1
|
AL-Wraikat M, Abubaker MA, Liu Y, Shen X, He Y, Li L, Liu Y. Microbial community and organic compounds composition analysis and the edible security of common buckwheat fermented via Kombucha consortium. FOOD CHEMISTRY. MOLECULAR SCIENCES 2025; 10:100247. [PMID: 40092371 PMCID: PMC11908547 DOI: 10.1016/j.fochms.2025.100247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/19/2025]
Abstract
This study investigates the microbial community and organic compound composition of common buckwheat fermented with a traditional Kombucha consortium. Twenty-five fungal species, nine bacterial species, five organic acids, and six phenolic compounds were identified in Common Buckwheat Kombucha (CBK). The fermentation process enriched CBK with bioactive compounds that enhanced its functional properties, including antioxidant activity and antibacterial efficacy, inhibiting pathogenic bacteria by over 81.1 %. Further research is encouraged to explore similar applications with other cereal crops.
Collapse
Affiliation(s)
- Majida AL-Wraikat
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Mohamed Aamer Abubaker
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yingli Liu
- Hospital of Shaanxi Normal University, Shaanxi Normal University, Xi'an, 710119, China
| | - Xiping Shen
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Yu He
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - Linqiang Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| | - YongFeng Liu
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
2
|
Mansour M, Khoder RM, Xiang L, Zhang LL, Taha A, Yahya A, Wu T, Barakat H, Khalifa I, Xiaoyun X. Effect of ultrasonic degradation on the physicochemical property, structure characterization, and bioactivity of Houttuynia cordata polysaccharide. ULTRASONICS SONOCHEMISTRY 2025; 116:107331. [PMID: 40179599 DOI: 10.1016/j.ultsonch.2025.107331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/08/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025]
Abstract
This study aimed to evaluate the influence of ultrasonic degradation on Houttuynia cordata polysaccharide (HCP) physicochemical properties, structure characterization, and bioactivities. The results indicated that the ultrasonic degradation could significantly decrease HCP's molecular weight (MW). Total polysaccharide, uronic acid content, solubility, and thermal stability of HCP increased gradually with the increase in ultrasonication power. Fourier transform infrared (FTIR) and Nuclear magnetic resonance spectroscopy (NMR) spectra proved that the primary structure of HCP had not been changed via ultrasonic degradation. Antioxidant and hypoglycemic activity results confirmed that ultrasonication enhanced the ability to scavenge free radicals (DPPH, ABTS, and OH) and improved α-glycosidase and α-amylase inhibition with the increase of ultrasonic power, which was increased in order HCP
Collapse
Affiliation(s)
- Mohammed Mansour
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China; Desert Research Center (DRC), Matariya, Cairo, Egypt
| | - Ramy M Khoder
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Lin Xiang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lan Lan Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Taha
- Department of Food Science, Faculty of Agricultural, (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Alsadig Yahya
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ting Wu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hassan Barakat
- Department of Food Science and Human Nutrition, College of Agriculture and Food, Qassim University, Buraydah 51452, Saudi Arabia
| | - Ibrahim Khalifa
- Food Technology Department, Faculty of Agriculture, Benha University, Moshtohor, Toukh 13736, Egypt
| | - Xu Xiaoyun
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Environment Correlative Food Science (Huazhong Agricultural University), Ministry of Education, China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
3
|
Deng Y, Lei J, Luo X, Wang SP, Tan HM, Zhang JY, Wu DT. Prospects of Ganoderma polysaccharides: Structural features, structure-function relationships, and quality evaluation. Int J Biol Macromol 2025; 309:142836. [PMID: 40187470 DOI: 10.1016/j.ijbiomac.2025.142836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 03/12/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Polysaccharides, the primary bioactive compounds found in Ganoderma, are responsible for a multitude of biological activities. The bioactivity of Ganoderma polysaccharides (GPs) closely correlates to their physicochemical properties. Consequently, the accurate characterization and quantification of GPs are essential for the quality control of these compounds. Regrettably, the complex structural features of GPs have limited research on the relationships between their structures and bioactivities. In addition, a lack of appropriate quality assessment methods has impeded the regulation and application of GPs and related products. Therefore, it is essential to conduct extensive studies to develop reliable for quality control methods based on their pharmacological activities. This review aims to comprehensively and systematically outline the structural features, structure-activity relationships and quality control methods of GPs, thereby supporting their potential value in pharmaceuticals and functional foods. The insights presented in this review will significantly contribute to the research and potential applications of GPs.
Collapse
Affiliation(s)
- Yong Deng
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Jing Lei
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China
| | - Xiao Luo
- Chengdu Institute for Drug Control, NMPA Key Laboratory for Quality Monitoring and Evaluation of Traditional Chinese Medicine, Chengdu 610045, Sichuan, China
| | - Sheng-Peng Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao
| | - Huai-Mei Tan
- Department of Pharmacy, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China
| | - Jian-Yong Zhang
- School of pharmacy, Zunyi Medical University, Zunyi 563000, China.
| | - Ding-Tao Wu
- Institute for Advanced Study, Chengdu University, Chengdu 610106, Sichuan, China.
| |
Collapse
|
4
|
Chen H, Yang P, Wu Z, Zhang C, Li X, Li Z, Wang Y, Zhan D, Zhu L, Jiang H, Liu Y. Multi-level fingerprint and immune activity evaluation of polysaccharides from Rhodiola rosea L. Int J Biol Macromol 2025; 299:140197. [PMID: 39848386 DOI: 10.1016/j.ijbiomac.2025.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/14/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
To establish the quality control method of Rhodiola rosea L., the multi-level fingerprinting profile was established. The quality evaluation of Rhodiola rosea L. was evaluated based on the following information: polysaccharide content in herbs (2.86-4.51 %), thirteen infrared absorption peaks (3391.25 cm-1, 2934.03 cm-1, 1747.47 cm-1, 1618.67 cm-1, 1445.12 cm-1, 1374.16 cm-1, 1357.16 cm-1, 1237.94 cm-1, 1102.37 cm-1, 1017.50 cm-1, 762.27 cm-1, 631.88 cm-1 and 528.77 cm-1), seven monosaccharides (Mannose, Rhamnose, Glucuronic acid, Glucose, Galactose, Xylose, Arabinose), and two molecular weight segments Mw1 (7.12 × 105-1.31 × 106 Da) and Mw2 (6.04 × 103-6.92 × 103 Da). The results of chemometric analysis found that the infrared absorption peaks of 762.27 cm-1, the monosaccharides of Man and Xyl, and the molecular weight of Mw1 were the key markers in differentiating the origin of Rhodiola rosea L. The spectrum-effect relationship showed that Rhodiola rosea L. polysaccharides (RRP) with a higher infrared absorption peak at 1618.67 cm-1, higher Xyl, and higher Mw1 displayed higher immune activity. In conclusion, this study determined the RRP content in herbs, established a polysaccharide-based quality control method for Rhodiola rosea L., and investigated the connection between fingerprints and in vitro immune activity. All of this study can provide more theoretical support for the authentication and quality control of Rhodiola rosea L.
Collapse
Affiliation(s)
- Hao Chen
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Pei Yang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zongyao Wu
- Tibetan University of Tibetan Medicine, Lhasa 850007, China
| | - Chuanxiang Zhang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Xinlong Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Zheng Li
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Yuzhou Wang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Dongxia Zhan
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Lihao Zhu
- Sishui Siheyuan Culture and Tourism Development Company, Ltd, Sishui 273200, China
| | - Haiqiang Jiang
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Yuhong Liu
- School of Pharmaceutical Sciences, Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| |
Collapse
|
5
|
Tan X, Chen P, Xiao L, Gong Z, Qin X, Nie J, Zhu H, Zhong S. Extraction, purification, structural characterization, and anti-inflammatory activity of a polysaccharide from Lespedeza formosa. Int J Biol Macromol 2025; 300:140154. [PMID: 39855506 DOI: 10.1016/j.ijbiomac.2025.140154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/20/2025] [Indexed: 01/27/2025]
Abstract
A new acidic polysaccharide was extracted from Lespedeza Formosa (LF) using microwave-assisted extraction. After a progressive purification, Lespedeza Formosa polysaccharide (LFP-1) with 96.14 % purity and moderate molecular weight was obtained. Subsequently, LFP-1's structural analysis and in vitro anti-inflammatory experiments were performed. LFP-1 is composed of nine monosaccharides, mainly including 39.7 % glucose, 29.1 % galactose, and 19.9 % arabinose, with three branched chains of its structure. The diverse monosaccharides and branched chains provided the essential conditions for the anti-inflammatory effects of LFP-1, which diminished the release of nitric oxide (NO) and reactive oxygen species (ROS). And they altered the release of internal inflammatory factors in lipopolysaccharide (LPS)-treated macrophages. LFP-1 exerted intracellularly anti-inflammatory effects through the nuclear factor kappa-B (NF-κB) signal pathway. The discovery of LFP-1 opens up a new possibility for natural anti-inflammatory medicine.
Collapse
Affiliation(s)
- Xiao Tan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Ping Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Liuyue Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zan Gong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xiangxiang Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jing Nie
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Hua Zhu
- Guangxi University of Chinese Medicine, Nanning 530200, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Hunan Provincial Key Laboratory of the Research and Development of Novel Pharmaceutical Preparations, the "Double-First Class" Application Characteristic Discipline of Hunan Province (Pharmaceutical Science), Changsha Medical University, Changsha 410219, China..
| |
Collapse
|
6
|
Tu L, Xing B, Ma S, Zou Z, Wang S, Feng J, Cheng M, Jin Y. A review on polysaccharide-based tumor targeted drug nanodelivery systems. Int J Biol Macromol 2025; 304:140820. [PMID: 39933669 DOI: 10.1016/j.ijbiomac.2025.140820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/04/2025] [Accepted: 02/07/2025] [Indexed: 02/13/2025]
Abstract
The tumor-targeted drug delivery system (TTDNS) uses nanocarriers to transport chemotherapeutic agents to target tumor cells or tissues precisely. This innovative approach considerably increases the effective concentration of these drugs at the tumor site, thereby enhancing their therapeutic efficacy. Many chemotherapeutic agents face challenges, such as low bioavailability, high cytotoxicity, and inadequate drug resistance. To address these obstacles, TTDNS comprising natural polysaccharides have gained increasing popularity in the field of nanotechnology owing to their ability to improve safety, bioavailability, and biocompatibility while reducing toxicity. In addition, it enhances permeability and allows for controlled drug delivery and release. This review focuses on the sources of natural polysaccharides and their direct and indirect mechanisms of anti-tumor activity. We also explored the preparation of various polysaccharide-based nanocarriers, including nanoparticles, nanoemulsions, nanohydrogels, nanoliposomes, nanocapsules, nanomicelles, nanocrystals, and nanofibers. Furthermore, this review delves into the versatile applications of polysaccharide-based nanocarriers, elucidating their capabilities for in vivo targeting, controlled release, and responsiveness to endogenous and exogenous stimuli, such as pH, reactive oxygen species, glutathione, light, ultrasound, and magnetic fields. This sophisticated design substantially enhances the chemotherapeutic efficacy of the encapsulated drugs at tumor sites and provides a basis for preclinical and clinical research. However, the in vivo stability, drug loading, and permeability of these preparations into tumor tissues still need to be improved. Most of the currently developed biomarker-sensitive polysaccharide nanocarriers are still in the laboratory stage, more innovative delivery mechanisms and clinical studies are needed to develop commercial nanocarriers for medical use.
Collapse
Affiliation(s)
- Liangxing Tu
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Banghuai Xing
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Shufei Ma
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Zijian Zou
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Siying Wang
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China
| | - Jianfang Feng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China; Guangxi University of Chinese Medicine, Nanning 530200, PR China.
| | - Meng Cheng
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| | - Yi Jin
- Jiangxi University of Chinese Medicine, Nanchang 330006, PR China.
| |
Collapse
|
7
|
Zhang Y, Yang J, Ling Y, Liu Y, Chen K, Shen Y, Zhou Y, Luo B. Dynamic high-pressure microfluidization for the extraction and processing of polysaccharides: a focus on some foods and by-products. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2025; 105:3170-3183. [PMID: 39838747 DOI: 10.1002/jsfa.14146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/31/2024] [Accepted: 01/13/2025] [Indexed: 01/23/2025]
Abstract
Dynamic high-pressure microfluidization (DHPM) is an emerging treatment technology and has been widely used for the recovery of natural polysaccharides. The aim of the present contribution is to discuss the DHPM-assisted extraction and processing of polysaccharides from some foods and by-products by reviewing the instrument and working principle, procedures, key parameters, and effects of DHPM on the structures, food properties, and bioactivities of resulting polysaccharides. It was found that a DHPM instrument with Z-type chamber is preferable for extracting polysaccharides, and a DHPM with Y-type chamber is applicable for processing polysaccharides. The solid-to-liquid ratio (or concentration), pressure, and number of passes are the key parameters influencing the outcome of DHPM extraction and processing. The DHPM under suitable conditions is conducive to boosting the extraction yields of polysaccharides, enriching the carbohydrates and uronic acids in polysaccharides, lowering the protein impurities, and transforming insoluble dietary fibers into soluble ones. In most cases, DHPM treatment improved the food properties of polysaccharides via decreasing viscosity, molecular weight, and particle size, as well as losing the surface morphology. More importantly, DHPM is a mild treatment technique that barely affects the chain backbones of polysaccharides. DHPM-assisted extraction and processing endowed polysaccharides with enhanced antioxidant, hypolipidemic, and hypoglycemic activities, exhibiting potential for the treatment of cardiovascular disease. In addition, DHPM-treated polysaccharides exerted certain potential in whitening cosmetics via inhibiting tyrosinase. In conclusion, DHPM is a mild, efficient, and green technology to recover and modify polysaccharides from natural resources, especially foods and by-products. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yang Zhang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Jingchun Yang
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yuchun Ling
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yaqi Liu
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Kun Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| | - Yingchao Shen
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Yuan Zhou
- Department of Orthopedics and Traumatology, Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, China
| | - Bing Luo
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, China
| |
Collapse
|
8
|
Liu X, Huang L, Zhang X, Xu X. Polysaccharides with antioxidant activity: Extraction, beneficial roles, biological mechanisms, structure-function relationships, and future perspectives: A review. Int J Biol Macromol 2025; 300:140221. [PMID: 39855511 DOI: 10.1016/j.ijbiomac.2025.140221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/27/2025]
Abstract
Polysaccharides are valuable macromolecules due to their multiple bioactivities, safety, and a wide range of sources. Recently, a series of polysaccharides with antioxidant activity have been intensively reported. In this review, the latest advances in polysaccharides with antioxidant activity have been reviewed, primarily based on the investigations of polysaccharides regarding advanced extraction methods, roles in oxidative stress-related diseases, intracellular signaling pathways associated with antioxidant responses, activating pathways in the gut, structure-function relationships, and methods to improve antioxidant activity. The summarized information highlighted that much work needs to be conducted, from laboratory to industry, to understand and fully utilize the antioxidant potential of polysaccharides. Finally, future perspectives, including scaling-up of advanced extraction methods, standardizing the protocols for assessing and screening polysaccharides, bridging gaps on the biological mechanisms underlying antioxidant activity, performing clinical trials, and elucidating structure-antioxidant relationships, have been addressed. The information present in this review will be helpful to the scientific community when studying on polysaccharides with antioxidant potential and provides research directions for a better understanding of the polysaccharides and promotes their successful applications in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Xiaofei Liu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Liufang Huang
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China
| | - Xuewu Zhang
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaofei Xu
- College of Food Science and Engineering, Guangdong Ocean University, Yangjiang 529500, China; Yangjiang Institute of Guangdong Ocean University, Yangjiang 529500, China.
| |
Collapse
|
9
|
Yan H, Fan CJ, Wang YJ, Liu ZL, Wang JQ, Nie SP. Structural characterization and in vitro fermentation of the polysaccharide from fruits of Gardenia jasminoides. Int J Biol Macromol 2025; 309:142678. [PMID: 40164267 DOI: 10.1016/j.ijbiomac.2025.142678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/06/2025] [Accepted: 03/28/2025] [Indexed: 04/02/2025]
Abstract
In the current, the polysaccharide (GFP-40) from fruits of Gardenia jasminoides was obtained by water extraction and ethanol precipitation, further to characterize the structure features by the high performance gel permeation chromatography (HPGPC), high performance anion exchange chromatography with pulsed amperometric detection (HPAEC-PAD), methylation combined with gas chromatography - mass spectrometry (GC-MS), and nuclear magnetic resonance spectroscopy (NMR). Subsequently, GFP-40 was enzymatically degraded into several fractions with different molecular weight, and further evaluated the prebiotic potentials by in vitro fecal fermentation. Results showed that GFP-40 had molecular weight of 253 kDa, mainly consisted of GalA (82.03 %). Structure analysis indicated that GFP-40 was the mainly high-methoxyl homogalacturonan (HG) pectin (79.61 %) with alternately linked 1,4-GalpA and 1,4-GalpA (OMe) as backbone. Additionally, GFP-40 and its degraded fractions (55.6 kDa, 14.2 kDa, 4.7 kDa and 2.0 kDa) showed no significant difference in monosaccharide composition. The OD600 of each group gradually increased during fermentation, while the pH value, neutral sugar, and uronic content decreased. After fermentation, degraded fractions with lower molecular weight (4.7 kDa and 2.0 kDa) significantly increased the production of short chain fatty acids (SCFAs). GFP-40 and its enzymatic degraded fractions significantly increased the relative abundance of probiotics (such as Firmicutes and Actinobacteriota) and decreased the relative abundance of pathogens (such as Proteobacteria). These findings indicated that molecular weight of polysaccharide was related to the probiotic effect, with lower molecular weight showed better activities, and polysaccharide from fruits of Gardenia jasminoides could be potentially used as a functional substance to improve human health.
Collapse
Affiliation(s)
- Hui Yan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Chun-Juan Fan
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Ya-Jie Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Zi-Liang Liu
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| | - Jun-Qiao Wang
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China.
| | - Shao-Ping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, Jiangxi Province 330047, China
| |
Collapse
|
10
|
da Silva EC, Paes de Brito L, Oliveira Silva FC, da Silva Santos D, Andrade Mendonça A, Bezerra RP, Galindo Soares PA, de Morais Junior MA, Figueiredo Porto AL, Holanda Cavalcanti MT. Exploiting the bacterial exopolysaccharide bioconversion using residual cheese whey as culture medium. Prep Biochem Biotechnol 2025:1-10. [PMID: 40116758 DOI: 10.1080/10826068.2025.2479829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
Cheese whey (CW) represents a potential substrate in biotechnological processes due to the presence of valuable nutrients in its composition. Therefore, CW is used as a low-cost substrate in fermentation for microbial growth and the synthesis of value-added compounds, while mitigating the environmental impact that this by-product can cause. The current study aimed to obtain exopolysaccharides (EPS) by fermenting lactic acid bacteria in CW followed by optimizing production using Response Surface Methodology (RSM) and evaluating the biological properties. Out of 64 isolates, Enterococcus sp. 133 V exhibited a high concentration with 5.58 mg/mL of EPS. With optimization using RSM, 21.74 mg/mL of EPS was obtained with temperature and fermentation time fixed at 42 °C and 22 h, respectively. The characterization of the new EPS revealed a hetero-polysaccharide consisting of galactose, glucose, mannose, arabinose, rhamnose and fucose, including proteins and uric acid in the structure. With a concentration of 2 mg/mL, the purified EPS showed good scavenging effects against DPPH (27%), ABTS (72%) and superoxide (43%), except for the hydroxyl radical (1.29%) which needs a high EPS concentration. These findings underscore the interest in using cheap residue as culture medium to produce biopolymers with potential for applications, particularly in the food and biotechnology sectors.
Collapse
|
11
|
Yang Y, Lai Z, Hu X, Zhang P, Zhang Y, Zheng Y, Ding L, Wang J, Li N, Wang Z, An L, Ding Y. Structural characterization and combined immunomodulatory activity of fermented Chinese yam polysaccharides with probiotics. Int J Biol Macromol 2025; 307:142290. [PMID: 40112990 DOI: 10.1016/j.ijbiomac.2025.142290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 03/08/2025] [Accepted: 03/18/2025] [Indexed: 03/22/2025]
Abstract
In this study, Lactobacillus plantarum M616 and Saccharomyces cerevisiae CICC 32883 were used in modifying Chinese yam polysaccharides (CYPs) through fermentation. The carbohydrate content of microbe-fermented CYP (CYP-LS) was 78.49 % ± 1.64 %, versus the 71.03 % ± 2.75 % carbon content of unfermented CYP (CYP-NF). However, CYP-LS had a lower protein content (6.01 % ± 0.08 %) than CYP-NF (8.24 % ± 0.19 %). The molar ratios among rhamnose, arabinose, galactose, glucose, and mannose were respectively 0.493:0.6695:0.9738:0.7655:12.4365 for CYP-NF and 0.2849:0.182:0.5684:1.4069:3.7227 for CYP-LS. Molecular weight and polydispersity decreased respectively from 124.774 kDa (CYP-NF) to 34.111 kDa (CYP-LS) to and from 6.58 (CYP-NF) to 5.176 (CYP-LS). Moreover, CYP-LS had better immunomodulatory activity than CYP-NF, regulating superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, tumor necrosis factor-α, interleukin-1β, interleukin-10, and transforming growth factor-β in a RAW 264.7 cell model. A combination of CYP-LS and probiotics (Lactobacillus helveticus HH-LPH17, Lactobacillus johnsonii LBJ 456® and Lactobacillus acidophilus HH-LA26) showed enhanced immune activity.
Collapse
Affiliation(s)
- Yahui Yang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Ziru Lai
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Xilei Hu
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Peiyao Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Yang Zhang
- School of International Education, Henan University of Technology, Zhengzhou 450001, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Li Ding
- H&H Bioengineering Co., Ltd, Zhengzhou 450100, China
| | - Jiaqi Wang
- H&H Bioengineering Co., Ltd, Zhengzhou 450100, China
| | - Na Li
- Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China.
| | - Lemei An
- Department of Rheumatology and Clinical Immunology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou 450003, China.
| | - Yi Ding
- H&H Bioengineering Co., Ltd, Zhengzhou 450100, China.
| |
Collapse
|
12
|
Liu X, Xing Y, Liu G, Bao D, Zhang Z, Bi H, Wang M. Physicochemical properties, biological activities, applications, and protective potential of the skeletal system of Eucommia ulmoides polysaccharides: a review. Front Pharmacol 2025; 16:1570095. [PMID: 40183083 PMCID: PMC11966412 DOI: 10.3389/fphar.2025.1570095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Eucommia ulmoides Oliv (E. ulmoides) is a widely distributed plant with economic value, nutritional value, edible value and even medicinal value. In recent years, E. ulmoides polysaccharides are considered to be one of the most important bioactive ingredients in E. ulmoides. Modern pharmacological studies show that the crude extract of E. ulmoides polysaccharides, their active monomer and ramifications have a wide range of pharmacological activities in vitro and in vivo experiments, which can be used to improve inflammation, regulate immunity, improve osteoporosis, and promote osseointegration, etc. Therefore, this review focuses on the induction and summary of the research at home and abroad in recent years, and summarizes the extraction and purification, modification methods, physicochemical properties, biological activities and potential mechanisms of E. ulmoides polysaccharides, providing a theoretical basis for the in-depth study of E. ulmoides polysaccharides and the development of related products.
Collapse
Affiliation(s)
- Xudong Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| | - Yan Xing
- Nursing Humanities Teaching and Research Office, Heilongjiang Nursing College, Harbin, China
| | - Guijun Liu
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| | - Dapeng Bao
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| | - Zhaojiong Zhang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| | - Haizheng Bi
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| | - Meng Wang
- Heilongjiang University of Chinese Medicine, Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Harbin, China
| |
Collapse
|
13
|
He S, Xue T, Geng R, Wang Q, Wang B, Wen L, Li M, Hu J, Yang J. Mapping the evolution of anti-diabetic polysaccharides research: Trends, collaborations, and emerging frontiers. Eur J Pharmacol 2025; 997:177479. [PMID: 40054717 DOI: 10.1016/j.ejphar.2025.177479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/04/2025] [Accepted: 03/05/2025] [Indexed: 03/12/2025]
Abstract
Diabetes Mellitus, characterized by insufficient insulin secretion, pancreatic beta cell damage, or insulin resistance, is the third most prevalent chronic metabolic disease worldwide. Polysaccharides, biocompatible natural macromolecules, have garnered significant attention for their potential in modulating diabetes through various mechanisms. Despite extensive studies, a comprehensive and impartial evaluation of anti-diabetic polysaccharides (ATDPs) research is still lacking. This study employs bibliometric and knowledge mapping techniques to analyze research trends and developments concerning ATDPs. A total of 3435 publications from 2001 to 2024 were examined, revealing a marked increase in publication volume and citation frequency, particularly since 2016. Network analysis indicates China as the leading contributor, with the highest number of publications and prominent institutions. The International Journal of Biological Macromolecules is identified as the most prolific journal in this field. Shaoping Nie stands out as a leading researcher with the highest citation frequency and h-index. Current research trends focus on the role of polysaccharides in regulating oxidative stress and inflammation, modulation of gut microbiota, and their structural characterization. Emerging studies investigate how these polysaccharides impact gut microbiota composition, enhance intestinal barrier functions, and modulate immune responses, representing cutting-edge areas in diabetes research. This research pioneers the use of bibliometric analysis to map ATDPs research trajectories, offering valuable insights into prevailing trends, emerging topics, and opportunities for future research and collaboration.
Collapse
Affiliation(s)
- Shengqi He
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Taotao Xue
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Ruoyu Geng
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Qianqian Wang
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China
| | - Baojuan Wang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Limei Wen
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China
| | - Mingjie Li
- People's Hospital of Shaya, Akesu, 842200, China
| | - Junping Hu
- College of Pharmacy, Xinjiang Medical University, Urumqi, 830017, China; Engineering Research Center of Xinjiang and Central Asian Medicine Resources, Ministry of Education, Urumqi, 830054, China.
| | - Jianhua Yang
- Department of Pharmacy, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, China; Xinjiang Key Laboratory of Clinical Drug Research, Urumqi, 830011, China.
| |
Collapse
|
14
|
Zhou W, He Y, Lv JM, Wang R, He H, Wu M, Zhang R, He J. Preparation technologies, structural characteristics and biological activities of polysaccharides from bee pollen: A review. Int J Biol Macromol 2025; 306:141545. [PMID: 40020838 DOI: 10.1016/j.ijbiomac.2025.141545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Bee pollen, a natural honeybee product, is hailed as a treasure trove of human nutrition. Among the nourishing substances of bee pollen, the constituents with a low molecular weight (such as phenolic acids and flavonoid glycosides) have been extensively studied in the past decades, whereas the polysaccharides with a relatively high molecular weight have received much less attention. To deepen our understanding of bee pollen polysaccharides, this review summarizes the published findings related to their preparation technologies, structural characteristics and biological activities. Among the preparation technologies, ultrasonic-assisted extraction is currently the most effective technology for the recovery of polysaccharides from bee pollen, because ultrasound can crack the pollen exine into fragments and facilitate the release of polysaccharides present in the pollen intine. The preliminary structures, including the molecular weight and monosaccharide composition, of bee pollen polysaccharides have been widely reported, but their fine structures have not fully elucidated. Moreover, bee pollen polysaccharides have antioxidant, immunomodulatory, and antitumor activities, exhibiting potential application in functional foods. Furthermore, bee pollen polysaccharides can modulate the composition of gut microbiota and promote the production of short-chain fatty acids. It is expected that this review can provide inspiration for the development and utilization of bee pollen polysaccharides.
Collapse
Affiliation(s)
- Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Yuzhen He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Ji-Min Lv
- The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, PR China; Xianghu Laboratory, Hangzhou 311231, PR China
| | - Runqi Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huaiye He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
15
|
Yusoff MHM, Shafie MH. Pioneering polysaccharide extraction with deep eutectic solvents: A review on impacts to extraction yield, physicochemical properties and bioactivities. Int J Biol Macromol 2025; 306:141469. [PMID: 40015410 DOI: 10.1016/j.ijbiomac.2025.141469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/18/2025] [Accepted: 02/24/2025] [Indexed: 03/01/2025]
Abstract
Deep eutectic solvents (DES) have emerged as promising solvents for polysaccharide extraction from various sources. The DES which is produced by combining hydrogen bond donors and acceptors offers sustainability, low toxicity, a wide range of solubility and tailored properties. This review examines DES features and their effectiveness as extraction media for polysaccharides, highlighting the mechanisms behind their enhanced extraction efficiency compared to classical solvents. Additionally, we discuss the mechanism behind the DES affecting the physicochemical and structural properties of the extracted polysaccharides. The review also explores the antioxidant, antihyperglycemic, antihyperlipidemic and immunomodulatory properties of DES-extracted polysaccharides compared to classical solvents which emphasize structural changes in the polymer complex. This review intends to shed insight into the prospects of green extraction technologies by providing information on the benefits of DES and its potential to modify polysaccharide characteristics and enhance their biological activities, which is covered in depth for the first time here.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
16
|
Le T, Hoang TLH, Nguyen THC, Tran TVT, Van DTT, Bich TTN, Nguyen MN, Le LS, Vu Ho XA, Tran TM, Phan NHT, Nguyen CC. Structural Characterization and Antioxidant Properties of a Novel Polysaccharide Isolated from Gymnopetalum cochinchinense. ACS OMEGA 2025; 10:7153-7162. [PMID: 40028130 PMCID: PMC11865989 DOI: 10.1021/acsomega.4c10466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/04/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
In this investigation, a novel heteropolysaccharide, denoted as PS-HW1, is isolated from Gymnopetalum cochinchinense. The achieved PS-HW1 polymer exhibits a molecular weight of 1.22 × 102 kDa and composes the residues of d-glucose, d-fructose, and d-galactose in a 1:1:2 ratio. The structure of PS-HW1 is elucidated via gas chromatography-mass spectrometry, infrared spectroscopy, and nuclear magnetic resonance spectroscopy, revealing a backbone consisting of (1→4)-d-glucopyranose, (1→4)-d-galactopyranose, and (1→3)-d-fructopyranose residues. Furthermore, PS-HW1 demonstrates remarkable antioxidant activity, with low IC50 values of 0.88 and 3.51 mg·mL-1 in the DPPH and ABTS assays, respectively. Its total antioxidant capacity is determined to be 0.2672 ± 0.0042 mg of GA·g-1 or 0.1765 ± 0.0028 mg of AS·g-1. Additionally, PS-HW1 shows significant inhibitory effects on nitric oxide, acetylcholinesterase, and cytotoxicity against HepG2, MCF-7, KB, and SK-LU-1 cancer cells. Such findings emphasize the considerable potential of PS-HW1 from G. cochinchinense for pharmaceutical applications.
Collapse
Affiliation(s)
- Trung
Hieu Le
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
| | - Thi Lan Huong Hoang
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
- Thua
Thien Hue Department Health, Hue
City 530000, Vietnam
| | - Thi Hong Chuong Nguyen
- Center
for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty
of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| | - Thi Van Thi Tran
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
| | - Do Thi Thuy Van
- Faculty
of Chemistry, The University of Danang—University
of Science and Education, Danang 550000, Vietnam
| | - Tran Thi Ngoc Bich
- Faculty
of Chemistry, The University of Danang—University
of Science and Education, Danang 550000, Vietnam
| | | | - Lam Son Le
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
| | - Xuan Anh Vu Ho
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
| | - Thanh Minh Tran
- Hue
University of Sciences—Hue University, Hue City 530000, Vietnam
| | - Nga Hang Thi Phan
- School
of
Medicine and Pharmacy, The University of
Danang, Danang 550000, Vietnam
| | - Chinh Chien Nguyen
- Center
for Advanced Chemistry, Institute of Research and Development, Duy Tan University, Danang 550000, Vietnam
- Faculty
of Natural Sciences, Duy Tan University, Danang 550000, Vietnam
| |
Collapse
|
17
|
Jen CI, Ng LT. F2-sulfated polysaccharides of Laetiporus sulphureus suppress triple-negative breast cancer cell proliferation and metastasis through the EGFR-mediated signaling pathway. Int J Biol Macromol 2025; 306:141407. [PMID: 39993674 DOI: 10.1016/j.ijbiomac.2025.141407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Sulfated polysaccharides (SPS) are a unique secondary metabolite isolated from Laetiporus sulphureus. This study examined the detailed molecular mechanisms of action of F2, a medium molecular weight SPS of L. sulphureus, on breast cancer MDA-MB-231 cell proliferation and metastasis. Results showed that the sulfate and protein content of F2 were 2.1 % and 15.6 %, respectively. F2 had a molecular weight of 23.8 kDa and did not contain a triple helix conformation. The monosaccharide composition of F2 was mannose, galactose, glucose, and fucose. F2 inhibited MDA-MB-231 cell proliferation mainly by blocking the cell cycle at the G0/G1 phase, which was attributed to the down-regulation of CDK4 and cyclin D1 and the up-regulation of p21 protein expression. F2 suppressed epidermal growth factor receptor (EGFR)-mediated intracellular signaling events, such as phosphorylation of ERK1/2, Akt, and GSK-3β and activation of NF-κB and β-catenin, resulting in the cell cycle arrest. Moreover, F2 significantly reduced the EGFR phosphorylation and expression, and the level of mutant p53 protein. F2 also effectively inhibited breast cancer cell migration and invasion through down-regulating MMP-9 and MMP-2 protein expression. In conclusion, this study demonstrated that F2 exhibited anti-proliferative and anti-metastatic activities against MDA-MB-231 cells by inhibiting the activation of EGFR-mediated signaling pathways.
Collapse
Affiliation(s)
- Chia-I Jen
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Lean-Teik Ng
- Department of Agricultural Chemistry, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| |
Collapse
|
18
|
Gao Z, Tang J, Wu C, Ding W, Wang X, Long Y, Wang Y, Liu H. In Vitro Assessment of Bacillus thuringiensis Exopolysaccharides and Their Effects on Gut Microbiota from Ulcerative Colitis In Vitro. Int J Mol Sci 2025; 26:1692. [PMID: 40004156 PMCID: PMC11855630 DOI: 10.3390/ijms26041692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Bacillus thuringiensis exopolysaccharide BPS-2 inhibits malondialdehyde secretion, enhances antioxidant enzyme activities, and significantly improves the antioxidant status of inflammatory cells. In the present study, the apparent morphology and spatial conformation of BPS-2 were analyzed further, and several functional properties were investigated. The results demonstrated that BPS-2 was a polymeric straight-chain polysaccharide with good thermal stability, exhibiting non-Newtonian properties and good antioxidant and anticancer activities. Notably, this study systematically investigated the impact of BPS-2 on the intestinal microbiota composition in patients diagnosed with ulcerative colitis. Through in vitro fermentation of fecal bacteria collected from six volunteers, it was found that BPS-2 exerted a positive influence on the intestinal flora of ulcerative colitis patients, augmenting the secretion of short-chain fatty acids and facilitating an increase in the relative abundance of Bifidobacterium spp. These results suggest that BPS-2 has the potential to be a food additive for suppressing ulcerative colitis and for other medically related applications.
Collapse
Affiliation(s)
- Zexin Gao
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China;
| | - Jie Tang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
| | - Chuanchao Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China;
| | - Wenping Ding
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
| | - Xianyi Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
| | - Yaohang Long
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
| | - Yaping Wang
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
| | - Hongmei Liu
- Engineering Research Center of Medical Biotechnology, School of Biology and Engineering, Guizhou Medical University, Guiyang 550025, China; (Z.G.); (J.T.); (W.D.); (X.W.); (Y.L.); (Y.W.)
- School of Basic Medicine Science, Guizhou Medical University, Guiyang 550031, China
| |
Collapse
|
19
|
Yang H, Lei C, Li D, Zhang N, Lang Y, Wu L, Wang M, Tian H, Li C. A comparative investigation on the extraction-function relationship of polysaccharides derived from moringa oleifera seeds in terms of antioxidant capacity. Food Chem 2025; 465:142137. [PMID: 39581097 DOI: 10.1016/j.foodchem.2024.142137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 11/09/2024] [Accepted: 11/16/2024] [Indexed: 11/26/2024]
Abstract
Owing to the hypoglycemic, anti-inflammatory, and other beneficial bioactivities of Moringa oleifera seeds (MOS), the antioxidant activities and physicochemical characteristics of deproteinized polysaccharides extracted using hot water (MSWP) and alkali (MSAP) from MOS were systematically studied. MSAP exhibited higher antioxidant activity than MSWP in vitro. Subsequently, the antioxidant capacity was evaluated after oral administration of MSAP in diabetic rats. The results demonstrated a statistically significant increase in serum antioxidant parameters. The two polysaccharides were then purified and characterized. The molecular weights of purified fractions MSAP3 and MSWP1 were 4.582 × 104 Da and 1.9058 × 105 Da, respectively; the content of uronic acid in MSAP3 was higher than that in MSWP1; and both compounds presented typical infrared spectral absorption peaks of polysaccharides. In conclusion, MSAP exhibits superior antioxidant properties that depend on its structural characteristics, and this study provides data support for further elucidation of the hypoglycemic mechanism of MSAP.
Collapse
Affiliation(s)
- Hongru Yang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; College of Public Health, Hebei University, Baoding, Hebei, 071000, China
| | - Chongbin Lei
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Dongyao Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China
| | - Na Zhang
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; College of Biochemistry and Environmental Engineering, Baoding University, Baoding, Hebei, 071000, China
| | - Yumiao Lang
- College of Public Health, Hebei University, Baoding, Hebei, 071000, China
| | - Liping Wu
- College of Nursing, Hebei University, Baoding, Hebei, 071000, China
| | - Miaoshu Wang
- New Hope Tensun (Hebei) Dairy Co. Ltd., Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei, 071000, China
| | - Hongtao Tian
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; National Engineering Research Center for Agriculture in Northern Mountainous Areas, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei, 071000, China.
| | - Chen Li
- College of Food Science and Technology, Hebei Agricultural University, Baoding, Hebei, 071000, China; Hebei Technology Innovation Center of Probiotic Functional Dairy Product, Baoding, Hebei, 071000, China.
| |
Collapse
|
20
|
Liu Y, Zheng R, Ren H, Huang J, Li S. A self-fixing xanthan gum hydrogel membrane with ROS scavenging capability for the prevention of postoperative abdominal adhesion. Int J Biol Macromol 2025; 289:138676. [PMID: 39667446 DOI: 10.1016/j.ijbiomac.2024.138676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Postoperative abdominal adhesions are a common complication of surgery and are caused by inflammation, tissue damage, and hypoxia. To address this issue, we prepared a SC-Xg hydrogel membrane by crosslinking xanthan gum (Xg) and sodium citrate (SC) through a dehydration condensation reaction with a crosslinking density of 39.4 %. Moreover, the mechanical performance of the SC-Xg hydrogel membrane could be enhanced by adjusting the concentration of SC. The 1.2-SC-Xg hydrogel membrane exhibited the highest stress resistance. The SC-Xg hydrogel membrane retains the excellent self-fixing ability, biocompatibility, and biodegradability of Xg while incorporating the antioxidant properties of SC. In vitro and in vivo experiments confirmed that the SC-Xg hydrogel membrane can completely cover irregular surgical sites and act as the most effective barrier against adhesions, fully exerting both physical and biological effects. Furthermore, molecular mechanism studies revealed that the hydrogel membrane primarily activated the Nrf2 signaling pathway in a concentration-dependent manner, enabling the SC-Xg hydrogel membrane to suppress postoperative oxidative stress reactions (ROS), reduce inflammation levels of IL-6 and TNF-α, reduce fibrosis, and effectively prevent the formation of abdominal adhesions. In conclusion, the SC-Xg hydrogel membrane represents a promising strategy for preventing postoperative abdominal adhesions.
Collapse
Affiliation(s)
- Ye Liu
- School of Medicine, Southeast University, Nanjing 210009, China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China
| | - Ruoqi Zheng
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Nanjing University, Nanjing 210008, China
| | - Huajian Ren
- School of Medicine, Southeast University, Nanjing 210009, China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Jinjian Huang
- School of Medicine, Southeast University, Nanjing 210009, China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Sicheng Li
- School of Medicine, Southeast University, Nanjing 210009, China; Research Institute of General Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| |
Collapse
|
21
|
Yang L, Hu Y, Deng H, Li Y, Zhang R, Zhang Q, Yang L, Pang H, Liu F, Fu C. Water-soluble polysaccharides from Torreya grandis nuts: Structural characterization and anti-inflammatory activity. Int J Biol Macromol 2025; 291:138935. [PMID: 39701235 DOI: 10.1016/j.ijbiomac.2024.138935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024]
Abstract
Torreya grandis (T. grandis) nuts are widely consumed as a functional food in China. In this study, we investigated the structural characteristics of T. grandis nuts polysaccharides and evaluated their potential biological functions with anti-inflammatory activities. Polysaccharides (TGP) were extracted from T. grandis nuts using water extraction and alcohol precipitation methods. Through a series of purification steps, three heteropolysaccharides (TGP-0a, TGP-2a, and TGP-3a) with distinct molecular weights, monosaccharide compositions, and surface morphologies were isolated. Their anti-inflammatory activities were screened, and TGP-0a was shown to be the most effective component. By combining NMR and methylation studies, TGP-0a was predominantly composed of linear α-1,4-glucan region and linear β-1,4-(gluco)mannan region. In cellular anti-inflammatory assays, TGP-0a significantly diminished the release of pro-inflammatory cytokines. Furthermore, by lowering the levels of iNOS and COX-2, TGP-0a decreased the release of inflammatory mediators (NO and ROS), thereby reducing oxidative stress and inflammatory response. In conclusion, T. grandis nut polysaccharides, particularly TGP-0a, show strong potential as natural anti-inflammatory agents for functional foods and pharmaceutical applications.
Collapse
Affiliation(s)
- Luping Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yunjie Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Hongdan Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ruiyuan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huiwen Pang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Fang Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
22
|
Xu G, Zhao J, Yao J, Xu Y, Yuan X, Pan S. Effects of aging on the fine structure, chain conformation, and morphology of Chenpi polysaccharides. Carbohydr Polym 2025; 349:122970. [PMID: 39643412 DOI: 10.1016/j.carbpol.2024.122970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 12/09/2024]
Abstract
The aging process endows Chenpi (Pericarpium Citri Reticulatae) with unique value and efficacy. This study investigated the dynamic changes in the fine structure, chain conformation, and morphology of water-soluble polysaccharides from Chenpi over time. In the initial storage period of Chenpi (1 year), Chenpi polysaccharides (CP) exhibited a triple-helical structure, with chains entangled and aggregated into rough spherical conformations. Galacturonic acid (GalA, 47.78 mol%) was the predominant monosaccharide. As aging progressed, the homogalacturonan (HG) regions gradually degraded, leading to decreases in molecular sizes (particle size, Mw, Mn, and Rg), a reduction in the degree of esterification, and a weakening of the semicrystalline structure. Consequently, arabinose (Ara) emerged as the main monosaccharide (41.38 mol%). Neutral sugars continuously enriched the rhamnogalacturonan (RG-I) side chains, forming highly branched single molecules that curled into spherical shapes. By 15 years, CP were fully degraded, adopting a compact molecular conformation with the triple-helix structure disappearing and sizes uniformly below 20 nm. However, AFM results indicated aggregation phenomena in 15-year CP. Additionally, CP viscosity decreased while thermal stability improved, reflecting the natural structural transformation of CP. This study provides scientific evidence supporting the application of Chenpi in the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Gang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jingyun Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Jieqiong Yao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Yang Xu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Xianghao Yuan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China; Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control, Huazhong Agricultural University, Wuhan, Hubei 430070, PR China.
| |
Collapse
|
23
|
Dong J, Chi Z, Lu S, Xie X, Gong P, Li H, Liu W. Bacterial exopolysaccharides: Characteristics and antioxidant mechanism. Int J Biol Macromol 2025; 289:138849. [PMID: 39701244 DOI: 10.1016/j.ijbiomac.2024.138849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
Bacterial exopolysaccharides (EPS) are secondary metabolites of microorganisms which play important roles in adhesion, protection, biofilm formation, and as a source of nutrition. Compared with polysaccharides obtained from animal and plant species, bacterial polysaccharides have significant advantages in terms of production cost and large-scale production due to their abundant metabolic pathways and efficient polysaccharide production capacity. Most extracellular polysaccharides are water-soluble, and some are insoluble, such as bacterial cellulose. Some soluble bacterial EPS also have biological activities such as anticancer, antioxidant, antibacterial and immunomodulatory activities. These biological activities are mainly affected by the molecular weight, monosaccharide type, composition and structure of EPS. In recent years, bacterial EPS are considered as novel functional polysaccharides with important application prospects, especially in free radical scavenging and antioxidation. This review focuses on the characteristics of bacterial EPS, their ability to scavenge free radicals and their corresponding antioxidant mechanisms, and summarizes the relationship between different structures (such as monosaccharide composition, functional groups, molecular weight, etc.) and antioxidant activities. It provides a new idea for the development of more bioactive bacterial EPS antioxidants, points out a new direction for the commercial production of natural, safe and economical polysaccharide drugs and health products.
Collapse
Affiliation(s)
- Junqi Dong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Zhenxing Chi
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Siqi Lu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Xiaoqin Xie
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Pixian Gong
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| | - Huijing Li
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China
| | - Wei Liu
- School of Marine Science and Technology, Harbin Institute of Technology at Weihai, Shandong 264209, PR China.
| |
Collapse
|
24
|
Zhu T, Wang Y, Liu J, Zhang L, Dai Y, Xu D, Zhang Z. Preparation methods, structural features, biological activities and potential applications of Ophiopogon japonicus polysaccharides: An updated review. Int J Biol Macromol 2025; 290:139059. [PMID: 39710034 DOI: 10.1016/j.ijbiomac.2024.139059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/14/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Ophiopogon japonicus (O. japonicus) has a history of thousands of years as herbal medicine and nutritional food in China. Polysaccharides are one of the main bioactive components of O. japonicus. Various extraction methods and purification techniques have been employed to obtain O. japonicus polysaccharides (OJPs). Nevertheless, the structural characteristics of OJPs remain incompletely understood and require further investigation through the integration of advanced analytical techniques to uncover potential structure-activity relationships. Moreover, OJPs exhibit a variety of biological activities, such as regulating gut microbiota, providing cardiovascular protection, lowering blood glucose, and combating obesity. These diverse pharmacological effects make OJPs highly promising for widespread application in industries such as pharmaceuticals and food. Therefore, this review aims to provide a comprehensive overview of OJPs, covering their preparation methods, structural features, bioactivity, and structure-activity relationships. Here also emphasizes the significant promise of medicine and functional foods fields and advocating for their integration into clinical and industrial processes.
Collapse
Affiliation(s)
- Tongtong Zhu
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Yi Wang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Ju Liu
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Lei Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China
| | - Yujie Dai
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Dandan Xu
- Department of pharmacy, Kunshan Hospital of Integrated Traditional Chinese and Western Medicine, Suzhou, China
| | - Zepeng Zhang
- Department of pharmacy, Kunshan Hospital of Traditional Chinese Medicine, Suzhou, China.
| |
Collapse
|
25
|
Peng K, Zhang Y, Zhang Q, Wang Y, Liu Y, Cui X. Impact of Enzymatic Degradation Treatment on Physicochemical Properties, Antioxidant Capacity, and Prebiotic Activity of Lilium Polysaccharides. Foods 2025; 14:246. [PMID: 39856913 PMCID: PMC11765260 DOI: 10.3390/foods14020246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
In order to overcome the bioavailability limitation of Lilium polysaccharide (LPS) caused by its high molecular weight and complex structure, two low-molecular-weight degraded polysaccharides, namely G-LPS(8) and G-LPS(16), were prepared through enzymatic degradation. The molecular weight of LPS was significantly reduced by enzymolysis, leading to increased exposure of internal functional groups and altering the molar ratio of its constituent monosaccharides. The results of antioxidant experiments showed that enzymatic hydrolysis had the potential to enhance the antioxidant performance of LPS. In vitro fermentation experiments revealed that LPS and its derivatives exerted different prebiotic effects on intestinal microbial communities. Specifically, LPS mainly inhibited the growth of harmful bacteria such as Fusobacterium, while G-LPS(8) and G-LPS(16) tended to promote the growth of beneficial bacteria like Megamonas, Bacteroides, and Parabacteroides. Metabolomic analysis revealed that LPSs with varying molecular weights exerted comparable promoting effects on multiple amino acid and carbohydrate metabolic pathways. Importantly, with the reduction in molecular weight, G-LPS(16) also particularly stimulated sphingolipid metabolism, nucleotide metabolism, as well as ascorbic acid and uronic acid metabolism, leading to the significant increase in specific metabolites such as sphingosine. Therefore, this study suggests that properly degraded LPS components have greater potential as a prebiotic for improving gut health.
Collapse
Affiliation(s)
- Kaitao Peng
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (K.P.); (Y.Z.); (Q.Z.); (Y.W.)
| | - Yujie Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (K.P.); (Y.Z.); (Q.Z.); (Y.W.)
| | - Qi Zhang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (K.P.); (Y.Z.); (Q.Z.); (Y.W.)
| | - Yunpu Wang
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (K.P.); (Y.Z.); (Q.Z.); (Y.W.)
| | - Yuhuan Liu
- Chongqing Research Institute, Nanchang University, Chongqing 402660, China
| | - Xian Cui
- State Key Laboratory of Food Science and Resources, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China; (K.P.); (Y.Z.); (Q.Z.); (Y.W.)
| |
Collapse
|
26
|
Li JX, Xu DQ, Cui DX, Fu RJ, Niu ZC, Liu WJ, Tang YP. Exploring the structure-activity relationship of Safflower polysaccharides: From the structural characteristics to biological function and therapeutic applications. JOURNAL OF ETHNOPHARMACOLOGY 2025; 339:119131. [PMID: 39577676 DOI: 10.1016/j.jep.2024.119131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/19/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Safflower, the florets of Carthamus tinctorius L., is a widely used traditional Chinese medicine for promoting circulation and improving dysmenorrhea. Polysaccharides is one of the principal water-soluble components in Safflower, which recently endowed with a variety of biological activities, thus making them have important research significance in the field of ethnopharmacology. AIM OF THE STUDY This review summarized the latest research progress on the preparation technology, structural characteristics, and pharmacological effects of Safflower polysaccharides. Moreover, by comparing the structural characteristic of Safflower polysaccharides, the potential structure-activity relationship of Safflower polysaccharides was also discussed. MATERIALS AND METHODS This article used keywords including Safflower polysaccharide, Carthamus tinctorius L polysaccharide, Safflower polysaccharide extraction and separation, Safflower polysaccharide structure, and Safflower polysaccharide anti-tumor effects to search for all relevant literature in PubMed, Web of Science, Google Scholar, ScienceDirect, CNKI and other databases from the establishment of the database to July 2024. RESULTS Summarizing current research findings, seventeen homogeneous Safflower polysaccharides have been obtained. Their structural characteristics, including molecular weights, monosaccharide composition, sugar residue types, glycosidic bond configuration, and the linkage sequence, were initially researched. In terms of pharmacological activity, Safflower polysaccharides exhibit a wide range of biological activities, including immune regulation, anti-tumor effects, and antioxidant properties. Furthermore, the structural characteristics of Safflower polysaccharides significantly influence its biological activities, encompassing factors such as molecular weight, monosaccharide composition, and degree of branching. CONCLUSION Safflower polysaccharides have seen significant advancements in recent years regarding preparation methods, structural characterization, and pharmacological studies. These achievements would provide a theoretical basis for the application of Safflower polysaccharide in the field of ethnopharmacology. While Safflower polysaccharides exhibit diverse biological activities and significant potential for development and utilization, further in-depth research is needed to enhance our understanding of their mechanisms of action and optimize their clinical applications.
Collapse
Affiliation(s)
- Jia-Xin Li
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ding-Qiao Xu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Dong-Xiao Cui
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Rui-Jia Fu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Ze-Chen Niu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China
| | - Wen-Juan Liu
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| | - Yu-Ping Tang
- Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, Shaanxi University of Chinese Medicine, Xianyang, 712046, China.
| |
Collapse
|
27
|
Yang J, Zheng Y, Yang Y, Huang Z, Sun G, Zhao R, Zhou WW, Cheong KL, Wang Z, Feng S, Wang Q, Li M. Effects of microbial fermentation on the anti-inflammatory activity of Chinese yam polysaccharides. Front Nutr 2025; 11:1509624. [PMID: 39834465 PMCID: PMC11744012 DOI: 10.3389/fnut.2024.1509624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
In this study, Chinese yam polysaccharides (CYPs) were fermented using Lactobacillus plantarum M616, and changes in the chemical composition, structure, and anti-inflammatory activity of CYPs before and after fermentation were investigated. The carbohydrate content of L. plantarum M616-fermented CYP (CYP-LP) increased from 71.03% ± 2.75 to 76.28% ± 2.37%, whereas protein and polyphenol content were almost unaffected compared with those of the unfermented CYP (CYP-NF). The monosaccharide composition of CYP-NF included rhamnose, arabinose, galactose, glucose, and mannose in a molar ratio of 0.493:0.6695:0.9738:0.7655:12.4365. CYP-LP had the same monosaccharides as CYP-NF, but the molar ratio was 0.3237:0.3457:0.8278:2.5541:10.4995. Meanwhile, the molecular weight and polydispersity of CYP-LP, respectively, increased from 124.774 kDa and 6.58 (CYP-NF) to 376.628 kDa and 17.928, indicating a low homogeneity. In vitro antioxidant analysis showed that L. plantarum M616 fermentation had varying effects on CYP-LP against DPPH, ABTS, hydroxyl, and superoxide radicals. However, CYP-LP had superior anti-inflammatory activity to CYP-NF and is more effective in regulating superoxide dismutase, catalase, glutathione peroxidase, malondialdehyde, nitric oxide, tumor necrosis factor-α, interleukin-1β, and interleukin-6 release in lipopolysaccharide-induced RAW 264.7 macrophages. This study suggested that CYP-LP is a potential anti-inflammatory ingredient in drugs and functional food.
Collapse
Affiliation(s)
- Jinchu Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Yi Zheng
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Yongfeng Yang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Zhenzhen Huang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Gangchun Sun
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou, China
| | - Renyong Zhao
- College of Food Science and Technology, Henan University of Technology, Zhengzhou, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Zichao Wang
- School of Biological Engineering, Henan University of Technology, Zhengzhou, China
| | - Shouai Feng
- Technology Center, China Tobacco Guangxi Industrial Co. Ltd., Nanning, China
| | - Qiuling Wang
- Technology Center, China Tobacco Henan Industrial Co., Ltd., Zhengzhou, China
| | - Meng Li
- College of Tobacco Science and Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
28
|
Chen X, Liu YB, Deng Y, Zhang JY. Primary Study on Effect of Extraction Methods on the Properties and Activities of Polysaccharides from Geum japonicum var. Chinense F. Bolle. Molecules 2025; 30:148. [PMID: 39795204 PMCID: PMC11722421 DOI: 10.3390/molecules30010148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Geum japonicum Thunb. var. Chinese F. Bolle, a traditional Miao medicine with significant clinical potential, is rich in polysaccharides. Despite its importance, there is a scarcity of research on the structure and activities of these polysaccharides. In this study, polysaccharides from Geum japonicum (GJPs) were extracted using various methods, including heated reflux extraction (HRE), acidic extraction (ACE), alkaline extraction (AAE), microwave-assisted extraction (MAE), enzymatic extraction (EAE), pressurized liquid extraction (PLE), and deep eutectic solvents extraction (DESE). The extraction yield, physicochemical properties, structural characteristics, and antioxidant activities of these polysaccharides were comprehensively investigated and compared. Physicochemical analysis, including FT-IR spectral features and monosaccharide compositions, revealed that the GJPs are acidic heteropolysaccharides with both α- and β-configurations. DESE and ACE were the most effective methods for obtaining the highest neutral and acidic sugars with yields of 29.1%/64.2%, and 39.8%/55.6%, respectively. Meanwhile, AAE was preferable for extracting the polysaccharide-protein complex, achieving a yield of 14.21% and exhibiting superior thermal stability. In particular, DESE and PLE showed the best homogeneity with distinct molecular weights of 39.5 kDa and 17.6 kDa, respectively. In addition, biological evaluation indicated that DESE and MAE exhibited relatively stronger antioxidant activities as evidenced by DPPH and ABTS assays. Conversely, ACE demonstrated highest Fe2+ chelating ability but the lowest activity in DPPH and ABTS assays. Furthermore, the results of correlation analysis showed that the monosaccharides composition, protein and polyphenol content were significantly associated with the antioxidant activity. The choice of extraction method greatly affects the property and activity of G. japonicum polysaccharides. Polysaccharides extracted by deep eutectic solvents from G. japonicum show promise as natural antioxidants in the food and medicine industries.
Collapse
Affiliation(s)
- Xuan Chen
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
| | - Ying-Bo Liu
- Department of Pharmacy, Zunyi Medical And Pharmaceutical College, Zunyi 563006, China;
| | - Yong Deng
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Beijing 100700, China
| | - Jian-Yong Zhang
- School of Pharmacy, Zunyi Medical University, Zunyi 563000, China;
- Key Laboratory of Basic Pharmacology Ministry Education, Zunyi Medical University, Zunyi 563006, China
- Joint International Research Laboratory of Ethnomedicine Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| |
Collapse
|
29
|
Xu H, Zhang T, Zhou Z, Gao T, Zhao R, Chen L. Polysaccharides from Lactarius volemus Fr. ameliorate high-fat and high-fructose diet induced metabolic disorders and intestinal barrier dysfunction. Int J Biol Macromol 2025; 287:138341. [PMID: 39638176 DOI: 10.1016/j.ijbiomac.2024.138341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/06/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Our research was conducted to investigate the effects of Lactarius volemus Fr. polysaccharides (LVP) on metabolic disorders and intestinal barrier dysfunction in HFFD-induced obese mice. Our findings demonstrated that LVP supplementation significantly ameliorated hyperlipoidemia and hyperglycemia, insulin resistance and hepatic inflammation. Additionally, LVP alleviated hepatic steatosis and histological lesions, as well as hepatic function dysbiosis. The underlying mechanism may involve the regulation of hepatic insulin signaling transduction pathway such as IRS1/AKT pathway and the suppression of MAPKs signaling pathway. Furthermore, LVP intervention improved intestinal barrier function and reduced intestinal permeability by enhancing the expression of tight junction proteins and restoring intestinal microbiota composition. In summary, our results provided evidence that LVP exerted beneficial effects on HFFD-induced metabolic disorders along with restoration of intestinal barrier function and reduction in endotoxin levels. These outcomes are associated with maintenance of gut microbiota homeostasis and up-regulation of Short-Chain Fatty Acids (SCFAs). Furthermore, butyric acid was found to restrict lipid accumulation in OA-induced HepG2 hepatocytes while strengthening intestinal barrier integrity in LPS-induced Caco-2 cells. Thus, polysaccharides LVP may serve as a potential prebiotic or health supplement in the prevention and treatment of obesity-related metabolic disorders.
Collapse
Affiliation(s)
- Hui Xu
- Bengbu First People's Hospital, Bengbu 233000, China
| | - Tianyu Zhang
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ziming Zhou
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Tian Gao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Ranran Zhao
- Bengbu First People's Hospital, Bengbu 233000, China; Graduate School, Bengbu Medical University, Bengbu 233030, China
| | - Lei Chen
- Anhui Key Laboratory of Ecological Engineering and Biotechnology, School of Life Sciences, Anhui University, Hefei 230601, China.
| |
Collapse
|
30
|
Ilić-Stojanović S, Damiri F, Musuc AM, Berrada M. Polysaccharide-Based Drug Carriers-A Patent Analysis. Gels 2024; 10:801. [PMID: 39727561 DOI: 10.3390/gels10120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 12/28/2024] Open
Abstract
Polysaccharide-based carriers as biomaterials for drug delivery have been inspiring scientists for years due to their exceptional characteristics, such as nontoxicity, biocompatibility, and degradability, as they are able to protect pharmaceutically active molecules and provide their controlled/modified release. This review focuses on selected drug delivery systems based on natural polymers, namely fucoidan, pullulan, dextran, and pectin, with the aim of highlighting published patent documents. The information contained in patents is very important because it is usually not published in any other document and is much less discussed as the state of the art in the scientific literature. The Espacenet-European Patent Office database and the International Patent Classification were used for the research to highlight the specific search procedure. The presented analysis of the innovative state of the art includes an overview from the first patent applications to the latest granted patents in this field.
Collapse
Affiliation(s)
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| | - Adina Magdalena Musuc
- "Ilie Murgulescu" Institute of Physical Chemistry, 202 Spl. Independentei, 060021 Bucharest, Romania
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M'Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco
| |
Collapse
|
31
|
Zhou C, Adeyanju AA, Nwonuma CO, Inyinbor AA, Alejolowo OO, Al-Hamayda A, Akinsemolu A, Onyeaka H, Olaniran AF. Physical field-assisted deep eutectic solvent processing: A green and water-saving extraction and separation technology. J Food Sci 2024; 89:8248-8275. [PMID: 39668112 DOI: 10.1111/1750-3841.17545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/14/2024] [Accepted: 10/28/2024] [Indexed: 12/14/2024]
Abstract
Extraction of organic and bioactive compounds from plant materials with the traditional organic solvents aided by water or oil bath heating is not sustainable, because it consumes a lot of energy, time, water/oil, solvents, and results in lower yield. This review discusses deep eutectic solvent (DES) as a green solvent, physical field technology (PFT) as a water-saving and green technology, and how the coupling of PFT (ultrasound [US], microwave [MW], infrared [IR]) to DES will improve the yield and quality of protein, polysaccharides, polyphenols, pectin, and terpenoids extracted from plant materials. Ultrasonication increases DES extraction efficiency via cavitation dislodgement and pores creation. IR coupling to DES enhances the extraction yield of polyphenols and the antioxidant and antiradical activity. MW improves DES extraction yield, reduces energy consumption, operational cost, and compound degradation, and is inferred to be the greenest technology.
Collapse
Affiliation(s)
- Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Adeyemi Ayotunde Adeyanju
- Centre for Innovative Food Research (CIFR), Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg, South Africa
| | - Charles Obiora Nwonuma
- Department of Biochemistry, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| | - Adejumoke A Inyinbor
- Industrial Chemistry Programme, Physical Sciences Department, Landmark University, Omu-Aran, Nigeria
| | | | - Asmaa Al-Hamayda
- Chemical and Petroleum Engineering Department, College of Engineering, United Arab Emirates University, Al Ain, UAE
| | | | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham, UK
| | - Abiola F Olaniran
- Food Science and Nutrition Programme, Food Science and Microbiology Department, College of Pure and Applied Sciences, Landmark University, Omu-Aran, Nigeria
| |
Collapse
|
32
|
Md Yusoff MH, Shafie MH. Microwave-assisted extraction of polysaccharides from Micromelum minutum leaves using citric acid monohydrate-glycerol based deep eutectic solvents and evaluation of biological activities. Anal Chim Acta 2024; 1331:343351. [PMID: 39532430 DOI: 10.1016/j.aca.2024.343351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/17/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND The extraction of polysaccharides using an acidic extraction media has been extensively reported, highlighting its effectiveness in yielding high-quality polysaccharides. A higher concentration of acidic solution could hydrolyze the structure of polysaccharide, while a low concentration reduces the extraction efficiency. Despite this challenges, deep eutectic solvents (DES) were introduced as an alternative extraction medium due to additional interactions such as inter and intra-molecular interactions, Van de Waals, hydrogen bond, and electrostatic interactions, which could improve the polysaccharide extraction efficiency and biological activities. Furthermore, the extraction conditions such as extraction medium and extraction parameters could affect the properties of polysaccharides as well as influence their structure-activity relationship for biological activities. RESULTS The result showed that the microwave-assisted extraction of Micromelum minutum leaf polysaccharide (MMLP) using DES as an extraction media (MMLP-DES) gave a higher yield (improvement of 101.20 %) than citric acid monohydrate (CAM) (MMLP-CAM) and required a lower percentage of microwave power (19.83 % less) and time (0.78 min less). The properties of MMLPs significantly differ based on their pH, molecular weight, viscosity, degree of esterification and monosaccharide molar ratio which influenced the biological activities. Compared to MMLP-CAM, MMLP-DES had a more branched and less linear structure. The bioactivities study revealed that MMLP-DES exhibited higher antioxidant and anti-α-amylase activities (i.e. , DPPH 74.52 %, FRAP: 2.87 mM FeSO4 and α-amylase inhibition: 86.23 %) compared to MMLP-CAM (i.e. , DPPH 49.33 %, FRAP: 1.49 mM FeSO4, and α-amylase inhibition: 81.76 %). The mechanism and structure-activity relationship of MMLPs on bioactivities were also hypothesized. SIGNIFICANCE Based on our previous study, the citric acid monohydrate-glycerol based DES as an extraction medium has enhanced the extraction yield of polysaccharides from M. minutum. This study highlights the DES combined with microwave-assisted extraction to improve the yield of MMLP and evaluate the biological activities compared to CAM as a classical solvent. In conclusion, the DES showed the advantages for extraction of polysaccharides with desired biological activities.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
33
|
Chang Z, Gu C, Wang M, Chen J, Zhou J, Yue M, Zhang C, Liu F, Feng Z. Structural characterization of noni (Morinda citrifolia L.) pectin and its inhibitory activity on pancreatic lipase. Int J Biol Macromol 2024; 283:137521. [PMID: 39537048 DOI: 10.1016/j.ijbiomac.2024.137521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/31/2024] [Accepted: 11/09/2024] [Indexed: 11/16/2024]
Abstract
This study aimed to investigate the physicochemical properties and biological activities of noni pectin (NP) extracted using various solvents, three fractions of noni pectin were obtained using traditional chemical and deep eutectic solvents. NPs are composed of various ratios of galacturonic acid, arabinose, rhamnose, xylose, glucose, and galactose with different yields, molecular weights, esterification degrees (DE), and microstructures. Among the fractions, noni pectin extracted with Betaine-citric acid (BNP) exhibited higher molecular weight, degree for esterification and pancreatic lipase (PL) inhibitory activity than the other fractions. Enzyme kinetic analysis indicated that BNP inhibited PL via a noncompetitive mechanism. BNP significantly altered the secondary structure of PL and quenched PL fluorescence, suggesting a static quenching mechanism. Isothermal titration calorimetry (ITC) further demonstrated that the binding of BNP to PL was spontaneous and driven by enthalpy, primarily mediated by hydrogen bonding and van der Waals forces. Molecular docking simulations also confirmed strong noncovalent interactions (hydrogen bonding and van der Waals forces) between BNP and PL. This study validated the high efficiency of the deep eutectic solvent-extracted noni pectin fraction in pancreatic lipase inhibition.
Collapse
Affiliation(s)
- Ziqing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chunhe Gu
- Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China
| | - Mengrui Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junxia Chen
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Junping Zhou
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Mingzhe Yue
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Chao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Fei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China.
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China; Spice and Beverage Research Institute, Chinese Academy of Tropical Agricultural Sciences, Wanning 571533, Hainan, China; Key Laboratory of Processing Suitability and Quality Control of the Special Tropical Crops, Wanning 571533, Hainan, China.
| |
Collapse
|
34
|
Zhang T, Zheng J, Chen M, Li D, Sun Y, Liu R, Sun T. A mini review of polysaccharides from Zanthoxylum bungeanum maxim: Their extraction, purification, structural characteristics, bioactivity and potential applications. Int J Biol Macromol 2024; 282:137007. [PMID: 39486707 DOI: 10.1016/j.ijbiomac.2024.137007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 09/29/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Zanthoxylum bungeanum Maxim (Z. bungeanum), commonly known as Sichuan pepper or Chinese prickly ash, is a deciduous shrub in the Rutaceae family, with a lengthy history of use as a food ingredient and traditional medicine in China. Z. bungeanum polysaccharides (ZBPs) represent one of the crucial bioactive components of Z. bungeanum, garnering global attention due to their potential medicinal value, culinary significance, and promising application prospects. The principal methods for extracting ZBPs are hot water extraction, ultrasound-assisted extraction, enzyme-assisted extraction and microbial fermentation extraction. However, the structural characteristics of ZBPs remain ambiguous, necessitating further exploration and elucidation of the structure-activity relationship using the advanced analytical techniques. In addition, ZBPs demonstrate diverse bioactivities, including antioxidant activity, neuroprotective effect, antibacterial activity, and the anti-fatigue effect, positioning them as promising candidates for various therapeutic and health-promoting applications. This review provides a comprehensive overview of the extraction, purification, structural characteristics, bioactivities, and potential applications of ZBPs, emphasizing the significant promise of ZBPs as valuable natural compounds with a range of bioactivities, supporting their further exploitation and application in various fields of industries and therapeutics.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, PR China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
35
|
Md Yusoff MH, Shafie MH. A review of in vitro antioxidant and antidiabetic polysaccharides: Extraction methods, physicochemical and structure-activity relationships. Int J Biol Macromol 2024; 282:137143. [PMID: 39500430 DOI: 10.1016/j.ijbiomac.2024.137143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/27/2024] [Accepted: 10/30/2024] [Indexed: 11/09/2024]
Abstract
Nowadays, various plant polysaccharides have been successfully extracted which exhibited strong biological activities and might be useful for diabetes management. However, the effect of extraction methods, physicochemical and the structural-activity relationships of polysaccharides to exhibit antioxidants and antidiabetics were inadequate to explain their mechanism in action. The uses of advance extraction methods might be preferred to obtain higher antioxidants and antidiabetic activities of polysaccharides compared to conventional methods, but the determination of optimal extraction conditions might be crucial to preserve their structure and biological functions. Other than that, the physicochemical and structural properties of polysaccharides were closely related to their biological activities such as antioxidant and antidiabetic activities. Therefore, this review addressed the research gap of the influence of extraction methods, physicochemical and structural relationships of polysaccharides to biological activities, pointing out the challenges and limitations as well as future prospects to the current findings.
Collapse
Affiliation(s)
- Muhammad Hasnun Md Yusoff
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Muhammad Hakimin Shafie
- Analytical Biochemistry Research Centre (ABrC), University Innovation Incubator (I(2)U), sains@usm Campus, Universiti Sains Malaysia, Lebuh Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| |
Collapse
|
36
|
Campo-Grande GC, D'Agostin JB, de Santana Filho AP, da Silva Mello G, Benedetti PR, Dos Santos WF, Simas FF, Cipriani TR. Structural characterization of an arabinogalactan rich fraction from Bauhinia forficata Link leaves and evaluation of its effect on THP-1 macrophages. Int J Biol Macromol 2024; 283:137731. [PMID: 39551310 DOI: 10.1016/j.ijbiomac.2024.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/22/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
Bauhinia forficata is a medicinal plant known as cow's paw, used for many purposes. Although there are studies that aimed to elucidate compounds from the plant leaves, there is no information about its polysaccharides. This study intended to obtain a polysaccharide rich fraction from its leaves, structurally characterize the water-soluble polysaccharides, as well as evaluate their effect on THP-1 cells. From the aqueous extract, followed by purification processes, a polysaccharide fraction (TCA-S) was obtained, constituted mainly of arabinose and galactose. Bidimensional NMR (13C/1H, HSQC) and methylation analyses identified type I and type II arabinogalactans, arabinan and starch as the major polysaccharides of the fraction. TCA-S was then submitted to starch removal process and renamed as TCA-Sα. TCA-Sα (2 to 500 μg/mL) was not cytotoxic to THP-1-cells and exhibited an immunostimulatory effect by increasing the secretion of nitric oxide and both pro-inflammatory cytokine IL-1β and anti-inflammatory cytokine IL-10. Immunomodulatory effect on IL-6 secretion was observed when macrophages were treated with TCA-Sα at 500 μg/mL. Additionally, the ratio between the concentrations of pro and anti-inflammatory cytokines produced by LPS-treated cells was higher than that produced by LPS plus TCA-Sα treated ones, suggesting that the polysaccharide fraction could modulate the LPS inflammation effects.
Collapse
Affiliation(s)
| | - Jessica Boschini D'Agostin
- Laboratory of Inflammatory and Neoplasic Cells, Cell Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | | | - Genilza da Silva Mello
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | | | | | - Fernanda Fogagnoli Simas
- Laboratory of Inflammatory and Neoplasic Cells, Cell Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil
| | - Thales Ricardo Cipriani
- Biochemistry and Molecular Biology Department, Federal University of Paraná, CEP 81531-980 Curitiba, PR, Brazil.
| |
Collapse
|
37
|
Wen H, Yang Z, Wang F, Aisa HA, Xin X. Physicochemical and processing properties and in vitro fecal fermentation characteristics of Prunus cerasifera Ehrhart polysaccharide. Int J Biol Macromol 2024; 282:137581. [PMID: 39542293 DOI: 10.1016/j.ijbiomac.2024.137581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/08/2024] [Accepted: 11/11/2024] [Indexed: 11/17/2024]
Abstract
Prunus cerasifera Ehrhart fruit polysaccharide (PCP) was obtained after determining the optimal extraction conditions for complex enzyme-assisted hot buffer extraction based on single-factor experiments and response surface methodology, followed by characterization of its physicochemical, processing, rheological, and biological properties. PCP was a thermally stable carbohydrate with acidic functional groups and a molecular weight of 1398.69 kDa, exhibiting smooth, dense flake and honeycomb network microstructures. PCP had favorable hygroscopicity, moisturizing properties, water and oil-holding capacity, proemulsification capability, and in vitro antioxidant activity. The apparent viscosity of PCP in an aqueous system was dependent on concentration and temperature and was altered by the variety and amount of metal ions added; its aqueous solutions exhibited strong viscosity and hydrogel-forming tendencies at suitable concentrations, along with excellent hydrogel properties after gelation. Furthermore, PCP favored the growth of beneficial gut microbiota and associated microbes responsible for producing essential short-chain fatty acids. Overall, PCP displayed high potential as a multifunctional additive for applications in the food, pharmaceutical, and cosmetic industries.
Collapse
Affiliation(s)
- Huizhen Wen
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zi Yang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fangsheng Wang
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China; College of pharmacy, Xinjiang Medical University, Urumqi 830011, Xinjiang, China.
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang indigenous medicinal plants resource utilization, Key Laboratory of Plant Resources and Chemistry in Arid Regions, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing South Road 40-1, Urumqi 830011, Xinjiang, China.
| |
Collapse
|
38
|
Tan X, Ma B, Wang X, Cui F, Li X, Li J. Characterization of Exopolysaccharides from Lactiplantibacillus plantarum PC715 and Their Antibiofilm Activity Against Hafnia alvei. Microorganisms 2024; 12:2229. [PMID: 39597618 PMCID: PMC11596824 DOI: 10.3390/microorganisms12112229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/01/2024] [Accepted: 11/02/2024] [Indexed: 11/29/2024] Open
Abstract
Exopolysaccharides (EPSs) secreted by lactic acid bacteria have the potential to enhance human health by showing various biological functions. This study investigated the biological role and antibiofilm properties of EPS715, a new neutral EPS produced by pickled vegetables originating from Lactobacillus plantarum PC715. The results indicate that EPS715 is primarily composed of rhamnose, glucose, and mannose. Its molecular weight (Mw) is 47.87 kDa, containing an α-glucoside linkage and an α-pyranose ring. It showed an amorphous morphology without a triple helix structure. Furthermore, EPS715 showed improved antioxidant activity. Specifically, its scavenging capacity of ABTS+ radicals, DPPH radicals, and the hydroxyl (·OH) reduction capacity at 5 mg/mL was 98.64 ± 2.70%, 97.37 ± 0.79%, and 1.64 ± 0.05%, respectively. Its maximal scavenging capacity was >40%, and the hydroxyl (·OH) radical scavenging ability was dose-dependent. Moreover, the biofilm of various pathogens including S. aureus, B. cereus, S. saprophyticus, Acinetobacter spp., and H. alvei was substantially dispersed and affected by EPS715, with a maximum inhibition rate of 78.17% for H. alvei. The possible mechanism by which EPS715 shows antibiofilm properties against the H. alvei may be attributed to its effects on the auto-aggregation, hydrophilic characteristics, and motility of Hafnia spp. Thus, EPS715 has significant antioxidant and antibiofilm characteristics that may hold substantial potential for applications in food and medicinal products.
Collapse
Affiliation(s)
- Xiqian Tan
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Bingyu Ma
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xiaoqing Wang
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Fangchao Cui
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Xuepeng Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| | - Jianrong Li
- College of Food Science and Engineering & Institute of Marine Science and Technology, Bohai University, Jinzhou 121013, China
| |
Collapse
|
39
|
Qiu WL, Chao CH, Lu MK. Anti-inflammatory and anti-lung cancer activities of low-molecular-weight and high-sulfate-content sulfated polysaccharides extracted from the edible fungus Poria cocos. Int J Biol Macromol 2024; 279:135483. [PMID: 39260636 DOI: 10.1016/j.ijbiomac.2024.135483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/26/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
Sulfated polysaccharides (SPSs) have excellent physicochemical properties, attracting research interest in the pharmaceutical industry. A previous study extracted SPS (named Suc40) from the edible fungus, Poria cocos and demonstrated that it exhibited anti-inflammatory and anticancer activities. In this study, three fractions of Suc40, Suc40 F1, Suc40 F2, and Suc40 F3, with different molecular weights and sulfate contents were prepared through gel-filtration column chromatography. The molecular weights of F1, F2, and F3 were approximately 616.23, 82.57, and 6.21 kDa, respectively, and their sulfate content were 0.23, 1.65, and 1.90 mmol/g, respectively. The fractions' anti-inflammatory activities were determined by assessing their ability to suppress inflammatory cytokines in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. Suc40 F2 and Suc40 F3 suppressed interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) production by 60 % and 35 %, respectively. Suc40 F2 and Suc40 F3 suppressed protein kinase B (AKT)/p38 and p38 signaling, which resulted in anti-inflammatory effects. The fractions' anti-lung cancer activity was evaluated by assessing their H1975 cell proliferation inhibition. Suc40 F3 at a concentration of 800 μg/ml exhibited maximal cell proliferation inhibition. The low molecular weight and high sulfate content of Suc40 F3 were associated with its enhanced anti-inflammatory and anti-lung cancer activities.
Collapse
Affiliation(s)
- Wei-Lun Qiu
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chi-Hsein Chao
- School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Mei-Kuang Lu
- National Research Institute of Chinese Medicine, Ministry of Health and Welfare, 155-1 Li-Nung St., Sec. 2, Shipai, Peitou, Taipei 112, Taiwan; Graduate Institute of Pharmacognosy, Taipei Medical University, 252 Wu-Hsing St., Taipei 110, Taiwan; School of Chinese Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Traditional Chinese Medicine Glycomics Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
40
|
Cao M, Cui X, Chen Y, Yan W, Zeng W, Zhang Y, Jia X. Purification, structural characterization and immunomodulatory activity of a polysaccharide isolated from Scutellaria baicalensis stem-leaf. Int J Biol Macromol 2024; 281:136409. [PMID: 39393739 DOI: 10.1016/j.ijbiomac.2024.136409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 10/13/2024]
Abstract
In our research, a novel polysaccharide (named SSP-3a) with uniform molecular weight was extracted from Scutellaria baicalensis stem-leaf. The structural analysis revealed that SSP-3a was an acidic polysaccharide with a heavy average molecular weight of 1.83 × 105 Da. By HPLC, the primary constituents of SSP-3a were mannose (11.60 %), glucuronic acid (42.99 %), glucose (23.43 %), and xylose (22.04 %). According to FT-IR and 1H NMR analysis, it was confirmed to be a β-configuration pyranose with a CO stretching vibrational peak. The immunomodulation results also showed that SSP-3a not only significantly promoted RAW264.7 cell proliferation and phagocytosis, but also stimulated the release of NO and cytokines. Furthermore, mechanistic studies suggested that SSP-3a had the ability to trigger MAPKs and NF-κB immunological signaling pathways via TLR4 receptors. The findings suggested that SSP-3a might be a beneficial active component for the food and pharmaceutical industries.
Collapse
Affiliation(s)
- Minghui Cao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xuejiao Cui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yadong Chen
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Wenwen Yan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Weimin Zeng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yanlong Zhang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| | - Xiangqian Jia
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
41
|
Zhang Y, Wang L, Qiu Z, Yang Y, Wang T, Inam M, Ma H, Zhang H, He C, Guan L. Comprehensive evaluation of Flammulina velutipes residues polysaccharide based on in vitro digestion and human fecal fermentation. Int J Biol Macromol 2024; 281:136487. [PMID: 39414219 DOI: 10.1016/j.ijbiomac.2024.136487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/18/2024]
Abstract
Flammulina velutipes residues (FVR) are the waste culture medium derived from the collection of Flammulina velutipes fruiting bodies, with an annual output that remains largely unexplored. The characteristics of digestion and fermentation of Flammulina velutipes residues polysaccharide (FVRP) are still relatively unknown. This study investigated the structure of the gut microbiota through 16 s rDNA gene sequencing and analyzed changes in short-chain fatty acid (SCFA) content via targeted metabolome analysis. The aim was to explore the prebiotic activity of FVRP based on a simulated digestion model combined with an in vitro anaerobic fermentation model. The results demonstrated that FVRP did not exhibit significant changes during in vitro digestion and fermentation but did enhance antioxidant activity. Furthermore, FVRP was found to rapidly reduce the pH value and increase SCFA production in the fermentation broth from lactic acid bacteria and human feces. Notably, FVRP altered the gut microbiota structure, significantly increasing the relative abundance of Firmicutes and Bacteroidota. Thus, FVRP could be considered a promising prebiotic food and feed additive that promotes the generation of short-chain fatty acids by modulating gut microbiota.
Collapse
Affiliation(s)
- Yao Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Liping Wang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Zihan Qiu
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Yiting Yang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Tiezhu Wang
- Changchun Gaorong Biotechnological Co., Ltd., Changchun 130102, PR China
| | - Muhammad Inam
- Department of Zoology, Shaheed Benazir Bhutto University Sheringal, Dir Upper 18050, Pakistan
| | - Hongxia Ma
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Haipeng Zhang
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Chengguang He
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China
| | - Lili Guan
- College of Life Sciences, Engineering Research Center of Bioreactor s Pharmaceutical Development, Ministry of Education, Jilin Agricultural University, Changchun 130118, PR China.
| |
Collapse
|
42
|
Yao Q, Pu L, Dong B, Zhu D, Wu W, Yang Q. Effects of ultrasonic degradation on physicochemical and antioxidant properties of Gleditsia sinensis seed polysaccharides. Carbohydr Res 2024; 545:109272. [PMID: 39293243 DOI: 10.1016/j.carres.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/26/2024] [Accepted: 09/08/2024] [Indexed: 09/20/2024]
Abstract
In this study, two degraded polysaccharides from Gleditsia sinensis seed were obtained under ultrasonic power treatments of 300 and 450 W. The physicochemical properties, structural characteristics, and antioxidant activities of the degraded and undegraded polysaccharides were studied and compared. Ion exchange chromatography and methylation analysis showed that the polysaccharides had similar basic structural features and were composed of the same monosaccharide units before and after degradation, but the ultrasonic treatment increased the total monosaccharide content and changed the Mannose/Galactose value. Furthermore, with the increase in the ultrasonic power, the molecular weight and intrinsic viscosity of polysaccharides decreased, and the micromorphology became looser. The scavenging capacities for 1,1-diphenyl-2-picrylhydrazyl and hydroxyl free radicals and the reducing ability were significantly increased by the ultrasonic treatment. In conclusion, ultrasonic treatment may be an effective way to improve the antioxidant activities of polysaccharides from G. sinensis seed, and further studies on its antioxidant mechanism are still needed.
Collapse
Affiliation(s)
- Qiuping Yao
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China.
| | - Longlin Pu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Boyu Dong
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Dequan Zhu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| | - Wenwen Wu
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China
| | - Qiong Yang
- Schoolof Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, Guizhou, 50025, China; Key Laboratory of the Development and Utilization of Guizhou Minority Medical, Resources (Guizhou Minzu University), State Ethnic Affairs Commission, Guiyang, Guizhou, 50025, China
| |
Collapse
|
43
|
Zheng YY, Tong XY, Zhang DY, Ouyang JM. Enhancement of Antioxidative and Anti-Inflammatory Activities of Corn Silk Polysaccharides After Selenium Modification. J Inflamm Res 2024; 17:7965-7991. [PMID: 39502937 PMCID: PMC11537195 DOI: 10.2147/jir.s467665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/07/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to study the effect of selenium modification on the bioactivity of corn silk polysaccharides, particularly its antioxidant and anti-inflammatory functions. Methods HNO3-NaSeO3 was used to selenize degraded corn silk polysaccharides (DCSP). The structure and physicochemical properties of DCSP and selenized corn silk polysaccharides (Se-DCSP) were characterized by inductively coupled plasma emission spectroscopy, Fourier-transform infrared, ultraviolet-visible spectroscopy, nuclear magnetic resonance, nanometer, scanning electron microscopy, and thermogravimetric analysis. The protective effects of DCSP and Se-DCSP on HK-2 cells damaged by nano-calcium oxalate and the changes of inflammatory factors were detected by laser confocal microscopy, flow cytometry, and fluorescence microscopy. Results The selenium content of DCSP and Se-DCSP were 19.5 and 1226.7 μg/g, respectively. Compared with DCSP, Se-DCSP showed significantly improved biological activity, including the scavenging ability of various free radicals (increased by about 2-3 times), the intracellular reactive oxygen content (decreased by about 1.5 times), and the mitochondrial membrane potential (decreased by about 2.5 times). Moreover, cell viability and morphological recovery ability were improved. Compared with DCSP, Se-DCSP significantly down-regulated HK-2 cell inflammatory factors MCP-1 (about 1.7 times), NLRP3, and NO (about 1.5 times). Conclusion The antioxidant activity and the ability to down-regulate the expression of inflammatory factors of Se-DCSP were significantly enhanced compared with DCSP, and Se-DCSP can better protect HK-2 cells from oxidative damage, indicating that Se-DCSP has a stronger potential ability to inhibit kidney stone formation.
Collapse
Affiliation(s)
- Yu-Yun Zheng
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Xin-Yi Tong
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Da-Ying Zhang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| | - Jian-Ming Ouyang
- Institute of Biomineralization and Lithiasis Research, College of Chemistry and Materials Science; Jinan University, Guangzhou, 510632, People’s Republic of China
| |
Collapse
|
44
|
Zhao Y, Wang Y, Ma Q, Wang D, Jiang Q, Wang P, Ge Z, Wang J, Qin P, Zhao X. Different microbiota modulation and metabolites generation of five dietary glycans during in vitro gut fermentation are determined by their monosaccharide profiles. Food Res Int 2024; 196:115011. [PMID: 39614537 DOI: 10.1016/j.foodres.2024.115011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 12/01/2024]
Abstract
Dietary oligo- and polysaccharides modulate gut microbiota and thus exert prebiotic activity, which is determined by their heterogeneous structure. To explore the correlations between monosaccharide profile and microbial community, simulated gut fermentation of different glycans, including arabinan (ArB), galactooligosaccharide (GOS), arabinogalactan (ArG), rhamnogalacturonan (RhG), and xyloglucan (XyG) that are characterized by typical sugar residues were performed. Results showed that RhG displayed high contents of galacturonic acid (344.79 mg/g), rhamnose (171.70 mg/g), and galactose (151.77 mg/g), and the degradation ratio of them after fermentation was 73.87 %, 84.96 %, and 87.11 %, respectively. Meanwhile, the relative abundance of glycan-degrading bacteria Bacteroides in the RhG was boosted from 4 h (4.97 %) to 48 h (36.45 %). Butyrate-generating bacteria Megasphaera (56.69 %) and Bifidobacterium (28.02 %) are dominant genera in the ArB, which generated the highest concentration of carbohydrate-metabolite (94.58 mmol/L) in terms of acetate, propionate, butyrate and valerate, followed by the ArG (87.36 mmol/L). However, ammonia generation of the ArG increased rapidly, representing the highest content of protein-metabolite (66.36 mmol/L) including ammonia, isobutyrate, and isovalerate. As compared, metabolites generated from protein and carbohydrates grow steadily at a low level during the XyG fermentation. Correlation analysis further indicated that Bacteroides was positively correlated with propionate (p < 0.001), galacturonic acid (p < 0.001), and rhamnose (p < 0.05), while Bifidobacterium has positive correlation with butyrate and arabinose (p < 0.01). Overall, monosaccharides composition in the different oligo- and polysaccharides induces distinct responses of the dominant microbiota and thus modulates the subsequent fermentation metabolites of carbohydrate and protein, promoting a deep understanding of the structure-fermentation relationship of dietary glycans.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Yubin Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Qiancheng Ma
- Kunpeng Institute of Modern Agriculture at Foshan, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Dan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Qianqian Jiang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Pan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Zhiwen Ge
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Junjuan Wang
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Peiyou Qin
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China
| | - Xiaoyan Zhao
- Institute of Agri-food Processing and Nutrition, Beijing Academy of Agriculture and Forestry Sciences, Beijing Key Laboratory of Fruits and Vegetable Storage and Processing, Key Laboratory of Vegetable Postharvest Processing of Ministry of Agriculture and Rural Areas, Beijing 100097, China.
| |
Collapse
|
45
|
Zhang T, Chen M, Li D, Zheng J, Sun Y, Liu R, Sun T. Review of the recent advances in polysaccharides from Ficus carica: Extraction, purification, structural characteristics, bioactivities and potential applications. Int J Biol Macromol 2024; 281:136430. [PMID: 39389494 DOI: 10.1016/j.ijbiomac.2024.136430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
Ficus carica (F. carica), commonly referred to as the fig tree, has received considerable attention due to its delectable and nutritious fruits. F. carica polysaccharides (FPs) are one of the key bioactive constituents of F. carica, demonstrating various biological activities such as antioxidative, immunomodulatory, anti-inflammatory, and antitumor effects, among others. Nevertheless, the extraction and purification techniques for FPs still require innovations to address their structural characteristics in order to elucidate the intricate mechanisms affecting their biological activities. Given this, the current review systematically summarizes the recent advancements in FPs, covering extraction, purification, structural characteristics, bioactivities, structure-activity relationships (SARs), current applications, challenges and future prospects. The composition of FPs predominantly includes Glu, Gal, and Rha, with a broad molecular weight distribution (ranging from 21.9 kDa to 6890 kDa). The SARs analysis suggests that the bioactivities of FPs are closely linked to their monosaccharide composition, molecular weight, uronic acid content, and configuration characteristics, underscoring the significant role of FPs in driving the development of novel bioactive compounds in the health, food, and medical sectors. In conclusion, this review would contribute the valuable research insights and provide the updated information to foster the advancement of FPs for diverse therapeutic and industrial applications.
Collapse
Affiliation(s)
- Ting Zhang
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Mengjie Chen
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Dan Li
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Jianfeng Zheng
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China
| | - Yuan Sun
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Rui Liu
- Center of Pharmaceutical Engineering and Technology, Harbin University of Commerce, Harbin 150076, China.
| | - Tiedong Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
46
|
Chen W, Ma X, Jin W, Cheng H, Xu G, Wen H, Xu P. Shellfish polysaccharides: A comprehensive review of extraction, purification, structural characterization, and beneficial health effects. Int J Biol Macromol 2024; 279:135190. [PMID: 39216565 DOI: 10.1016/j.ijbiomac.2024.135190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 07/25/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Global food systems are currently facing great challenges, such as food sources, food safety, and environmental crises. Alternative nutritional resources have been proposed as part of the solution to meeting future global food demand. In the natural resources, shellfish are the major component of global aquatic animals. Although most studies focus on the allergy, toxin, and contamination of shellfish, it is also a delicious food to the human diet rich in proteins, polysaccharides, minerals, and omega-3. Among the functional ingredients, shellfish polysaccharides possess nutritional and medicinal values that arouse the great interest of researchers. The selection of the extraction approach and the experimental condition are the key factors that influence the extraction efficiency of shellfish polysaccharides. Importantly, the purification of crude polysaccharides comprises the enrichment of shellfish polysaccharides and isolation of fractions, also resulting in various structural characteristics and physicochemical properties. Chemical modification is also an efficient method to further improve the biological activities of shellfish polysaccharides. This review summarizes the extraction, purification, structural characterization, and chemical modification methods for shellfish polysaccharides. Additionally, the beneficial health effects of shellfish polysaccharides are highlighted, with an emphasis on their potential mechanism. Finally, current challenges and perspectives on shellfish polysaccharides are also spotlighted.
Collapse
Affiliation(s)
- Wanwen Chen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Xueyan Ma
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Hao Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Gangchun Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China
| | - Haibo Wen
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| | - Pao Xu
- Key Laboratory of Integrated Rice-Fish Farming Ecology, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China; Wuxi Fisheries College, Nanjing Agricultural University, Wuxi, Jiangsu, China; Sino-US Cooperative International Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi, Jiangsu, China.
| |
Collapse
|
47
|
Xiong S, Tao P, Yu Y, Wu W, Li Y, Chen G, Si J, Yang H. Effect of Polygonatum cyrtonema Hua polysaccharides on gluten structure, in vitro digestion and shelf-life of fresh wet noodle. Int J Biol Macromol 2024; 279:135475. [PMID: 39260637 DOI: 10.1016/j.ijbiomac.2024.135475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/13/2024]
Abstract
This study aimed to investigate the effects of raw Polygonatum cyrtonema Hua polysaccharides (RPCPs) and "zhi" P. cyrtonema Hua polysaccharides (ZPCPs) on the gluten structure, in vitro digestion, and shelf life of fresh wet noodles (FWN). The results demonstrated that incorporating PCPs improved the cooking and sensory qualities of FWN. Moreover, the shelf life of FWN was extended by 6 days with 1.5 % RPCPs (w/w) compared with the control FWN. Furthermore, incorporating 1.5 % ZPCPs led to a 1.2- and 0.2-fold increase in the disulfide bond and α-helix content, respectively, compared with the control FWN. This resulted in enhanced gluten structure, improved springiness and viscidity, and reduced cooking loss by 14.47 %-52.19 %. The scanning electron microscopy analysis revealed that the starch particles were entrapped by PCPs, leading to higher gelatinization temperature and lower setback value of FWN, thereby reducing the starch digestion ratio to 55.50 %. In summary, the findings suggested that FWN containing PCPs can extend shelf life, improve taste, and slow starch digestion staple.
Collapse
Affiliation(s)
- Siqing Xiong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Pengcheng Tao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanguo Yu
- Hemudu Yuanguo Agricultural Products Development Co., Ltd, Yuyao 315414, China
| | - Wenbing Wu
- Hunan Fenggu Food Technology Co., Ltd, Loudi 417612, China
| | - Yongxin Li
- College of Food and Health, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Gang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Huqing Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
48
|
Lu Y, Qin L, Mao Y, Lnong X, Wei Q, Su J, Chen S, Wei Z, Wang L, Liao X, Zhao L. Antibacterial activity of a polysaccharide isolated from litchi (Litchi chinensis Sonn.) pericarp against Staphylococcus aureus and the mechanism investigation. Int J Biol Macromol 2024; 279:134788. [PMID: 39173786 DOI: 10.1016/j.ijbiomac.2024.134788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/24/2024]
Abstract
The long-term use of antibiotics can cause drug resistance. Natural polysaccharides are a novel means of treating bacterial infections, and the development and utilization of litchi pericarp polysaccharide (LPPs) as a bacteriostatic active substance offer a new research direction for the high-value utilization of litchi by-products. This study revealed that LPPs inhibited Staphylococcus aureus more than Escherichia coli, Listeria monocytogenes, and Salmonella typhimurium, with the minimum inhibitory concentrations of 145, 205, 325, and 445 μg/mL, respectively. The inhibitory activity of LPPs was insignificant for Bacillus subtilis at 505 μg/mL. The assessment of antibacterial mechanisms revealed that LPPs influenced the growth, conductivity, protein, and nucleic acid, reducing sugar, respiratory chain dehydrogenase activity, bacterial lipid peroxidation, intracellular adenosine triphosphate, and extracellular alkaline phosphatase levels of S. aureus. Of note, LPPs could modify the cell wall integrity and cell membrane permeability of S. aureus, resulting in the leakage of intracellular large and small molecules, inhibition of cellular respiratory metabolism, and oxidative losses. These processes exhibited an inhibitory effect and made the bacterium nonfunctional, thereby affecting its growth and metabolism or causing cell death. These findings provide support and insights into the potential application of LPPs as a natural antimicrobial agent.
Collapse
Affiliation(s)
- Yucui Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China
| | - Linyin Qin
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yuanhui Mao
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xianmei Lnong
- Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Qianni Wei
- Beihai Vocational College, Beihai 536000, China
| | - Junwen Su
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Shuwen Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Zhongshi Wei
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Lijing Wang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Xiayun Liao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| | - Lichun Zhao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; Institute of Traditional Chinese and Zhuang-Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China; Guangxi Key Laboratory of Homologous Resources Development of Medicine and Food, Nanning 530200, China.
| |
Collapse
|
49
|
Wang J, Xu X, Zou X, Zhang R, Jia X, Dong L, Deng M, Zhang M, Huang F. Effect of ultrasound assisted H 2O 2 degradation on longan polysaccharide: degradation kinetics, physicochemical properties and prebiotic activity. Int J Biol Macromol 2024; 282:136902. [PMID: 39471915 DOI: 10.1016/j.ijbiomac.2024.136902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/23/2024] [Accepted: 10/23/2024] [Indexed: 11/01/2024]
Abstract
This study aimed to investigate the effect of ultrasound-assisted H2O2 (US/H2O2) reaction on degradation parameters and kinetics, physicochemical properties and prebiotic activity of longan polysaccharide (LP). Results showed that US/H2O2 had a synergistic effect on the degradation of LP, and its kinetic equation followed to the fist - order model. US/H2O2 degradation did not change the chemical and monosaccharide composition of LP but altered their ratio. Compared with LP, three degraded polysaccharides (DLPs) displayed lower molecular weight, particle size and viscosity, but higher solubility. SEM and AFM revealed that US/H2O2 degradation led to significant differences in the microstructure and solution conformation of LP. Moreover, LP and DLPs showed different proliferation effects on four lactobacilli and bifidobacteria strains, among which DLP-8 (degraded for 8 h) exhibited the strongest prebiotic activity. US/H2O2 could be effectively applied to the degradation of LP to improve its physicochemical properties and bioactivities.
Collapse
Affiliation(s)
- Jidongtian Wang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiang Xu
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaoqin Zou
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mei Deng
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China; Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China.
| |
Collapse
|
50
|
Shen Y, Zhao H, Wang X, Wu S, Wang Y, Wang C, Zhang Y, Zhao H. Unraveling the web of defense: the crucial role of polysaccharides in immunity. Front Immunol 2024; 15:1406213. [PMID: 39524445 PMCID: PMC11543477 DOI: 10.3389/fimmu.2024.1406213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
The great potential of polysaccharides in immunological regulation has recently been highlighted in pharmacological and clinical studies. Polysaccharides can trigger immunostimulatory responses through molecular identification, intra- and intercellular communication via direct or indirect interactions with the immune system. Various immunostimulatory polysaccharides or their derivative compounds interacts at cellular level to boost the immune system, including arabinogalactans, fucoidans, mannans, xylans, galactans, hyaluronans, fructans, pectin and arabinogalactans, etc. These natural polysaccharides are derived from various plants, animals and microbes. A unique structural diversity has been identified in polysaccharides, while monosaccharides and glucosidic bonds mainly confer diverse biological activities. These natural polysaccharides improve antioxidant capacity, reduce the production of pro-inflammatory mediators, strengthen the intestinal barrier, influence the composition of intestinal microbial populations and promote the synthesis of short-chain fatty acids. These natural polysaccharides are also known to reduce excessive inflammatory responses. It is crucial to develop polysaccharide-based immunomodulators that could be used to prevent or treat certain diseases. This review highlights the structural features, immunomodulatory properties, underlying immunomodulatory mechanisms of naturally occurring polysaccharides, and activities related to immune effects by elucidating a complex relationship between polysaccharides and immunity. In addition, the future of these molecules as potential immunomodulatory components that could transform pharmaceutical applications at clinical level will also be highlighted.
Collapse
Affiliation(s)
- Yu Shen
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hongbo Zhao
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Xuefeng Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Shihao Wu
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yuliang Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Chaoxing Wang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Yu Zhang
- College of Pharmacy, Jiamusi University, Jiamusi, China
| | - Hong Zhao
- College of Pharmacy, Jiamusi University, Jiamusi, China
| |
Collapse
|