1
|
Wang H, Zhou Q, Pan K, Liu L, Niu X. Enhancing Botrytis cinerea resistance in strawberry preservation with non-contact functionalized chitosan-Cinnamaldehyde composite films. Food Chem 2025; 476:143488. [PMID: 39986084 DOI: 10.1016/j.foodchem.2025.143488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/03/2024] [Accepted: 02/16/2025] [Indexed: 02/24/2025]
Abstract
Current escalating food safety concerns from packaging-food surface interactions pose a significant hurdle in developing novel preservation materials. In this study, differing from conventional contact-based antibacterial films, we employed a Schiff base reaction to anchor the volatile antimicrobial agent cinnamaldehyde (CIN) onto functionalized N-succinyl chitosan (NSC), resulting in a non-contact CIN-NSC antimicrobial preservation film. At room temperature, the film shows sustained CIN release, peaking at 144 h. Targeting the sterol 14α-demethylase (CYP51) of Botrytis cinerea (B. cinerea), CIN significantly inhibits spore germination and mycelial growth (EC50 values of 137.12 μg/mL and 77.23 μg/mL, respectively) without direct contact. In application, CIN-NSC films maintain strawberry quality for over a week through non-contact mechanisms, ensuring safety. These findings highlight the potential of CIN-NSC packaging films as effective antimicrobial materials for improving food preservation standards.
Collapse
Affiliation(s)
- Hongsu Wang
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Qianliao Zhou
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Keyan Pan
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Lu Liu
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China
| | - Xiaodi Niu
- College of Food S and Engineering, Jilin University, Changchun 130062, PR China.
| |
Collapse
|
2
|
Procopio FR, Brexó RP, Vitolano LES, Martins MEDM, Astolfo MEDA, Bogusz Junior S, Ferreira MD. Development of essential oils inclusion complexes: a nanotechnology approach with enhanced thermal and light stability. DISCOVER NANO 2024; 19:198. [PMID: 39645638 PMCID: PMC11625701 DOI: 10.1186/s11671-024-04158-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
Essential oils (EOs) are volatile compounds that may have antimicrobial and antioxidant properties. Despite their potential application, low water solubility and chemical instability are limiting factors. Nanoencapsulation processes can overcome this problem, protecting against external factors and promoting a moderate release. Therefore, the objective of the present study was to encapsulate Cymbopogon citratus (CC) and Origanum vulgare (OV) essential oils in β-cyclodextrin (βCD) complexes. Different ratios (w/w) between βCD and EOs (96:4, 92:8, 90:10, 88:12) were tested, seeking greater entrapment efficiency. The particles were characterized by yield, entrapment efficiency, size distribution, morphology, crystallinity, infrared spectroscopy, and thermal behavior. Furthermore, the thermal (70 °C) and photochemical (UV) stability of the free and encapsulated EO was evaluated for 48 h. The results showed that the βCD-CC 90:10 and βCD-OV 90:10 formulations presented greater entrapment efficiency. Crystalline structures of varying sizes (200 to 800 nm), trapezoidal shape, and tendency to aggregation were obtained. Changes in the βCD crystalline organization and the suppression of characteristic free oil absorption bands suggest the EO entrapment. Regarding stability results, βCD-CC remained constant when CC showed losses of 20% (photodegradation) and 60% (thermal degradation) after 48 h of stress exposure. Free OV showed slight variations in absorbance over time, while βCD-OV remained constant over 24 h (thermal degradation) and maintained 60% of oil over 48 h of photo exposure. Furthermore, OV and CC demonstrate color change over time, while βCD-OV and βCD-CC remained constant. The results demonstrate that nanoencapsulation can be an interesting tool for protecting EOs.
Collapse
Grants
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #2022/10686-6, #2022/03229-8, #2023/14371-2, #2023/17653-9 Fundação de Amparo à Pesquisa do Estado de São Paulo
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- #442575/2019-0, #307141/2022-5, #383538/2023-8, #385552/2023-8,#138584/2023-0 Conselho Nacional de Desenvolvimento Científico e Tecnológico
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
- 001 Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Collapse
Affiliation(s)
- Fernanda Ramalho Procopio
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil.
| | - Ramon Peres Brexó
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil
| | | | - Maria Eduarda da Mata Martins
- Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José Do Rio Preto, Brazil
| | | | - Stanislau Bogusz Junior
- São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, 13566-590, Brazil
| | - Marcos David Ferreira
- Brazilian Agricultural Research Corporation, Embrapa Instrumentation, São Carlos, SP, 13561-206, Brazil
| |
Collapse
|
3
|
Wang Y, Wang Z, Lin Y, Qin Y, He R, Wang M, Sun Q, Peng Y. Nanocellulose from agro-industrial wastes: A review on sources, production, applications, and current challenges. Food Res Int 2024; 192:114741. [PMID: 39147548 DOI: 10.1016/j.foodres.2024.114741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Significant volumes of agricultural and industrial waste are produced annually. With the global focus shifting towards sustainable and environmentally friendly practices, there is growing emphasis on recycling and utilizing materials derived from such waste, such as cellulose and lignin. In response to this imperative situation, nanocellulose materials have surfaced attracting heightened attention and research interest owing to their superior properties in terms of strength, stiffness, biodegradability, and water resistance. The current manuscript provided a comprehensive review encompassing the resources of nanocellulose, detailed pretreatment and extraction methods, and present applications of nanocellulose. More importantly, it highlighted the challenges related to its processing and utilization, along with potential solutions. After evaluating the benefits and drawbacks of different methods for producing nanocellulose, ultrasound combined with acid hydrolysis emerges as the most promising approach for large-scale production. While nanocellulose has established applications in water treatment, its potential within the food industry appears even more encouraging. Despite the numerous potential applications across various sectors, challenges persist regarding its modification, characterization, industrial-scale manufacturing, and regulatory policies. Overcoming these obstacles requires the development of new technologies and assessment tools aligned with policy. In essence, nanocellulose presents itself as an eco-friendly material with extensive application possibilities, prompting the need for additional research into its extraction, application suitability, and performance enhancement. This review focused on the wide application scenarios of nanocellulose, the challenges of nanocellulose application, and the possible solutions.
Collapse
Affiliation(s)
- Yefan Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Ziyan Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Yu Lin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Yiming Qin
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Ruixuan He
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Mingxiao Wang
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, United States.
| | - Ye Peng
- Faculty of Medicine, Macau University of Science and Technology, 999078, Macao.
| |
Collapse
|
4
|
Ebrahimi R, Fathi M, Ghoddusi HB. Pickering emulsions stabilized by cellulose nanocrystals extracted from hazelnut shells: Production and stability under different harsh conditions. Int J Biol Macromol 2024; 258:128982. [PMID: 38154718 DOI: 10.1016/j.ijbiomac.2023.128982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/05/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
Cellulose nanocrystals (CNCs) are biodegradable particles that have emerged as promising stabilizers for Pickering emulsions. This study investigated the effectiveness of CNCs in forming the Pickering emulsion from hazelnut shells (HS), an agricultural waste. Following the alkaline and bleaching treatments applied to HS, CNCs were obtained from treated hazelnut shell with acid hydrolysis. The physicochemical characteristics of CNCs were investigated using dynamic light scattering, XRD, FTIR, SEM, and TEM. A high crystalline (69.6 %) CNCs with a spherical shape were obtained. Contact angle and interfacial tension tests were conducted and showed that CNCs had amphiphilic nature. Pickering emulsions were investigated for their size, zeta potential, and stability under varying CNC concentrations. The results showed that when CNCs concentration increased from 0.5 to 2.0 wt%, droplet diameter decreased approximately 1.8 times and zeta potential increased. Creaming was not observed during 28 days of storage in a concentration of 2.0 wt% CNCs. The CNC stabilized emulsions exhibited high stability within a range of pH, temperatures, and salt concentrations. This study demonstrated that CNCs extracted from HS as environmentally friendly and cost-effective materials, could serve as a new stabilizer for Pickering emulsions especially for high temperature and low pH sensitive products such as mayonnaise.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Milad Fathi
- Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
| | - Hamid B Ghoddusi
- Microbiology Research Unit (MRU), School of Human Sciences, London Metropolitan University, London, UK
| |
Collapse
|
5
|
Xu J, Jiang Z, Peng J, Sun R, Zhang L, Chen Y, Pan D, Huang J, Gong Z, Chen Y, Shen X. Fabrication of a protein-dextran conjugates formed oral nanoemulsion and its application to deliver the essential oil from Alpinia zerumbet Fructus. Int J Biol Macromol 2023; 249:125918. [PMID: 37495002 DOI: 10.1016/j.ijbiomac.2023.125918] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 07/04/2023] [Accepted: 07/18/2023] [Indexed: 07/28/2023]
Abstract
The injury of vascular endothelial cells caused by high glucose (HG) is one of the driving factors of vascular complications of diabetes. Oral administration is the most common route of administration for the treatment of diabetes and its vascular complications. Essential oil extracts from Chinese medicine possess potential therapeutic effects on vascular endothelial injury. However, low solubility and volatility of essential oils generally result in poor oral absorption. Development of nanocarriers for essential oils is a promising strategy to overcome the physiological barriers of oral absorption. In this study, a nanoemulsion composed of bovine serum albumin (BSA)-dextran sulfate (DS) conjugate and sodium deoxycholate (SD) was constructed. The nanoemulsions were verified with promoted oral absorption and prolonged circulation time. After the primary evaluation of the nanoemulsion, essential oil from Alpinia zerumbet Fructus (EOFAZ)-loaded nanoemulsion (denoted as EOFAZ@BD5/S) was prepared and characterized. Compared to the free EOFAZ, EOFAZ@BD5/S increased the protective effects on HG-induced HUVEC injury in vitro and ameliorative effects on the vascular endothelium disorder and tunica media fibroelastosis in a T2DM mouse model. Collectively, this study provides a nanoemulsion for the oral delivery of essential oils, which holds strong promise in the treatment of diabetes-induced vascular endothelial injury.
Collapse
Affiliation(s)
- Jinzhuan Xu
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zhaohui Jiang
- The First People's Hospital of Guiyang, Guiyang 550002, China
| | - Jianqing Peng
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Runbin Sun
- Phase I Clinical Trials Unit, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Lili Zhang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Yan Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Di Pan
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Jing Huang
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China
| | - Zipeng Gong
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Yi Chen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| | - Xiangchun Shen
- The State Key Laboratory of Functions and Applications of Medicinal Plants, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China; The High Efficacy Application of Natural Medicinal Resources Engineering Center of Guizhou Province, School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
6
|
Zhao S, Wang Z, Wang X, Kong B, Liu Q, Xia X, Liu H. Characterization of Nanoemulsions Stabilized with Different Emulsifiers and Their Encapsulation Efficiency for Oregano Essential Oil: Tween 80, Soybean Protein Isolate, Tea Saponin, and Soy Lecithin. Foods 2023; 12:3183. [PMID: 37685117 PMCID: PMC10487023 DOI: 10.3390/foods12173183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
The use of the appropriate emulsifier is essential for forming a stable nanoemulsion delivery system that can maintain the sustained release of its contents. Health concerns have prompted the search for natural biopolymers to replace traditional synthetic substances as emulsifiers. In this study, an oregano essential oil (OEO) nanoemulsion-embedding system was created using soybean protein isolate (SPI), tea saponin (TS), and soy lecithin (SL) as natural emulsifiers and then compared to a system created using a synthetic emulsifier (Tween 80). The results showed that 4% Tween 80, 1% SPI, 2% TS, and 4% SL were the optimal conditions. Subsequently, the influence of emulsifier type on nanoemulsion stability was evaluated. The results revealed that among all the nanoemulsions, the TS nanoemulsion exhibited excellent centrifugal stability, storage stability, and oxidative stability and maintained high stability and encapsulation efficiency, even under relatively extreme environmental conditions. The good stability of the TS nanoemulsion may be due to the strong electrostatic repulsion generated by TS molecules, which contain hydroxyl groups, sapogenins, and saccharides in their structures. Overall, the natural emulsifiers used in our study can form homogeneous nanoemulsions, but their effectiveness and stability differ considerably.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haotian Liu
- College of Food Science, Northeast Agricultural University, Harbin 150030, China; (S.Z.); (Z.W.); (X.W.); (B.K.); (Q.L.); (X.X.)
| |
Collapse
|
7
|
Lim XY, Li J, Yin HM, He M, Li L, Zhang T. Stabilization of Essential Oil: Polysaccharide-Based Drug Delivery System with Plant-like Structure Based on Biomimetic Concept. Polymers (Basel) 2023; 15:3338. [PMID: 37631395 PMCID: PMC10457915 DOI: 10.3390/polym15163338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/21/2023] [Accepted: 07/23/2023] [Indexed: 08/27/2023] Open
Abstract
Essential oils (EOs) have stability problems, including volatility, oxidation, photosensitivity, heat sensitivity, humidity sensitivity, pH sensitivity, and ion sensitivity. A drug delivery system is an effective way to stabilize EOs, especially due to the protective effect of polymeric drug carriers. Polysaccharides are frequently employed as drug carrier materials because they are highly safe, come in a variety of forms, and have plentiful sources. Interestingly, the EO drug delivery system is based on the biomimetic concept since it corresponds to the structure of plant tissue. In this paper, we associate the biomimetic plant-like structures of the EO drug delivery system with the natural forms of EO in plant tissues, and summarize the characteristics of polysaccharide-based drug carriers for EO protection. Thus, we highlight the research progress on polysaccharides and their modified materials, including gum arabic, starch, cellulose, chitosan, sodium alginate, pectin, and pullulan, and their use as biomimetic drug carriers for EO preparations due to their abilities and potential for EO protection.
Collapse
Affiliation(s)
- Xue-Yee Lim
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Jing Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| | - Hong-Mei Yin
- Jiangsu Kanion Pharmaceuticals Co., Ltd., Lianyungang 222001, China;
| | - Mu He
- School of Acupuncture-Moxibustion and Tuina, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China;
| | - Ling Li
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Tong Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; (X.-Y.L.); (J.L.)
| |
Collapse
|