1
|
Zhuang Y, Meng S, Cheng F, Li H. Fabrication of advanced cellulose-based devices for solar desalination: A review. Int J Biol Macromol 2025; 310:143250. [PMID: 40250663 DOI: 10.1016/j.ijbiomac.2025.143250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 04/06/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Materials derived from cellulose have attracted considerable attention as affordable substrates for solar desalination, contributing to the solution of the worldwide water crisis. These substances allow for exact control of structural features and improve light absorption in photothermal processes, promoting specific interactions between light scattering and reflection within their porous structure. Moreover, cellulose can be readily transformed into nano- and microporous forms, which enhances water transportation due to its inherent three-dimensional properties. This review examines the design and utilization of cellulose-based solar evaporators for desalination purposes. With benefits such as biocompatibility, environmental friendliness, economic viability, renewable nature, sustainability, and versatility for diverse designs, cellulose-derived materials are set to play a vital role in addressing global water issues.
Collapse
Affiliation(s)
- Yan Zhuang
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China; College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Feng Cheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Hongbin Li
- College of Light Industry and Textile, Qiqihar University, Qiqihar 161006, China; Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, Qiqihar University, China.
| |
Collapse
|
2
|
Xiao M, Jiang R, Xu Z, Wang Q, Fu Y, Jiang S, Long Y, Zhu H. Floatable and magnetic MoS 2/NiFe 2O 4/chitosan nanocomposite integrated melamine sponges with hybrid photothermal and photocatalytic enhancement for pollutant removal. Int J Biol Macromol 2025; 291:138965. [PMID: 39706447 DOI: 10.1016/j.ijbiomac.2024.138965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFe2O4/chitosan integrated melamine sponges (m-MoS2/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS2 and NiFe2O4 as photocatalysts, and melamine sponge as support material. The m-MoS2/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface. The light absorbance of m-MoS2/CS@MS had dramatically increased by 55.77 % with the introduction of MoS2 and NiFe2O4 nanoparticles. The m-MoS2/CS@MS can effectively remove Congo red dye at pH = 2-10 under different coexisting inorganic salts (Cl-, SO42-) and water matrices (ultrapure water, tap water, Lake water, and mineral water). The m-MoS2/CS@MS had excellent photocatalytic degradation ability, reaching a degradation rate of 98.88 % under simulated solar light irradiation. Furthermore, the m-MoS2/CS@MS composite exhibited excellent stability, convenient magnetic recycling performance, reusability and its suitability for dye wastewater treatment under different conditions. This research provided a new insight into the practical application of sustainable and clean chitosan-based materials.
Collapse
Affiliation(s)
- Mei Xiao
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ru Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Zeen Xu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Yongqian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China
| | - Huayue Zhu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
3
|
Krasian T, Daranarong D, Punyodom W, Manokruang K, Somsunan R, Jantrawut P, Chaiwarit T, Panraksa P, Jantanasakulwong K, Rachtanapun P, Worajittiphon P. Electrospun composite membranes of ethyl cellulose and MXene (Ti 3C 2T x): Biocompatible platforms for enhanced drug delivery and antibacterial wound healing. Int J Biol Macromol 2025; 287:138596. [PMID: 39662568 DOI: 10.1016/j.ijbiomac.2024.138596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 12/02/2024] [Accepted: 12/07/2024] [Indexed: 12/13/2024]
Abstract
Ethyl cellulose (EC), a degradable cellulose derivative, served as a primary component in membranes fabricated by electrospinning for in vitro drug delivery applications. An effective strategy to enhance drug release was incorporating high-surface-area nanomaterials into polymeric drug carriers, which facilitated drug attachment to both the polymer matrix and additive surfaces, promoting release. MXene (Ti3C2Tx) demonstrated promising potential in improving tensile mechanical properties, antibacterial activity, and curcumin (Cur) release performance of EC membrane. Compared to Cur-loaded EC/MXene membranes, the toughness of Cur-loaded EC-based carriers significantly increased by 53.58 %, reaching 3.821 kJ/m3. This composite membrane exhibited exceptional antibacterial efficacy, notably reducing Staphylococcus aureus colonies by 52.4 × 107 CFU/mL after 168 h, through the dilution spread plate method. Using MTT assay, the composite membrane demonstrated biocompatibility, as evidenced by >70 % viability of mouse fibroblast L929 cells with observable cell attachment after 168 h. Importantly, the EC/MXene membrane achieved a Cur release amount of 69.82 % compared to 7.11 % from Cur-loaded EC membranes within 168 h, representing a 62.71 % enhancement in Cur release. The EC/MXene composite membrane is a promising drug delivery candidate, particularly for Cur, by utilizing the sustainability of EC as the primary drug carrier component.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Multidisciplinary Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Tanpong Chaiwarit
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pattaraporn Panraksa
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
4
|
Krasian T, Wangkawong K, Punyodom W, Manokruang K, Somsunan R, Jantrawut P, Rachtanapun P, Jantanasakulwong K, Punyamoonwongsa P, Srithep Y, Worajittiphon P. A MAX phase (Ti 3AlC 2) as a performance enhancer for poly(lactic acid) electrospun membranes in steam generation and solar desalination. Int J Biol Macromol 2024; 270:132380. [PMID: 38754656 DOI: 10.1016/j.ijbiomac.2024.132380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/07/2024] [Accepted: 05/12/2024] [Indexed: 05/18/2024]
Abstract
Clean water and sanitation issues motivate researchers to develop water evaporators for freshwater generation. The composite membrane evaporator was electrospun herein based on poly(lactic acid) (PLA) and Ti3AlC2 MAX phase as a property enhancer. As a precursor for the MXenes synthesis, the MAX phase has never been explored with PLA for water evaporator potential. Alternative use of the MAX phase can reduce the production cost arising from chemical synthesis. This work explored the potential of the MAX phase as an additive to enhance PLA membrane performance for steam generation and desalination applications. Under the infrared irradiation (∼1.0 kW/m2), the mechanically-improved PLA/MAX phase membrane showed an enhanced water evaporation rate of 1.70 kg/m2 h (93.93 % efficiency), with an approximately 52 % rate increment relative to the PLA membrane. Based on the artificial seawater (3.5 % w/w), the membrane exhibited an evaporation rate of 1.60 kg/m2 h (87.57 % efficiency). The membrane showed self-floating ability at the air-water interface, excellent thermal stability over the entire operating temperatures, and reusability after repeated cycles. Moreover, the generated freshwater contained exceptionally low cations concentrations, as low as those in potable water. The developed composite membrane also had proved its potential for solar desalination in the water generation field.
Collapse
Affiliation(s)
- Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kanlayawat Wangkawong
- Department of Basic Science and Physical Education, Faculty of Science at Sriracha, Kasetsart University Sriracha Campus, Chonburi 20230, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kiattikhun Manokruang
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Runglawan Somsunan
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pensak Jantrawut
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; Center of Excellence in Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | | | - Yottha Srithep
- Manufacturing and Materials Research Unit, Department of Manufacturing Engineering, Faculty of Engineering, Mahasarakham University, Mahasarakham 44150, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
5
|
Palmieri E, Cancelliere R, Maita F, Micheli L, Maiolo L. An ethyl cellulose novel biodegradable flexible substrate material for sustainable screen-printing. RSC Adv 2024; 14:18103-18108. [PMID: 38847004 PMCID: PMC11154189 DOI: 10.1039/d4ra02993c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/30/2024] [Indexed: 06/09/2024] Open
Abstract
We introduce an innovative solution to reduce plastic dependence in flexible electronics: a biodegradable, water-resistant, and flexible cellulose-based substrate for crafting electrochemical printed platforms. This sustainable material based on ethyl cellulose (EC) serves as an eco-friendly alternative to PET in screen printing, boasting superior water resistance compared to other biodegradable options. Our study evaluates the performance of carbon-based screen-printed electrodes (SPEs) fabricated on conventional PET, recycled PET (r-PET), and (EC)-based materials. Electrochemical characterization reveals that EC-SPEs exhibit comparable analytical performance to both P-SPEs and rP-SPEs, as evidenced by similar limits of detection (LOD), limits of quantification (LOQ), and reproducibility values for all the analytes tested (ferro-ferricyanide, hexaammineruthenium chloride, uric acid, and hydroquinone). This finding underscores the potential of our cellulose-based substrate to match the performance of conventional PET-based electrodes. Moreover, the scalability and low-energy requirements of our fabrication process highlight the potential of this material to revolutionize eco-conscious manufacturing. By offering a sustainable alternative without compromising performance, our cellulose-based substrate paves the way for greener practices in flexible electronics production.
Collapse
Affiliation(s)
- Elena Palmieri
- Istituto per la Microelettronica e i Microsistemi, Consiglio Nazionale delle Ricerche Via del Fosso del Cavaliere 100 Rome 00133 Italy
| | - Rocco Cancelliere
- Department of Chemical Science and Technologies, University of Rome Tor Vergata Via della Ricerca Scientifica 1 Rome 00133 Italy
| | - Francesco Maita
- Istituto per la Microelettronica e i Microsistemi, Consiglio Nazionale delle Ricerche Via del Fosso del Cavaliere 100 Rome 00133 Italy
| | - Laura Micheli
- Department of Chemical Science and Technologies, University of Rome Tor Vergata Via della Ricerca Scientifica 1 Rome 00133 Italy
| | - Luca Maiolo
- Istituto per la Microelettronica e i Microsistemi, Consiglio Nazionale delle Ricerche Via del Fosso del Cavaliere 100 Rome 00133 Italy
| |
Collapse
|
6
|
Song C, Jin Y. Distribution-according-to-work: Enhancing solar vapor generation of photothermal sponge by using cellulose-based water storage platform. Int J Biol Macromol 2023; 253:126830. [PMID: 37717868 DOI: 10.1016/j.ijbiomac.2023.126830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/26/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023]
Abstract
Interfacial solar vapor generation (ISVG) has shown extraordinary promise in achieving high-efficiency water purification. However, the rapid water supply often leads to excessive water in the solar absorber, resulting in undesired heat loss and a decrease in evaporation rate. To tackle this issue, we developed a bio-based solar evaporator comprising cellulose-based water retention resin (CRR) and straw-derived photothermal sponge. CRR serves as an effective water storage platform with a high binding capacity for water molecules, preventing water from entering the absorber and reducing the water evaporation enthalpy. The water management of CRR confines the solar-to-vapor conversion to the interface between CRR and the photothermal sponge, thereby eliminating the adverse effects of excess water. Additionally, the ISVG process operates based on the principle of Distribution-according-to-work, meaning that the quantity of generated vapor depends on the evolution of the sponge structure. Optimal sponge configuration enables evaporation rates of 2.28 and 1.53 kg/m2/h under solar irradiation of 1.0 and 0.5 kW/m2, respectively. Additionally, the obtained evaporator is capable of producing 7.1 kg/m2/day of freshwater in outdoor experiment. This report proposes a novel approach to designing an ISVG device that incorporates effective water management strategy for achieving high-efficiency water purification in real-world scenarios.
Collapse
Affiliation(s)
- Changyuan Song
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, PR China.
| | - Yin Jin
- Nanyang Vocational College of Agriculture, Nanyang 473000, PR China
| |
Collapse
|
7
|
Tunsound V, Krasian T, Daranarong D, Punyodom W, Jantanasakulwong K, Ross S, Tipduangta P, Rachtanapun P, Ross G, Jantrawut P, Amnuaypanich S, Worajittiphon P. Enhanced mechanical properties and biocompatibility of bacterial cellulose composite films with inclusion of 2D MoS 2 and helical carbon nanotubes for use as antimicrobial drug carriers. Int J Biol Macromol 2023; 253:126712. [PMID: 37673164 DOI: 10.1016/j.ijbiomac.2023.126712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/08/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Bacterial cellulose (BC) is a biomaterial being investigated for a range of applications. Herein, BC films derived from nata de coco pieces are reinforced by two-dimensional molybdenum disulfide (MoS2) and helical carbon nanotubes (HCNTs) to enhance their tensile mechanical properties, and the biocompatibility of the BC composite films is demonstrated. A simple preparation is presented using a kitchen blender to disperse and blend the BC fibers and additives in a common fabrication medium, followed by vacuum filtration. The mechanical properties of the BC/MoS2/HCNTs composite films are enhanced due to the synergistic effect of MoS2 and HCNTs embedded in the BC films. The MoS2/HCNTs binary additive (1 phr) is capable of increasing the strength and Young's modulus by 148 % and 333 %, respectively, relative to the BC films. The cell cytotoxicity of the BC/MoS2/HCNTs films was assessed using an MTT assay. The composite films are biocompatible with a cell viability of L929 fibroblast cells >70 %, coupled with observations of direct cell attachment on the films. The composite films also exhibited good performance in absorbing and releasing gentamicin antibiotics to inhibit the growth of Escherichia coli and Staphylococcus aureus. The BC/MoS2/HCNTs films are thus potential BC-based candidates as biocompatible robust antibiotic carriers.
Collapse
Affiliation(s)
- Vasuphat Tunsound
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tharnthip Krasian
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Donraporn Daranarong
- Science and Technology Research Institute, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Winita Punyodom
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Kittisak Jantanasakulwong
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Sukunya Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pratchaya Tipduangta
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Pornchai Rachtanapun
- Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand; Division of Packaging Technology, Faculty of Agro-Industry, Chiang Mai University, Chiang Mai 50100, Thailand; The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand
| | - Gareth Ross
- Center of Excellence in Biomaterials, Faculty of Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Pensak Jantrawut
- The Cluster of Agro Bio-Circular-Green Industry (Agro BCG), Chiang Mai University, Chiang Mai 50100, Thailand; Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Sittipong Amnuaypanich
- Department of Chemistry and the Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Patnarin Worajittiphon
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence for Innovation in Chemistry (PERCH-CIC), Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|