El Sheikh, Egypt
| | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | | | | |
Collapse
|
8
|
Liu R, Ci X, Liu L, Wang X, Rifky M, Liu R, Sui W, Wu T, Zhang M. Chitosan entrapping of sodium alginate / Lycium barbarum polysaccharide gels for the encapsulation, protection and delivery of Lactiplantibacillus plantarum with enhanced viability. Int J Biol Macromol 2024; 260:129615. [PMID: 38246437 DOI: 10.1016/j.ijbiomac.2024.129615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/01/2023] [Accepted: 01/17/2024] [Indexed: 01/23/2024]
Abstract
To preserve the viability of probiotics during digestion and storage, encapsulation techniques are necessary to withstand the challenges posed by adverse environments. A core-shell structure has been developed to provide protection for probiotics. By utilizing sodium alginate (SA) / Lycium barbarum polysaccharide (LBP) as the core material and chitosan (CS) as the shell, the probiotic load reached 9.676 log CFU/mL. This formulation not only facilitated continuous release in the gastrointestinal tract but also enhanced thermal stability and storage stability. The results obtained from Fourier transform infrared spectroscopy and thermogravimetric analysis confirmed that the addition of LBP and CS affected the microstructure of the gel by enhancing the hydrogen bond force, so as to achieve controlled release. Following the digestion of the gel within the gastrointestinal tract, the released amount was determined to be 9.657 log CFU/mL. The moisture content and storage stability tests confirmed that the encapsulated Lactiplantibacillus plantarum maintained good activity for an extended period at 4 °C, with an encapsulated count of 8.469 log CFU/mL on the 28th day. In conclusion, the newly developed core-shell gel in this study exhibits excellent probiotic protection and delivery capabilities.
Collapse
Affiliation(s)
- Ran Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoman Ci
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Linlin Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xintong Wang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Mohamed Rifky
- Eastern University, Sri Lanka, Chenkalady 999011, Sri Lanka
| | - Rui Liu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenjie Sui
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Min Zhang
- State Key Laboratory of Food Nutrition and Safety, Food Biotechnology Engineering Research Center of Ministry of Education, Tianjin University of Science & Technology, Tianjin 300457, China; Tianjin Agricultural University, Tianjin 300384, China.
| |
Collapse
|
9
|
Ramakrishnan R, Kim JT, Roy S, Jayakumar A. Recent advances in carboxymethyl cellulose-based active and intelligent packaging materials: A comprehensive review. Int J Biol Macromol 2024; 259:129194. [PMID: 38184045 DOI: 10.1016/j.ijbiomac.2023.129194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 12/31/2023] [Indexed: 01/08/2024]
Abstract
Researchers have concentrated on innovative approaches to increase the shelf life of perishable food products and monitor their quality during storage and transportation as consumer demand for safe, environmentally friendly, and effective packaging develops. This comprehensive review aims to provide an overview of recent developments in carboxymethyl cellulose (CMC) chemical synthesis and its applications in active and intelligent packaging materials. It explores various methods for modifying cellulose to produce CMC and highlights the unique properties that make it suitable for addressing packaging industry challenges. The integration of CMC into active packaging systems, which helps reduce food waste and enhance food preservation, is discussed in depth. Furthermore, the integration of CMC in smart sensors and indicators for real-time monitoring and quality assurance in intelligent packaging is examined. The chemical synthesis of CMC and strategies to optimise its properties were studied, and the review concluded by examining the challenges and prospects of CMC-based packaging in the industry. This review is intended to serve as a valuable resource for researchers, industry professionals, and policymakers interested in the evolving landscape of CMC and its role in shaping the future of packaging materials.
Collapse
Affiliation(s)
| | - Jun Tae Kim
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Swarup Roy
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Aswathy Jayakumar
- Department of Food and Nutrition, BioNanocomposite Research Center, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
10
|
Feng X, Li Y, Cui Z, Tang R. Sodium alginate/carboxymethyl cellulose films embedded with liposomes encapsulated green tea extract: characterization, controlled release, application. RSC Adv 2024; 14:245-254. [PMID: 38173599 PMCID: PMC10758806 DOI: 10.1039/d3ra05196j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
To maintain the freshness of the fruit during storage, sodium alginate/carboxymethyl cellulose films embedded with pH-senstive liposomes encapsulated green tea extract were developed (SA/CMC/TP-Lip). An orthogonal design was used to optimise the preparation of TP-Lip and SA/CMC/TP-Lip was prepared through response surface. The stability of TP-Lip structure was measured. The morphology of SA/CMC/TP-Lip was characterised by SEM, and the mechanical properties and oxidation resistance of films were measured. Special attention was paid to the pH sensitivity of TP-Lip and the improvement of film properties. The zeta potential and encapsulation rate of TP-Lip were -45.85 ± 2.13 mV and 61.45 ± 0.23%. The average release rate of TP encapsulated into TP-Lip at pH 3 was 41.08%, an increase of 23.07% over pH 6 during 12 h. SEM and FTIR showed that TP-Lip was structurally stable and had good compatibility with SA/CMC. Tensile strength was increased by 30.55% and DPPH radical scavenging capacity was increased by 7.16% with the addition of TP-Lip. SA/CMC/TP-Lip is applied to blueberries to reduce their weight loss and improve the loss of freshness of blueberries during storage. Thus, SA/CMC/TP-Lip could provide a new way to extend active packaging materials and maintain fruit freshness during storage.
Collapse
Affiliation(s)
- Xin Feng
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Yang Li
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| | - Zhuoyu Cui
- Department of Forestry Engineering, Northeast Forestry University Harbin Heilongjiang China
| | - Rongrong Tang
- Department of Logistics Engineering and Management, Northeast Forestry University Harbin Heilongjiang China
| |
Collapse
|
11
|
Wu Y, Luo C, Wang T, Yang Y, Sun Y, Zhang Y, Cui L, Song Z, Chen X, Cao X, Li S, Cai G. Extraction and characterization of nanocellulose from cattail leaves: Morphological, microstructural and thermal properties. Int J Biol Macromol 2024; 255:128123. [PMID: 37981275 DOI: 10.1016/j.ijbiomac.2023.128123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
Hydrogen peroxide combined with acid treatment demonstrates its respective characteristics for the separation of lignocellulosic biomass. Herein, holocellulose was extracted from Cattail leaves (CL) by a two-step treatment with alkali and hydrogen peroxide-acetic acid (HPAA). Then carboxylated nanocellulose was hydrolyzed with a mixed organic/inorganic acid. The chemical composition of the holocellulose and the physicochemical properties of the separated carboxylated nanocellulose were comparable. Carboxyl groups were introduced on the nanocellulose as a result of the esterification process with citric acid (CA), which endows the nanocellulose with high thermal stability (315-318 °C) and good light transmission (>80 %). Furthermore, morphological analyses revealed that nanocellulose had a spider-web-like structure with diameter between 5 and 20 nm.
Collapse
Affiliation(s)
- Yuyang Wu
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Chunxu Luo
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Tianjiao Wang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuhang Yang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yuchi Sun
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Yang Zhang
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Liqian Cui
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zican Song
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xiaofeng Chen
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Xinwang Cao
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China; State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China.
| | - Shengyu Li
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China.
| | - Guangming Cai
- College of Textiles Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan 430200, China
| |
Collapse
|
12
|
Alshehri AA, Hamed YS, Kamel RM, Shawir SMS, Sakr H, Ali M, Ammar A, Saleh MN, El Fadly E, Salama MA, Abdin M. Enhanced physical properties, antioxidant and antibacterial activity of bio-composite films composed from carboxymethyl cellulose and polyvinyl alcohol incorporated with broccoli sprout seed extract for butter packaging. Int J Biol Macromol 2024; 255:128346. [PMID: 37995780 DOI: 10.1016/j.ijbiomac.2023.128346] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/18/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the development of biodegradable films made from a combination of carboxymethyl cellulose (CMC), Polyvinyl alcohol (PVA), and purified extract of broccoli sprout seed (BSSE). The films were characterized for their color, physical properties, surface morphology, crystallinity, mechanical properties, and thermal properties. The addition of BSSE up to 1.4 % to the film matrix imparted opaque color and increased opacity up to 3.652. The films also became less moisture-absorbent 8.21 %, soluble 19.16 %, and permeable to water vapor 1.531 (× 10-10 g.m-1 s-1 pa-1). By utilizing 0.7 % from BSSE inside films, the surface of the films became smoother but became rough with higher concentrations 2.1 % of BSSE. Fourier transform infrared (FT-IR) analysis showed that there was physical interaction between the BSSE extract and the PV/CM matrix. The films showed good thermal stability, and the incorporation of BSSE improved their ability to preserve the acidity, TBARS, peroxide value, and total color differences of butter during cold storage.
Collapse
Affiliation(s)
- Azizah A Alshehri
- Department of Home Economic, College of Home Economic, King Khalid University, Abha, Saudi Arabia
| | - Yahya S Hamed
- Food Technology Department, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Reham M Kamel
- Agricultural Engineering Research Institute, Agricultural Research Center, Giza 12611, Egypt
| | - Samar M S Shawir
- Home Economics Department, Faculty of Specific Education, Alexandria University, Alexandria, Egypt
| | - Hazem Sakr
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt; Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Mostafa Ali
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Amin Ammar
- Department of Food Technology, Faculty of Agriculture, Kafrelsheikh University, Egypt
| | - Mohamed N Saleh
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt
| | - Enas El Fadly
- Dairy Sciences Department, Faculty of Agriculture, Kafrelshiekh University, Egypt
| | | | - Mohamed Abdin
- Agricultural Research Center, Food Technology Research Institute, Giza 12611, Egypt.
| |
Collapse
|
13
|
Sun J, Guo J, Li Y, Guan F, Zhang Y, Li Z. Guar-based aerogels with oriented lamellar structure and lightweight properties for flame-retardant and thermal insulation. Int J Biol Macromol 2024; 256:128318. [PMID: 38000610 DOI: 10.1016/j.ijbiomac.2023.128318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/14/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023]
Abstract
In this study, a multi-functional guar gum aerogel with the oriented lamellar structure, which introduced sodium silicate (Na2O·nSiO2) and phytic acid (PA) as thermal insulation additives and flame-retardant agents, respectively, was fabricated via freeze drying. Our aerogel's chemical structure, morphology, and thermal and mechanical properties were analyzed. The oriented lamellar structure was attributed to the orientated growth of ice crystals, which was induced by the "silicate-guar, guar-phytate, and phytate-silicate" multiple hydrogen bonds formed between Na2O·nSiO2, PA, and guar gum. The density of the sample with 2 wt% PA could reach 0.0335 g·cm-3, and the porosity was 5 %, along with a specific pore volume of 0.8144 cm3·g-1. The mechanical properties and thermal insulation performed significant differences in the radial and axial direction of the oriented lamella (nearly 100 % resilience while 50 % deformation quantity and 0.0235 W/(m*K) of thermal conductivity in the radial direction, up to 0.079 MPa of compressive strength in the axial direction). The presence of PA attached a good flame-retardant ability to our aerogel (The Limiting Oxygen Index (LOI) was 30.77 %). This work provides a novel and promising method for developing anisotropic aerogel with excellent potential in building energy efficiency and flame-retardant.
Collapse
Affiliation(s)
- Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China.
| | - Yi Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
14
|
Akhtar HMS, Ahmed S, Olewnik-Kruszkowska E, Gierszewska M, Brzezinska MS, Dembińska K, Kalwasińska A. Carboxymethyl cellulose based films enriched with polysaccharides from mulberry leaves (Morus alba L.) as new biodegradable packaging material. Int J Biol Macromol 2023; 253:127633. [PMID: 37879581 DOI: 10.1016/j.ijbiomac.2023.127633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/20/2023] [Accepted: 10/21/2023] [Indexed: 10/27/2023]
Abstract
The objective of this study was to determine the properties of a new active packaging film developed by the addition of mulberry leaves polysaccharides (MLP) into carboxymethyl cellulose (CMC). Biodegradable CMC-MLP films were fabricated by casting method with various concentrations of MLP (1, 5 and 10 % w/w). The addition of MLP into the CMC matrix resulted increased thickness (0.126 to 0.163 mm) and roughness of the films. Also, the decline in moisture content from 27.91 to 14.12 %, water vapor permeability from 8.95 to 5.21 × 10-10 g-1 s-1 Pa-1, and a swelling degree from 59.11 to 37.45 % were observed. With the increasing concentration of MLP, the mechanical properties of the films were improved and higher dispersion of UV light were noted. Fourier transform - infrared spectroscopy (FT-IR) and X-ray diffraction revealed good inter-molecular interaction between CMC matrix and MLP. The prepared films showed excellent thermal stability, antioxidant and antibacterial properties as well as susceptibility to biodegradation in the soil environment. Moreover, it was proved that the films have ability to retard oil oxidation. Overall, it was concluded that CMC-MLP films constitute a promising biomaterial that may be applied as active food packaging.
Collapse
Affiliation(s)
- Hafiz Muhammad Saleem Akhtar
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland.
| | - Shakeel Ahmed
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Ewa Olewnik-Kruszkowska
- Department of Physical and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Magdalena Gierszewska
- Department of Physical and Polymer Physical Chemistry, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Maria Swiontek Brzezinska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Katarzyna Dembińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland
| | - Agnieszka Kalwasińska
- Department of Environmental Microbiology and Biotechnology, Faculty of Biological Sciences, Nicolaus Copernicus University, Torun, Poland.
| |
Collapse
|
15
|
Shen Y, Seidi F, Ahmad M, Liu Y, Saeb MR, Akbari A, Xiao H. Recent Advances in Functional Cellulose-based Films with Antimicrobial and Antioxidant Properties for Food Packaging. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:16469-16487. [PMID: 37877425 DOI: 10.1021/acs.jafc.3c06004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
The packaging of food plays a crucial role in food preservation worldwide. However, traditional packaging systems are passive layers with weak efficiency in protecting the food quality. Therefore, packaged foods are gradually spoiled due to the oxidation and growth of microorganisms. Additionally, most of the commercial packaging films are made of petroleum-based materials which raise environmental concerns. Accordingly, the development of eco-friendly natural-derived active packaging systems has increased the attention of scientists. Cellulose as the most abundant polysaccharide on earth with high biocompatibility, no toxicity, and high biodegradability has extensively been applied for the fabrication of packaging films. However, neat cellulose-based films lack antioxidant and antimicrobial activities. Therefore, neat cellulose-based films are passive films with weak food preservation performance. Active films have been developed by incorporating antioxidants and antimicrobial agents into the films. In this review, we have explored the latest research on the fabrication of antimicrobial/antioxidant cellulose-based active packaging films by incorporating natural extracts, natural polyphenols, nanoparticles, and microparticles into the cellulose-based film formulations. We categorized these types of packaging films into two main groups: (i) blend films which are obtained by mixing solutions of cellulose with other soluble antimicrobial/antioxidant agents such as natural extracts and polyphenols; and (ii) composite films which are fabricated by dispersing antimicrobial/antioxidant nano- or microfillers into the cellulose solution. The effect of these additives on the antioxidant and antimicrobial properties of the films has been explained. Additionally, the changes in the other properties of the films such as hydrophilicity, water evaporation rate, and mechanical properties have also been briefly addressed.
Collapse
Affiliation(s)
- Yihan Shen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Farzad Seidi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mehraj Ahmad
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Yuqian Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources and International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Mohammad Reza Saeb
- Department of Polymer Technology, Faculty of Chemistry, Gdańsk University of Technology, Gabriela Narutowicza 11/12, 80-233 Gdańsk, Poland
| | - Ali Akbari
- Solid Tumor Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Sciences, Shafa Street, Ershad Boulevard, P.O. Box: 1138, Urmia 57147, Iran
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 Canada
| |
Collapse
|