1
|
Yuan BQ, Yu TH, Chen SC, Zhang ZQ, Guo ZK, Huang GX, Xiao JH, Huang DW. Physical and chemical characterization of chitin and chitosan extracted under different treatments from black soldier fly. Int J Biol Macromol 2024; 279:135228. [PMID: 39233158 DOI: 10.1016/j.ijbiomac.2024.135228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/21/2024] [Accepted: 08/29/2024] [Indexed: 09/06/2024]
Abstract
The shell of Hermetia illucens L. contains considerable amounts of chitin, which has various biological activities. So far, few studies have focused on chitin of Hermetia illucens L. as a source of chitosan and oligosaccharides. There is great potential for utilizing Hermetia illucens L. chitin to produce chitosan films in biomaterials. We studied different extraction conditions for chitin and extracted it from black soldier fly (BSF) (Hermetia illucens L.). Three processing steps were adopted: (1) demineralization, (2) deproteinization, and (3) decolorization. The chemical components (moisture, ash, protein, fat, residual protein, and residual mineral contents) and physicochemical characteristics of the chitin and chitosan extracted under these three conditions were determined. In addition, Fourier transform infrared spectroscopy and X-ray diffraction were used to analyze the extracted chitin and commercial samples, and the results showed that demineralization-deproteinization-decolorization treatments could achieve the highest chitin yield (7.18 ± 0.11 %), chitosan yield (64.22 ± 0.79 %), and the best purity (residual protein 0.56 ± 0.01 % and residual ash 0.58 ± 0.04 %), making it the best treatment method. Using this method, the residues produced from farmed BSF can be recycled and used as a new source of chitin.
Collapse
Affiliation(s)
- Bin-Qiao Yuan
- Nankai University, School of Life Sciences, Tianjin 300000, China.
| | - Ting-Hao Yu
- Nankai University, School of Life Sciences, Tianjin 300000, China
| | - Si-Cong Chen
- Nankai University, School of Life Sciences, Tianjin 300000, China
| | - Zong-Qi Zhang
- Nankai University, School of Life Sciences, Tianjin 300000, China
| | - Zhi-Kun Guo
- Nankai University, School of Life Sciences, Tianjin 300000, China
| | - Guo-Xin Huang
- Nankai University, School of Life Sciences, Tianjin 300000, China
| | - Jin-Hua Xiao
- Nankai University, School of Life Sciences, Tianjin 300000, China.
| | - Da-Wei Huang
- Nankai University, School of Life Sciences, Tianjin 300000, China.
| |
Collapse
|
2
|
Javaid MA, Alanazi YM, Li DQ, Gong Y, El-Harbawi M, Ahmad S, Tahir U, Ullah I, Hussain MT, Iqbal H. Synthesis and optimization of molecular weight of chitosan and carboxymethyl cellulose based polyurethanes. Int J Biol Macromol 2024:135709. [PMID: 39362810 DOI: 10.1016/j.ijbiomac.2024.135709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024]
Abstract
For the first time in this research, using a mixture design approach, polyurethanes (PUs) based on chitosan (CSN) and carboxymethyl cellulose (CMC) were synthesized to develop a high molecular weight polymer. In the synthesis process, a reaction between isophorone diisocyanate (IPDI) and hydroxyl-terminated polybutadiene was carried out to synthesize a prepolymer containing free NCO groups at the corners. This prepolymer was further reacted with changing moles ratio of CSN and CMC following the principles of statistical mixture design. The structural confirmation of the developed PUs was carried out through spectroscopic techniques (FTIR and NMR). The molecular weights of the PU specimens were characterized using gel permeation chromatography. The findings demonstrated that the interaction between CMC and CSN led to a notable increase in the molecular weights of the samples, supported by a significant p-value of 0.006. Additionally, the analysis of variance (ANOVA) disclosed that the employed mixture design and the resulting interaction model effectively account for 98 % of the total variation observed in the molecular weights. The sample labeled as PUS-3 (CMC0.50:CSN0.50) emerged as the most significant formulation, exhibiting a noteworthy 27.9 % improvement in the polymer molecular weight compared to the base sample, denoted as PUS-1 (CMC1.00:CSN0.00).
Collapse
Affiliation(s)
- Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan
| | - Yousef M Alanazi
- Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, PR China
| | - Yumei Gong
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, PR China
| | - Mohanad El-Harbawi
- Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Saliha Ahmad
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan
| | - Usama Tahir
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan
| | - Inam Ullah
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan.
| | - Hina Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad, -37610, Pakistan
| |
Collapse
|
3
|
Sun J, Guo J, Guan F, Zhang X, Li M, Ji X, Zhang Y, Li Z. Design, application, and recycling of zinc alginate/guar gum hydrogel-based fibers. Int J Biol Macromol 2024; 277:134467. [PMID: 39214829 DOI: 10.1016/j.ijbiomac.2024.134467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/14/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Extreme cold events are quite common, highlighting the urgent need for flexible wearable electronic devices capable of diagnosing human health in low-temperature environments. Using a wet spinning strategy, we successfully developed sodium zinc alginate/guar gum(SZA/GG) hydrogel fibers with excellent environmental resistance, antimicrobial properties, and electrical conductivity. Building on this, we developed a flexible wearable sensing device that operates stably at low temperatures and exhibits a sensitivity of 0.585 within the range of -20 °C to -40 °C, demonstrating excellent response performance. When evaluating the physical state of outdoor athletes, the amplitude and fluctuation range of electrical resistance provide valuable information about the monitored environment and the risk of frostbite for the individual. However, like any device, it eventually reaches its usage limit. To address the issue of recycling hydrogel fiber waste, we propose recycling and carbonizing the discarded devices to use as a biomass carbon source for fabricating button-type supercapacitors. After 10,000 charge-discharge cycles, the capacitance retention rate reached 92.53 %, demonstrating the potential of these supercapacitors and offering a new approach to reducing resource waste.
Collapse
Affiliation(s)
- Jianbin Sun
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China.
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Xin Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Minghan Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Xinbin Ji
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Yihang Zhang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| | - Zheng Li
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China; Liaoning Engineering Technology Research Center of Function Fiber and Its Composites, Dalian Polytechnic University, Dalian 116034, China
| |
Collapse
|
4
|
Usman A, Hussain MT, Akram N, Zuber M, Sultana S, Aftab W, Zia KM, Maqbool M, Alanazi YM, Nazir A, Javaid MA. Modulating alginate-polyurethane elastomer properties: Influence of NCO/OH ratio with aliphatic diisocyanate. Int J Biol Macromol 2024; 278:134657. [PMID: 39147346 DOI: 10.1016/j.ijbiomac.2024.134657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/30/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
This research addresses the need for enhanced biomaterials by investigating the influence of the NCO/OH ratio on sodium alginate-based polyurethane elastomers(Al-PUEs), offering novel insights into their structural, thermal, mechanical and swelling behavior. Al-PUEs were prepared by blending the chain extenders with key ingredients in a specific molar ratio using aliphatic HMDI and HTPB monomers. The chemical linkages, crystalline behavior, homogeneity, and surface morphology of PUEs were evaluated by FT-IR, XRD, SEM, and EDX analysis. Thermo-mechanical studies were performed using TGA, DSC and tensile testing. Swelling behavior and absorption analysis were analyzed in DMSO and water. The analysis indicated that the hydrophilicity and swelling behavior of the prepared PUEs were affected by the addition of sodium alginate content. The results exhibit the tailor-made network structure of Al-PUEs, resulting in better thermal stability, elasticity of materials via stress-strain behavior and marvelous characteristic features than traditional high-tech yields. Furthermore, the resulting Al-PUEs are potential candidates for biomedical implants.
Collapse
Affiliation(s)
- Ali Usman
- Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing 100871, PR China; Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Mohammad Zuber
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sitwat Sultana
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Waseem Aftab
- Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Muhammad Maqbool
- Birmingham Centre for Energy Storage, School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Yousef M Alanazi
- Department of Chemical Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahsan Nazir
- Department of Textile Processing, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| |
Collapse
|
5
|
Ran Q, Zhang D, Jiang W, Zhang H, Cheng W, Li H, Liu J, Jiang Z. How carbohydrate-binding module affects the catalytic properties of endoglucanase. Int J Biol Macromol 2024; 278:134653. [PMID: 39128731 DOI: 10.1016/j.ijbiomac.2024.134653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/15/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The important role of Carbohydrate-binding module (CBM) in the cellulases catalytic activity has been widely studied. CBM3 showed highest affinity for cellulose substrate with 84.69 % adsorption rate among CBM1, CBM2, CBM3, and CBM4 in this study. How CBM affect the catalytic properties of GH5 endoglucanase III from Trichoderma viride (TvEG3) was systematically explored from two perspectives: the deletion of its own CBM(TvEG3dc) and the replacement of high substrate affinity CBM3 (TvEG3dcCBM3). Compared with TvEG3, TvEG3dc lost its binding ability on Avicel and filter paper, but its catalytic activity did not change significantly. The binding ability and catalytic activity of TvEG3dcCBM3 to Avicel increased 348.3 % and 372.51 % than that of TvEG3, respectively. The binding ability and catalytic activity of TvEG3dcCBM3 to filter paper decreased 51.7 % and 33.33 % than that of TvEG3, respectively. Further structural analysis of TvEG3, TvEG3dc, and TvEG3dcCBM3 revealed no changes in the positions and secondary structures of the key amino acids. These results demonstrated that its own CBM1 of TvEG3 did not affect its catalytic activity center, so it had no effect on its catalytic activity. But CBM3 changed the adsorption affinity for different substrates, which resulted in a change in the catalytic activity of the substrate.
Collapse
Affiliation(s)
- Qiuping Ran
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China; College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, PR China
| | - Di Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wenping Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huimin Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Wanli Cheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Huanan Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Jiashu Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China
| | - Zhengbing Jiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Science, Hubei University, Wuhan 430062, PR China.
| |
Collapse
|
6
|
Peng D, Deng D, Lv J, Zhang W, Tian H, Zhang X, Wu M, Zhao Y. A novel macroporous carboxymethyl chitosan/sodium alginate sponge dressing capable of rapid hemostasis and drug delivery. Int J Biol Macromol 2024; 278:134943. [PMID: 39173799 DOI: 10.1016/j.ijbiomac.2024.134943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024]
Abstract
Carboxymethyl chitosan (CMCS) and sodium alginate (SA), which are excellent polysaccharide-based hemostatic agents, are capable of forming polyelectrolyte complexes (PEC) through electrostatic interactions. However, CMCS/SA PEC sponges prepared by the conventional sol-gel process exhibited slow liquid absorption rate and poor mechanical properties post-swelling. In this work, a novel strategy involving freeze casting followed by acetic acid vapor treatment to induce electrostatic interactions was developed to fabricate novel PEC sponges with varying CMCS/SA mass ratios. Compared to sol-gel process sponge, the novel sponge exhibited a higher density of electrostatic interactions, resulting in denser pore walls that resist re-gelation and swelling according to FTIR, XRD, and SEM analyses. Additionally, the liquid absorption kinetics, as well as compression and tension tests, demonstrated that the novel sponge had significantly improved rapid blood absorption capacity and mechanical properties. Furthermore, in vitro coagulation and drug release studies showed that the novel sponge had a lower blood clotting index and clotting time, along with a slower drug release rate after loading with berberine hydrochloride, showcasing its potential as a rapid hemostatic dressing with controlled drug release capabilities.
Collapse
Affiliation(s)
- Deyi Peng
- College of Sciences, Northeastern University, Shenyang 110819, China; Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Dafeng Deng
- College of Sciences, Northeastern University, Shenyang 110819, China; Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Jianhua Lv
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Wenchang Zhang
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China
| | - Huaqin Tian
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong 528000, China.
| | - Xia Zhang
- College of Sciences, Northeastern University, Shenyang 110819, China.
| | - Mi Wu
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China.
| | - Yan Zhao
- Jihua Institute of Biomedical Engineering and Technology, Jihua Laboratory, Foshan 528200, China.
| |
Collapse
|
7
|
Tanveer Z, Ashiq A, Javaid MA, Tanveer B, Cheema SA, Manzoor S, Alvi U, Sabir N, Nasir N, Iqbal H. Transformative enhancement of cellulosic textile properties via metallic oxide deposition: Comprehensive analysis of structural, optical, and thermoelectric traits. Int J Biol Macromol 2024; 276:133906. [PMID: 39019364 DOI: 10.1016/j.ijbiomac.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/06/2024] [Accepted: 07/14/2024] [Indexed: 07/19/2024]
Abstract
This novel research addresses the critical need for sustainable and efficient materials, aiming to enhance the optical and thermoelectric properties of Aluminum doped Zinc Oxide (Al-doped ZnO) on cellulose fabric for diverse applications. At first stage, Cellulosic fabric of Al-doped ZnO were experimentally studied in detail with respect to varying levels of annealing temperature. Structural analysis unveiled structural evolution in hexagonal crystal formations with a reduction in particle size up to 27.5 % on average, with increased temperature. Further, Raman spectroscopy revealed the doping effects on the vibrational modes of ZnO, potentially due to alterations in lattice structure. The ZnO optical modes are found as E2 (low) = 110 cm-1 with observed phonon frequency in the Raman spectra of ZnO at A1 (TO) = 364 cm-1. Fourier transform infrared spectroscopy (FTIR) revealed the presence of characteristic stretching of developed material. Furthermore, the optical characters revealed a decrement of 43.22 % in bandgap values with increasing annealing temperature. The analysis of thermoelectric attributes documented that the prominent sample annealed at 300°C exhibited the maximum Seebeck coefficient and power factor of 2.1 × 10-3 μV/oC and 5.8 × 10-21 Wm-1 K-2, respectively. At second stage the optical characteristics of experimentally optimized sample were rigorously studied through the application of Material Studio software, while varying the doping ratio.
Collapse
Affiliation(s)
- Zaighum Tanveer
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Aiza Ashiq
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan; Chromohphores, Dyes and Chemicals, National Textile University, Faisalabad-37610, Pakistan.
| | - Bilal Tanveer
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Salman Arif Cheema
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Sadia Manzoor
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Umair Alvi
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| | - Nadeem Sabir
- Department of Physics, Government College University, Faisalabad 38000, Pakistan
| | - Nadeem Nasir
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan.
| | - Hina Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad 37610, Pakistan
| |
Collapse
|
8
|
Lin J, Wen P, Ying W, Yu J, Zhang J. Comparison of lactic and propionic acid hydrolysis for production of xylo-oligosaccharides and ethanol from polysaccharides in Toona sinensis branch. Int J Biol Macromol 2024; 270:132339. [PMID: 38754663 DOI: 10.1016/j.ijbiomac.2024.132339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/29/2024] [Accepted: 05/11/2024] [Indexed: 05/18/2024]
Abstract
Xylan-type hemicellulose hydrolysis by an organic acid solution for the production of xylo-oligosaccharides (XOS) is efficient and eco-friendly, but the effects of different organic acids on XOS production from Toona sinensis branch (TB) biomass is limited. In this work, under the conditions of 170 °C for 60 min, 33.1 % and 38.7 % XOS yields were obtained from polysaccharides present in TB by 2 % lactic acid (LA) and 6 % propionic acid (PA), respectively. Then 77 % of the lignin was removed by hydrogen peroxide-acetic acid pretreatment system, and 39.5 % and 44.7 % XOS yield were obtained from polysaccharides in delignification TB by 2 % LA and 6 % PA, respectively. It was found that PA hydrolysis, especially from delignified TB, resulted in higher XOS yield and purity compared to LA hydrolysis. Moreover, the content of byproducts (xylose, hydroxymethyl-furfural and furfural) in PA hydrolysate was lower. Following the hydrolysis process, the simultaneous saccharification and fermentation of the TB solid residue achieved an ethanol yield of 71.5 %. This work proposed an integrated process to preferentially convert the TB hemicellulose into valuable XOS and then convert the cellulose into ethanol. This process had the advantages of eliminating the need for isolation and purification of xylan, and the potential to obtain multiple products from the same raw material.
Collapse
Affiliation(s)
- Jiayi Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Peiyao Wen
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Juan Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
9
|
Iqbal A, Javaid MA, Hussain MT, Raza ZA. Development of lactic acid based chain extender and soybean oil-derived polyurethanes for ecofriendly sustained drug delivery systems. Int J Biol Macromol 2024; 265:130717. [PMID: 38479673 DOI: 10.1016/j.ijbiomac.2024.130717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/02/2024] [Accepted: 03/06/2024] [Indexed: 03/23/2024]
Abstract
In the present study, a range of sustainable, biocompatible and biodegradable polyurethanes (PU-1 to PU-4) were synthesized using different combinations of biobased polyol (obtained through the epoxidation of soybean oil, followed by ring opening with ethanol) and polyethylene glycol (PEG) and isophorone diisocyanate. The sustainable chain extender used in this study was synthesized by the esterification of lactic acid with ethylene glycol (EG). The synthesized PU samples were characterized through scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Wetting ability and thermal degradation analysis (TGA) of the samples were also studied. Subsequently, these PUs were examined as potential drug delivery systems using Gabapentin as a model drug, which was loaded in the polymer matrix using the solvent evaporation method. The drug release studies were carried out in 0.06 N HCl as a release medium according to the method outlined in the United States Pharmacopeia. The maximum drug release was observed for sample PU-P1, which was found to be 53.0 % after 6 h. Moreover, a comparison of different PU samples revealed a trend wherein the values of drug release were decreased with an increase in the PEG content.
Collapse
Affiliation(s)
- Amer Iqbal
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Asif Javaid
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| | - Muhammad Tahir Hussain
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan.
| | - Zulfiqar Ali Raza
- Department of Applied Sciences, National Textile University, Faisalabad-37610, Pakistan
| |
Collapse
|
10
|
Zhang Y, Li DQ, Yang CX, Xiong ZW, Tohti M, Zhang YQ, Chen HJ, Li J. Polymerization strategy for cellulose nanocrystals-based photonic crystal films with water resisting property. Int J Biol Macromol 2024; 265:130793. [PMID: 38503368 DOI: 10.1016/j.ijbiomac.2024.130793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/26/2024] [Accepted: 03/09/2024] [Indexed: 03/21/2024]
Abstract
Cellulose nanocrystals (CNCs) can form a liquid crystal film with a chiral nematic structure by evaporative-induced self-assembly (EISA). It has attracted much attention as a new class of photonic liquid crystal material because of its intrinsic, unique structural characteristics, and excellent optical properties. However, the CNCs-based photonic crystal films are generally prepared via the physical crosslinking strategy, which present water sensitivity. Here, we developed CNCs-g-PAM photonic crystal film by combining free radical polymerization and EISA. FT-IR, SEM, POM, XRD, TG-DTG, and UV-Vis techniques were employed to characterize the physicochemical properties and microstructure of the as-prepared films. The CNCs-g-PAM films showed a better thermo-stability than CNCs-based film. Also, the mechanical properties were significantly improved, viz., the elongation at break was 9.4 %, and tensile strength reached 18.5 Mpa, which was a much better enhancement than CNCs-based film. More importantly, the CNCs-g-PAM films can resist water dissolution for more than 24 h, which was impossible for the CNCs-based film. The present study provided a promising strategy to prepare CNCs-based photonic crystal film with high flexibility, water resistance, and optical properties for applications such as decoration, light management, and anti-counterfeiting.
Collapse
Affiliation(s)
- Yue Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - De-Qiang Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China.
| | - Cai-Xia Yang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Zi-Wei Xiong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Maryamgul Tohti
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Yu-Qing Zhang
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Hong-Jie Chen
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China
| | - Jun Li
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumchi 830052, China.
| |
Collapse
|
11
|
Rashid KT, Akram N, Zia KM, Usman M, Munawar T. Novel enrichment in biobased monomers of waterborne polyurethane dispersions as a textile finishing agent for poly-cotton fabrics. Int J Biol Macromol 2024; 257:128674. [PMID: 38070799 DOI: 10.1016/j.ijbiomac.2023.128674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
This study introduces a novel biobased textile finishing agent synthesized as waterborne polyurethane dispersions (FCCB-WPUDs), utilizing bio-based monomers like fenugreek oil-based polyol, corn oil-derived emulsifier, and cellulose acetate butyrate (CAB) chain extender. The FCCB-WPUDs were prepared through the prepolymer polymerization method and characterized using FTIR, TGA, DMA, SEM, DLS, and swelling tests. Their application to poly-cotton fabrics significantly improved various fabric properties. The enhancements included increased washing fastness (from 3/4 ± 0.01 to 4 ± 0.02 for dyed and 3 ± 0.02 to 4/5 ± 0.02 for printed fabrics), rubbing fastness (from 3 ± 0.02 to 4/5 ± 0.03 for dyed and 4 ± 0.02 to 4/5 ± 0.03 for printed fabrics), and perspiration fastness (from 3 ± 0.02 to 4 ± 0.03 for acidic dyed and 3/4 ± 0.02 to 4 ± 0.02 for alkaline printed fabrics). Additionally, tear strengths improved significantly (from 13.66 ± 0.04 N/m to 20.53 ± 0.06 N/m for warp dyed and 10.85 ± 0.06 N/m to 15.14 ± 0.06 N/m for warp printed fabrics), along with tensile strengths (from 327 ± 5.38 N/m to 361 ± 3.26 N/m for warp dyed and 357 ± 5.34 N/m to 449 ± 4.90 N/m for warp printed fabrics). These improvements correlated with increasing CAB moles as a chain extender. This research presents a cost-effective and simple biobased method for textile finishing, offering an alternative to petrochemical-based monomers in conventional WPUD preparation.
Collapse
Affiliation(s)
- Khawaja Taimoor Rashid
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Nadia Akram
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan.
| | - Khalid Mahmood Zia
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Usman
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Tanzeel Munawar
- Department of Chemistry, Government College University Faisalabad, Faisalabad 38000, Pakistan
| |
Collapse
|