1
|
Zhang Y, Li J, Pan J, Deng S. Research progress of two-pore potassium channel in myocardial ischemia-reperfusion injury. Front Physiol 2024; 15:1473501. [PMID: 39534859 PMCID: PMC11554511 DOI: 10.3389/fphys.2024.1473501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a secondary injury caused by restoring blood flow after acute myocardial infarction, which may lead to serious arrhythmia and heart damage. In recent years, the role of potassium channels in MIRI has attracted much attention, especially the members of the two-pore domain potassium (K2P) channel family. K2P channel has unique structure and function, and the formation of its heterodimer increases its functional diversity. This paper reviews the structural characteristics, types, expression and physiological functions of K2P channel in the heart. In particular, we pay attention to whether members of the subfamily such as TWIK, TREK, TASK, TALK, THIK and TRESK participate in MIRI and their related mechanisms. Future research will help to reveal the molecular mechanism of K2P channel in MIRI and provide new strategies for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
| | | | | | - Shengli Deng
- Department of Anesthesiology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
2
|
Zhang Y, Li R, Jiang H, Hou Y, Zhang Y, Meng X, Wang X. Salidroside modulates repolarization through stimulating Kv2.1 in rats. Eur J Pharmacol 2024; 977:176741. [PMID: 38880221 DOI: 10.1016/j.ejphar.2024.176741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/25/2024] [Accepted: 06/13/2024] [Indexed: 06/18/2024]
Abstract
BACKGROUND Voltage-gated potassium (Kv) channel growth is strongly associated with the development of arrhythmia. Salidroside (Sal), an active component from Rhodiola crenulata, has been shown to exert protective effects against heart disease. The present study was conducted to investigate the effects of Sal on Kv2.1 channel, and to explore the ionic mechanism of anti-arrhythmic. METHODS In this study, we utilized cisapride (Cis., A stimulant that prolongs the QT interval and causes cardiac arrhythmias) by intravenous injection to establish an arrhythmia model, and detected the effects of Sal on electrocardiography (ECG) and pressure volume loop (P-V loop) in SD rats. The effect of Sal on ECG of citalopram (Cit., a Kv2 channel inhibition)-evoked arrhythmia rat models was further evaluated by monitoring the dynamic changes of multiple indicators of ECG. Then, we detected the effect of Sal on the viability of hypoxic H9c2 cells using CCK-8 assay. After that, the effect of Sal on Kv channel currents (IKv) and Kv2.1 channel currents (IKv2.1) in H9c2 cells under normal and hypoxic conditions was examined using whole-cell patch clamp technique. In addition, the effect of Sal on IKv and IKv2.1 in H9c2 cells was determined under the inhibition of Kv and Kv2.1 channels. HEK293 cells stably transfected with Kv2.1 plasmids were also used to investigate the IKv2.1 changes under Sal pre-treated and co-incubated conditions. In addition, potential interactions of Sal with Kv2.1 protein were predicted and tested by molecular docking, molecular dynamics simulation (MDS), localized surface plasmon resonance (LSPR), and cellular thermal shift assay (CETSA) techniques, respectively. Furthermore, gene and protein levels of Kv2.1 in Sal-treated H9c2 cell were estimated by qRT-PCR, Western blot (WB) and immunofluorescence (IF) analysis. RESULTS Sal shortened the prolongated QT interval and ameliorated the cardiac impairment associated with arrhythmia in SD rats caused by Cis., as reflected in the ECG and P-V loop data. And Sal was also protective against arrhythmia in rats caused by Kv2 channel inhibition. At the cellular level, Sal increased cell viability after CoCl2-induced hypoxic injury in H9c2 cells. Whole-cell patch clamp assay confirmed that Sal inhibited both IKv and IKv2.1 in normal H9c2 cells, while enhanced IKv and IKv2.1 in cardiomyocytes after hypoxic injury. And Sal enhanced IKv inhibited by 1.5 mM 4-AP and upregulated all inhibition of Kv2 channels induced by 20 mM 4-AP administration, antagonized the IKv2.1 inhibitory effect of Cit. Moreover, Sal pre-administration for 24 h and immediate administration increased IKv2.1 in HEK293 cells stably transfected with Kv2.1 plasmids. Molecular docking demonstrated the potential binding of Sal to the Kv2.1 protein, with calculated binding energy of -5.4 kcal/mol. MDS test illustrated that the average hydrogen bonding of the Sal-Kv2.1 complexes was 30.89%. LSPR results verified the potential binding of Sal to Kv2.1 protein with an affinity value of 9.95 × 10-4 M. CETSA assay confirmed Sal can enhance the expression of Kv2.1 protein in H9c2 cells treated with heat, which suggests that Sal may bind to Kv2.1 protein. The results of WB, qRT-PCR, and IF further argued that Sal pre-administration for 24 h enhanced the levels of the Kv2.1 gene and protein (with no effects on the Kv2.1 gene and protein for H9c2 cells co-incubated with Sal for 6 h and 12 h). CONCLUSION Overall, our findings indicate that Sal can resist drug-induced arrhythmias in SD rats, partially by modulating repolarization through stimulating Kv2.1.
Collapse
Affiliation(s)
- Yating Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
| | - Rui Li
- Research Service Office, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620000, China
| | - Hong Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Service Office, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620000, China
| | - Ya Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Yi Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Xianli Meng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy/School of Modern Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Service Office, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620000, China.
| | - Xiaobo Wang
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China; Research Service Office, Meishan Hospital of Chengdu University of Traditional Chinese Medicine, Meishan, 620000, China.
| |
Collapse
|
3
|
Chapotte-Baldacci CA, Pierre M, Djemai M, Pouliot V, Chahine M. Biophysical properties of Na V1.5 channels from atrial-like and ventricular-like cardiomyocytes derived from human induced pluripotent stem cells. Sci Rep 2023; 13:20685. [PMID: 38001331 PMCID: PMC10673932 DOI: 10.1038/s41598-023-47310-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Generating atrial-like cardiomyocytes derived from human induced pluripotent stem cells (hiPSCs) is crucial for modeling and treating atrial-related diseases, such as atrial arrythmias including atrial fibrillations. However, it is essential to obtain a comprehensive understanding of the electrophysiological properties of these cells. The objective of the present study was to investigate the molecular, electrical, and biophysical properties of several ion channels, especially NaV1.5 channels, in atrial hiPSC cardiomyocytes. Atrial cardiomyocytes were obtained by the differentiation of hiPSCs treated with retinoic acid (RA). The quality of the atrial specification was assessed by qPCR, immunocytofluorescence, and western blotting. The electrophysiological properties of action potentials (APs), Ca2+ dynamics, K+ and Na+ currents were investigated using patch-clamp and optical mapping approaches. We evaluated mRNA transcript and protein expressions to show that atrial cardiomyocytes expressed higher atrial- and sinoatrial-specific markers (MYL7, CACNA1D) and lower ventricular-specific markers (MYL2, CACNA1C, GJA1) than ventricular cardiomyocytes. The amplitude, duration, and steady-state phase of APs in atrial cardiomyocytes decreased, and had a shape similar to that of mature atrial cardiomyocytes. Interestingly, NaV1.5 channels in atrial cardiomyocytes exhibited lower mRNA transcripts and protein expression, which could explain the lower current densities recorded by patch-clamp. Moreover, Na+ currents exhibited differences in activation and inactivation parameters. These differences could be explained by an increase in SCN2B regulatory subunit expression and a decrease in SCN1B and SCN4B regulatory subunit expressions. Our results show that a RA treatment made it possible to obtain atrial cardiomyocytes and investigate differences in NaV1.5 channel properties between ventricular- and atrial-like cells.
Collapse
Affiliation(s)
- Charles-Albert Chapotte-Baldacci
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Marion Pierre
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohammed Djemai
- Department of Medicine, Laval University, Quebec City, QC, Canada
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Valérie Pouliot
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada
| | - Mohamed Chahine
- CERVO Brain Research Centre, 2601, chemin de la Canardière, Quebec City, QC, G1J 2G3, Canada.
| |
Collapse
|
4
|
Shen R, Zuo D, Chen K, Yin Y, Tang K, Hou S, Han B, Xu Y, Liu Z, Chen H. K2P1 leak cation channels contribute to ventricular ectopic beats and sudden death under hypokalemia. FASEB J 2022; 36:e22455. [PMID: 35899468 DOI: 10.1096/fj.202200707r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/28/2022] [Accepted: 07/06/2022] [Indexed: 11/11/2022]
Abstract
Hypokalemia causes ectopic heartbeats, but the mechanisms underlying such cardiac arrhythmias are not understood. In reduced serum K+ concentrations that occur under hypokalemia, K2P1 two-pore domain K+ channels change ion selectivity and switch to conduct inward leak cation currents, which cause aberrant depolarization of resting potential and induce spontaneous action potential of human cardiomyocytes. K2P1 is expressed in the human heart but not in mouse hearts. We test the hypothesis that K2P1 leak cation channels contribute to ectopic heartbeats under hypokalemia, by analysis of transgenic mice, which conditionally express induced K2P1 specifically in hearts, mimicking K2P1 channels in the human heart. Conditional expression of induced K2P1 specifically in the heart of hypokalemic mice results in multiple types of ventricular ectopic beats including single and multiple ventricular premature beats as well as ventricular tachycardia and causes sudden death. In isolated mouse hearts that express induced K2P1, sustained ventricular fibrillation occurs rapidly after perfusion with low K+ concentration solutions that mimic hypokalemic conditions. These observed phenotypes occur rarely in control mice or in the hearts that lack K2P1 expression. K2P1-expressing mouse cardiomyocytes of transgenic mice much more frequently fire abnormal single and/or rhythmic spontaneous action potential in hypokalemic conditions, compared to wild type mouse cardiomyocytes without K2P1 expression. These findings confirm that K2P1 leak cation channels induce ventricular ectopic beats and sudden death of transgenic mice with hypokalemia and imply that K2P1 leak cation channels may play a critical role in human ectopic heartbeats under hypokalemia.
Collapse
Affiliation(s)
- Rongrong Shen
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Dongchuan Zuo
- Key Laboratory of Medical Electrophysiology, Institute of Cardiovascular Research, Ministry of Education, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease, Southwest Medical University, Luzhou, China.,Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| | - Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA.,Department of Pharmacology, Ningbo University School of Medicine, Ningbo, China
| | - Yiheng Yin
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Kai Tang
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Shangwei Hou
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Han
- Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yawei Xu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Pan-Vascular Research Institute, Heart, Lung, and Blood Center, Tongji University School of Medicine, Shanghai, China.,Cryo-Electron Microscopy Center, Southern University of Science and Technology, Shenzhen, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
5
|
Progesterone Changes the Pregnancy-Induced Adaptation of Cardiomyocyte Kv2.1 Channels via MicroRNA-29b. Cardiovasc Ther 2022; 2022:7145699. [PMID: 35474714 PMCID: PMC9010150 DOI: 10.1155/2022/7145699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/26/2022] [Accepted: 03/07/2022] [Indexed: 11/17/2022] Open
Abstract
The cardiovascular system adaptation occurs during pregnancy to ensure adequate maternal circulation. Progesterone (P4) is widely used in hormone therapy to support pregnancy, but little is known about its effects on maternal cardiac function. In this study, we investigated the cardiac repolarization and ion channel expression in pregnant subjects and mice models and studied the effects of P4 administrations on these pregnancy-mediated adaptations. P4 administrations shortened the prolongation of QTC intervals and action potential duration (APD) that occurred during pregnancy, which was mainly attributable to the reduction in the voltage-gated potassium (Kv) current under basal conditions. In vitro studies indicated that P4 regulated the Kv2.1 channel in a bidirectional manner. At a low dose (1 μM), P4 induced upregulation of Kv2.1 through P4 receptor, while at a higher dose (5 μM), P4 downregulated Kv2.1 by targeting microRNA-29b (miR-29b). Our data showed that P4 modulated maternal cardiac repolarization by regulating Kv2.1 channel activity during pregnancy. Kv2.1, as well as miR-29b, might be used as potential therapeutic targets for adaptations of the maternal cardiovascular system or evaluation of progesterone medication during pregnancy.
Collapse
|
6
|
Bae H, Kim T, Lim I. Carbon monoxide activation of delayed rectifier potassium currents of human cardiac fibroblasts through diverse pathways. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2022; 26:25-36. [PMID: 34965993 PMCID: PMC8723981 DOI: 10.4196/kjpp.2022.26.1.25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 06/14/2023]
Abstract
To identify the effect and mechanism of carbon monoxide (CO) on delayed rectifier K+ currents (IK) of human cardiac fibroblasts (HCFs), we used the wholecell mode patch-clamp technique. Application of CO delivered by carbon monoxidereleasing molecule-3 (CORM3) increased the amplitude of outward K+ currents, and diphenyl phosphine oxide-1 (a specific IK blocker) inhibited the currents. CORM3- induced augmentation was blocked by pretreatment with nitric oxide synthase blockers (L-NG-monomethyl arginine citrate and L-NG-nitro arginine methyl ester). Pretreatment with KT5823 (a protein kinas G blocker), 1H-[1,-2,-4] oxadiazolo-[4,-3-a] quinoxalin-1-on (ODQ, a soluble guanylate cyclase blocker), KT5720 (a protein kinase A blocker), and SQ22536 (an adenylate cyclase blocker) blocked the CORM3 stimulating effect on IK. In addition, pretreatment with SB239063 (a p38 mitogen-activated protein kinase [MAPK] blocker) and PD98059 (a p44/42 MAPK blocker) also blocked the CORM3's effect on the currents. When testing the involvement of S-nitrosylation, pretreatment of N-ethylmaleimide (a thiol-alkylating reagent) blocked CO-induced IK activation and DL-dithiothreitol (a reducing agent) reversed this effect. Pretreatment with 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)-21H,23H porphyrin manganese (III) pentachloride and manganese (III) tetrakis (4-benzoic acid) porphyrin chloride (superoxide dismutase mimetics), diphenyleneiodonium chloride (an NADPH oxidase blocker), or allopurinol (a xanthine oxidase blocker) also inhibited CO-induced IK activation. These results suggest that CO enhances IK in HCFs through the nitric oxide, phosphorylation by protein kinase G, protein kinase A, and MAPK, S-nitrosylation and reduction/oxidation (redox) signaling pathways.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, Seoul 06973, Korea
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, Seoul 06974, Korea
| |
Collapse
|
7
|
van Duijvenboden S, Ramírez J, Young WJ, Orini M, Mifsud B, Tinker A, Lambiase PD, Munroe PB. Genomic and pleiotropic analyses of resting QT interval identifies novel loci and overlap with atrial electrical disorders. Hum Mol Genet 2021; 30:2513-2523. [PMID: 34274964 PMCID: PMC8643508 DOI: 10.1093/hmg/ddab197] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/26/2021] [Accepted: 06/17/2021] [Indexed: 11/13/2022] Open
Abstract
The resting QT interval, an electrocardiographic (ECG) measure of ventricular myocardial repolarization, is a heritable risk marker of cardiovascular mortality, but the mechanisms remain incompletely understood. Previously reported candidate genes have provided insights into the regulatory mechanisms of the QT interval. However, there are still important knowledge gaps. We aimed to gain new insights by (i) providing new candidate genes, (ii) identifying pleiotropic associations with other cardiovascular traits, and (iii) scanning for sexually dimorphic genetic effects. We conducted a genome-wide association analysis for resting QT interval with ~9.8 million variants in 52 107 individuals of European ancestry without known cardiovascular disease from the UK Biobank. We identified 40 loci, 13 of which were novel, including 2 potential sex-specific loci, explaining ~11% of the trait variance. Candidate genes at novel loci were involved in myocardial structure and arrhythmogenic cardiomyopathy. Investigation of pleiotropic effects of QT interval variants using phenome-wide association analyses in 302 000 unrelated individuals from the UK Biobank and pairwise genome-wide comparisons with other ECG and cardiac imaging traits revealed genetic overlap with atrial electrical pathology. These findings provide novel insights into how abnormal myocardial repolarization and increased cardiovascular mortality may be linked.
Collapse
Affiliation(s)
- Stefan van Duijvenboden
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Julia Ramírez
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - William J Young
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- Barts Heart Centre, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Michele Orini
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
| | - Borbala Mifsud
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha PO 34110, Qatar
| | - Andrew Tinker
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Pier D Lambiase
- Institute of Cardiovascular Science, University College London, London WC1E 6BT, UK
- Barts Heart Centre, St Bartholomew’s Hospital, London EC1A 7BE, UK
| | - Patricia B Munroe
- Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
- NIHR Barts Cardiovascular Biomedical Research Unit, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| |
Collapse
|
8
|
Schmid C, Abi-Gerges N, Leitner MG, Zellner D, Rast G. Ion Channel Expression and Electrophysiology of Singular Human (Primary and Induced Pluripotent Stem Cell-Derived) Cardiomyocytes. Cells 2021; 10:3370. [PMID: 34943878 PMCID: PMC8699770 DOI: 10.3390/cells10123370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 01/19/2023] Open
Abstract
Subtype-specific human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) are promising tools, e.g., to assess the potential of drugs to cause chronotropic effects (nodal hiPSC-CMs), atrial fibrillation (atrial hiPSC-CMs), or ventricular arrhythmias (ventricular hiPSC-CMs). We used single-cell patch-clamp reverse transcriptase-quantitative polymerase chain reaction to clarify the composition of the iCell cardiomyocyte population (Fujifilm Cellular Dynamics, Madison, WI, USA) and to compare it with atrial and ventricular Pluricytes (Ncardia, Charleroi, Belgium) and primary human atrial and ventricular cardiomyocytes. The comparison of beating and non-beating iCell cardiomyocytes did not support the presence of true nodal, atrial, and ventricular cells in this hiPSC-CM population. The comparison of atrial and ventricular Pluricytes with primary human cardiomyocytes showed trends, indicating the potential to derive more subtype-specific hiPSC-CM models using appropriate differentiation protocols. Nevertheless, the single-cell phenotypes of the majority of the hiPSC-CMs showed a combination of attributes which may be interpreted as a mixture of traits of adult cardiomyocyte subtypes: (i) nodal: spontaneous action potentials and high HCN4 expression and (ii) non-nodal: prominent INa-driven fast inward current and high expression of SCN5A. This may hamper the interpretation of the drug effects on parameters depending on a combination of ionic currents, such as beat rate. However, the proven expression of specific ion channels supports the evaluation of the drug effects on ionic currents in a more realistic cardiomyocyte environment than in recombinant non-cardiomyocyte systems.
Collapse
Affiliation(s)
- Christina Schmid
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
- Food Chemistry and Toxicology, Department of Chemistry, University of Kaiserslautern, 67663 Kaiserslautern, Germany
| | | | - Michael Georg Leitner
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| | - Dietmar Zellner
- Non-Clinical Statistics, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany
| | - Georg Rast
- Drug Discovery Sciences, Boehringer Ingelheim Pharma GmbH & Co. KG, 88397 Biberach, Germany; (M.G.L.); (G.R.)
| |
Collapse
|
9
|
Two-Pore-Domain Potassium (K 2P-) Channels: Cardiac Expression Patterns and Disease-Specific Remodelling Processes. Cells 2021; 10:cells10112914. [PMID: 34831137 PMCID: PMC8616229 DOI: 10.3390/cells10112914] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 12/23/2022] Open
Abstract
Two-pore-domain potassium (K2P-) channels conduct outward K+ currents that maintain the resting membrane potential and modulate action potential repolarization. Members of the K2P channel family are widely expressed among different human cell types and organs where they were shown to regulate important physiological processes. Their functional activity is controlled by a broad variety of different stimuli, like pH level, temperature, and mechanical stress but also by the presence of lipids or pharmacological agents. In patients suffering from cardiovascular diseases, alterations in K2P-channel expression and function have been observed, suggesting functional significance and a potential therapeutic role of these ion channels. For example, upregulation of atrial specific K2P3.1 (TASK-1) currents in atrial fibrillation (AF) patients was shown to contribute to atrial action potential duration shortening, a key feature of AF-associated atrial electrical remodelling. Therefore, targeting K2P3.1 (TASK-1) channels might constitute an intriguing strategy for AF treatment. Further, mechanoactive K2P2.1 (TREK-1) currents have been implicated in the development of cardiac hypertrophy, cardiac fibrosis and heart failure. Cardiovascular expression of other K2P channels has been described, functional evidence in cardiac tissue however remains sparse. In the present review, expression, function, and regulation of cardiovascular K2P channels are summarized and compared among different species. Remodelling patterns, observed in disease models are discussed and compared to findings from clinical patients to assess the therapeutic potential of K2P channels.
Collapse
|
10
|
Jiang X, Cheng H, Huang J, Cui C, Zhu Y, Lin Y, Miao W, Liu H, Chen H, Ju W, Chen M. Construction of chamber-specific engineered cardiac tissues in vitro with human iPSC-derived cardiomyocytes and human foreskin fibroblasts. J Biosci Bioeng 2021; 132:198-205. [PMID: 34074596 DOI: 10.1016/j.jbiosc.2021.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/12/2021] [Accepted: 04/26/2021] [Indexed: 11/19/2022]
Abstract
Human-induced pluripotent stem cell (hiPSC) technology and directed cardiac differentiation technology can provide a continuous supply of cells for disease modeling, drug screening, and cell therapy. However, two-dimensional (2D) cells often fail to faithfully reflect the physiological structure and function of the heart. Considering the contractile function is the most critical and easy-to-understand function of cardiomyocytes, the engineered cardiac tissues (ECT) with mechanical properties may serve as an appropriate three-dimensional (3D) platform for drug evaluation. At present, there are various methods to generate ECTs, some of which are quite costly. In the present study, we proposed that human foreskin fibroblast (HFF) cells, as a cost-effective and accessible cell source, can promote the compaction and remodeling of ECTs. The HFFs derived ECTs displayed stable structural and functional characteristics with a higher performance-to-price ratio. Moreover, both ECTs made from atrial and ventricular cardiomyocytes showed an excellent drug response, demonstrating that the ECT with HFFs as an easy and reliable platform for drug evaluation.
Collapse
Affiliation(s)
- Xiaohong Jiang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongyi Cheng
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jiayi Huang
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Chang Cui
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yue Zhu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yongping Lin
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weilun Miao
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hailei Liu
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongwu Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Weizhu Ju
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Minglong Chen
- Division of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
11
|
Li Z, Bai X, Han L, Han W, Hu W. Association Between Left Atrial Volume Index and Ventricular Repolarization Heterogeneity: A Cross-Sectional Study of a Healthy Chinese Population. Int J Gen Med 2021; 14:2117-2125. [PMID: 34079353 PMCID: PMC8166315 DOI: 10.2147/ijgm.s310220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/30/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Electromechanical coupling may play a significant role in the association between abnormal myocardial mechanics and heterogeneity of repolarization. This study sought to assess the potential relationship between the left atrial volume index (LAVI), which is an important marker of cardiac diastolic function, and ventricular repolarization variables, such as the QT interval, Tpeak-to-Tend (Tpe) interval and Tpe/QT ratio, in an apparently healthy Chinese population. METHODS This was a community-based cross-sectional study conducted in Shenyang, China. A total of 414 healthy subjects aged 35-91 years, including 186 men (44.9%), were enrolled. In addition to performing clinical and laboratory measurements, all subjects underwent comprehensive echocardiography and standard 12-lead electrocardiography. Echocardiographic and electrocardiographic results were analysed separately and in a blinded fashion. Correlation and regression analyses were applied to determine associations. RESULTS Subjects were divided into four groups according to quartile of LAVI levels (<16.0, 16.0-18.9, 19.0-22.5 and >22.5 mL/m2). Ventricular repolarization variables, such as QT interval and QTc interval, gradually increased with the progression from low to high LAVI levels (P<0.05). LAVI was positively and significantly correlated with the QT interval, the QTc interval, and the Tpe interval (P<0.01). After adjusting for age and other possible confounders, LAVI showed significant and independent associations with the QT interval and the QTc interval (P<0.001; P=0.003). CONCLUSION Echocardiographic LAVI is linearly associated with ventricular repolarization variables even in healthy people.
Collapse
Affiliation(s)
- Zhidan Li
- Department of Ultrasound, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Xiaojuan Bai
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lulu Han
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Wen Han
- Department of Gerontology and Geriatrics, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Weina Hu
- Department of Cardiology, The Fourth Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
12
|
Blatter LA, Kanaporis G, Martinez-Hernandez E, Oropeza-Almazan Y, Banach K. Excitation-contraction coupling and calcium release in atrial muscle. Pflugers Arch 2021; 473:317-329. [PMID: 33398498 DOI: 10.1007/s00424-020-02506-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/03/2020] [Accepted: 12/16/2020] [Indexed: 01/02/2023]
Abstract
In cardiac muscle, the process of excitation-contraction coupling (ECC) describes the chain of events that links action potential induced myocyte membrane depolarization, surface membrane ion channel activation, triggering of Ca2+ induced Ca2+ release from the sarcoplasmic reticulum (SR) Ca2+ store to activation of the contractile machinery that is ultimately responsible for the pump function of the heart. Here we review similarities and differences of structural and functional attributes of ECC between atrial and ventricular tissue. We explore a novel "fire-diffuse-uptake-fire" paradigm of atrial ECC and Ca2+ release that assigns a novel role to the SR SERCA pump and involves a concerted "tandem" activation of the ryanodine receptor Ca2+ release channel by cytosolic and luminal Ca2+. We discuss the contribution of the inositol 1,4,5-trisphosphate (IP3) receptor Ca2+ release channel as an auxiliary pathway to Ca2+ signaling, and we review IP3 receptor-induced Ca2+ release involvement in beat-to-beat ECC, nuclear Ca2+ signaling, and arrhythmogenesis. Finally, we explore the topic of electromechanical and Ca2+ alternans and its ramifications for atrial arrhythmia.
Collapse
Affiliation(s)
- L A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA.
| | - G Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - E Martinez-Hernandez
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - Y Oropeza-Almazan
- Department of Physiology & Biophysics, Rush University Medical Center, 1750 W. Harrison Street, Chicago, IL, 60612, USA
| | - K Banach
- Department of Internal Medicine/Cardiology, Rush University Medical Center, Chicago, IL, 60612, USA
| |
Collapse
|
13
|
Varró A, Tomek J, Nagy N, Virág L, Passini E, Rodriguez B, Baczkó I. Cardiac transmembrane ion channels and action potentials: cellular physiology and arrhythmogenic behavior. Physiol Rev 2020; 101:1083-1176. [PMID: 33118864 DOI: 10.1152/physrev.00024.2019] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Cardiac arrhythmias are among the leading causes of mortality. They often arise from alterations in the electrophysiological properties of cardiac cells and their underlying ionic mechanisms. It is therefore critical to further unravel the pathophysiology of the ionic basis of human cardiac electrophysiology in health and disease. In the first part of this review, current knowledge on the differences in ion channel expression and properties of the ionic processes that determine the morphology and properties of cardiac action potentials and calcium dynamics from cardiomyocytes in different regions of the heart are described. Then the cellular mechanisms promoting arrhythmias in congenital or acquired conditions of ion channel function (electrical remodeling) are discussed. The focus is on human-relevant findings obtained with clinical, experimental, and computational studies, given that interspecies differences make the extrapolation from animal experiments to human clinical settings difficult. Deepening the understanding of the diverse pathophysiology of human cellular electrophysiology will help in developing novel and effective antiarrhythmic strategies for specific subpopulations and disease conditions.
Collapse
Affiliation(s)
- András Varró
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - Jakub Tomek
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Norbert Nagy
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary.,MTA-SZTE Cardiovascular Pharmacology Research Group, Hungarian Academy of Sciences, Szeged, Hungary
| | - László Virág
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - István Baczkó
- Department of Pharmacology and Pharmacotherapy, Faculty of Medicine, University of Szeged, Szeged, Hungary
| |
Collapse
|
14
|
Cheng N, Ren S, Yang JF, Liu XM, Li XT. Carvedilol blockage of delayed rectifier Kv2.1 channels and its molecular basis. Eur J Pharmacol 2019; 855:50-55. [PMID: 31063774 DOI: 10.1016/j.ejphar.2019.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 04/30/2019] [Accepted: 05/03/2019] [Indexed: 11/19/2022]
Abstract
Previous studies indicated that one of the action targets of carvedilol is the voltage-gated potassium (Kv) channel, which has a fundamental role in the control of electrical properties in excitable cells. It is not clear whether this compound exerts any actions specifically on delayed rectifier Kv2.1 channels. The present study is conducted on Kv2.1 currents heterologously expressed in HEK293 cells to characterize the block by carvedilol in detail, identifying molecular determinants and providing biophysical insights of the block. Macroscopic Kv2.1 currents obtained by whole-cell recording were substantially inhibited after addition of carvedilol with an IC50 value of 5.1 μM. This drug also led to a largely hyperpolarizing shift (30 mV) of the inactivation curve, which may contribute to the blocking action due to more inactivation of Kv2.1 currents occurred in depolarization potentials. Mutations at Y380 (a putative TEA binding site) and K356 (a K+ binding site) in the outer vestibule of Kv2.1 channels significantly eliminated the inhibitory effects of carvedilol and prevented the leftward shift of inactivation. Moreover, mutations at above positions modulated the effects of carvedilol on the deactivation but not activation kinetics of Kv2.1 channels. Collected data indicate that carvedilol can exert a blocking effect on the closed-state of Kv2.1 channels, and specific residues within the S5-P and P-S6 linkers in the outer vestibule may play crucial roles in carvedilol-induced blocking for Kv2.1 channels.
Collapse
Affiliation(s)
- Neng Cheng
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Sheng Ren
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Jin-Feng Yang
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xiang-Ming Liu
- GongQing Institute of Science and Technology, Gongqing City, 332020, China
| | - Xian-Tao Li
- College of Life Science, South-Central University for Nationalities, Wuhan, 430074, China.
| |
Collapse
|
15
|
Bae H, Choi J, Kim YW, Lee D, Kim JH, Ko JH, Bang H, Kim T, Lim I. Effects of Nitric Oxide on Voltage-Gated K⁺ Currents in Human Cardiac Fibroblasts through the Protein Kinase G and Protein Kinase A Pathways but Not through S-Nitrosylation. Int J Mol Sci 2018. [PMID: 29534509 PMCID: PMC5877675 DOI: 10.3390/ijms19030814] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study investigated the expression of voltage-gated K+ (KV) channels in human cardiac fibroblasts (HCFs), and the effect of nitric oxide (NO) on the KV currents, and the underlying phosphorylation mechanisms. In reverse transcription polymerase chain reaction, two types of KV channels were detected in HCFs: delayed rectifier K+ channel and transient outward K+ channel. In whole-cell patch-clamp technique, delayed rectifier K+ current (IK) exhibited fast activation and slow inactivation, while transient outward K+ current (Ito) showed fast activation and inactivation kinetics. Both currents were blocked by 4-aminopyridine. An NO donor, S-nitroso-N-acetylpenicillamine (SNAP), increased the amplitude of IK in a concentration-dependent manner with an EC50 value of 26.4 µM, but did not affect Ito. The stimulating effect of SNAP on IK was blocked by pretreatment with 1H-(1,2,4)oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) or by KT5823. 8-bromo-cyclic GMP stimulated the IK. The stimulating effect of SNAP on IK was also blocked by pretreatment with KT5720 or by SQ22536. Forskolin and 8-bromo-cyclic AMP each stimulated IK. On the other hand, the stimulating effect of SNAP on IK was not blocked by pretreatment of N-ethylmaleimide or by DL-dithiothreitol. Our data suggest that NO enhances IK, but not Ito, among KV currents of HCFs, and the stimulating effect of NO on IK is through the PKG and PKA pathways, not through S-nitrosylation.
Collapse
Affiliation(s)
- Hyemi Bae
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jeongyoon Choi
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Young-Won Kim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Donghee Lee
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Jung-Ha Kim
- Department of Family Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Jae-Hong Ko
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Hyoweon Bang
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| | - Taeho Kim
- Department of Internal Medicine, College of Medicine, Chung-Ang University Hospital, 102 Heukseok-ro, Seoul 06973, Korea.
| | - Inja Lim
- Department of Physiology, College of Medicine, Chung-Ang University, 84 Heukseok-ro, Seoul 06974, Korea.
| |
Collapse
|
16
|
Zhang N, Gong M, Tse G, Zhang Z, Meng L, Yan BP, Zhang L, Wu G, Xia Y, Xin-Yan G, Li G, Liu T. Prolonged corrected QT interval in predicting atrial fibrillation: A systematic review and meta-analysis. Pacing Clin Electrophysiol 2018; 41:321-327. [PMID: 29380395 DOI: 10.1111/pace.13292] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 01/04/2018] [Accepted: 01/15/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Corrected QT interval (QTc) on the electrocardiogram is a marker of ventricular repolarization. Recent studies have examined its value in predicting the occurrence of atrial fibrillation (AF). METHODS AND RESULTS We conducted a meta-analysis to determine whether alterations in QTc interval are associated with an increased risk of incident AF. The PUBMED and EMBASE databases were searched for all studies that evaluated the incident AF associated with prolonged QTc interval published before December 2016. Sensitivity and subgroup analysis were subsequently performed. A total of six studies including eight data sets for prolonged QTc interval were eligible. Subjects with prolonged QTc interval as a categorical variable had a significantly higher risk of AF during follow-up (hazard ratio [HR]: 1.16; 95% confidence interval [CI], 1.09-1.24, I2 = 90%) based on Bazett formula. In continuous variable analysis, we found a statistically significant risk for AF (HR, 1.17; 95% CI, 1.09-1.25; I2 = 0) every 10-ms prolongation in QTc. AF type, QTc cut-off value, geographical location, follow-up duration, and study population may be the possible reasons for the significant heterogeneity among the studies. CONCLUSIONS Prolonged QTc interval is associated with an increased risk of AF. And the potential mechanisms underlying this cause-and-effect relationship need further investigation.
Collapse
Affiliation(s)
- Nixiao Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Mengqi Gong
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Gary Tse
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
- School of Health Sciences, University of Manchester, Manchester, United Kingdom
| | - Zhiwei Zhang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Lei Meng
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Bryan P Yan
- Department of Medicine and Therapeutics, Chinese University of Hong Kong, Hong Kong, SAR, P.R. China
- Department of Epidemiology and Preventive Medicine, Monash University, Clayton, VIC, Australia
| | - Ling Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, P.R. China
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, P.R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, P.R. China
| | - Gan Xin-Yan
- Lankenau Institute for Medical Research and Lankenau Medical Center, Wynnewood, PA, USA
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| | - Tong Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, Second Hospital of Tianjin Medical University, Tianjin, P.R. China
| |
Collapse
|
17
|
Kaczmarek LK, Zhang Y. Kv3 Channels: Enablers of Rapid Firing, Neurotransmitter Release, and Neuronal Endurance. Physiol Rev 2017; 97:1431-1468. [PMID: 28904001 PMCID: PMC6151494 DOI: 10.1152/physrev.00002.2017] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/11/2022] Open
Abstract
The intrinsic electrical characteristics of different types of neurons are shaped by the K+ channels they express. From among the more than 70 different K+ channel genes expressed in neurons, Kv3 family voltage-dependent K+ channels are uniquely associated with the ability of certain neurons to fire action potentials and to release neurotransmitter at high rates of up to 1,000 Hz. In general, the four Kv3 channels Kv3.1-Kv3.4 share the property of activating and deactivating rapidly at potentials more positive than other channels. Each Kv3 channel gene can generate multiple protein isoforms, which contribute to the high-frequency firing of neurons such as auditory brain stem neurons, fast-spiking GABAergic interneurons, and Purkinje cells of the cerebellum, and to regulation of neurotransmitter release at the terminals of many neurons. The different Kv3 channels have unique expression patterns and biophysical properties and are regulated in different ways by protein kinases. In this review, we cover the function, localization, and modulation of Kv3 channels and describe how levels and properties of the channels are altered by changes in ongoing neuronal activity. We also cover how the protein-protein interaction of these channels with other proteins affects neuronal functions, and how mutations or abnormal regulation of Kv3 channels are associated with neurological disorders such as ataxias, epilepsies, schizophrenia, and Alzheimer's disease.
Collapse
Affiliation(s)
- Leonard K Kaczmarek
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| | - Yalan Zhang
- Departments of Pharmacology and of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut
| |
Collapse
|
18
|
Zuo D, Chen K, Zhou M, Liu Z, Chen H. Kir2.1 and K2P1 channels reconstitute two levels of resting membrane potential in cardiomyocytes. J Physiol 2017; 595:5129-5142. [PMID: 28543529 DOI: 10.1113/jp274268] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 05/22/2017] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Outward and inward background currents across the cell membrane balance, determining resting membrane potential. Inward rectifier K+ channel subfamily 2 (Kir2) channels primarily maintain the resting membrane potential of cardiomyocytes. Human cardiomyocytes exhibit two levels of resting membrane potential at subphysiological extracellular K+ concentrations or pathological hypokalaemia, however, the underlying mechanism is unclear. In the present study, we show that human cardiomyocytes derived from induced pluripotent stem cells with enhanced expression of isoform 1 of Kir2 (Kir2.1) channels and mouse HL-1 cardiomyocytes with ectopic expression of two pore-domain K+ channel isoform 1 (K2P1) recapitulate two levels of resting membrane potential, indicating the contributions of Kir2.1 and K2P1 channels to the phenomenon. In Chinese hamster ovary cells that express the channels, Kir2.1 currents non-linearly counterbalance hypokalaemia-induced K2P1 leak cation currents, reconstituting two levels of resting membrane potential. These findings support the hypothesis that Kir2 currents non-linearly counterbalance inward background cation currents, such as K2P1 currents, accounting for two levels of resting membrane potential in human cardiomyocytes and demonstrating a novel mechanism that regulates excitability. ABSTRACT Inward rectifier K+ channel subfamily 2 (Kir2) channels primarily maintain the normal resting membrane potential of cardiomyocytes. At subphysiological extracellular K+ concentrations or pathological hypokalaemia, human cardiomyocytes show both hyperpolarized and depolarized resting membrane potentials; these depolarized potentials cause cardiac arrhythmia; however, the underlying mechanism is unknown. In the present study, we show that inward rectifier K+ channel subfamily 2 isoform 1 (Kir2.1) currents non-linearly counterbalance hypokalaemia-induced two pore-domain K+ channel isoform 1 (K2P1) leak cation currents, reconstituting two levels of resting membrane potential in cardiomyocytes. Under hypokalaemic conditions, both human cardiomyocytes derived from induced pluripotent stem cells with enhanced Kir2.1 expression and mouse HL-1 cardiomyocytes with ectopic expression of K2P1 channels recapitulate two levels of resting membrane potential. These cardiomyocytes display N-shaped current-voltage relationships that cross the voltage axis three times and the first and third zero-current potentials match the two levels of resting membrane potential. Inhibition of K2P1 expression eliminates the phenomenon, indicating contributions of Kir2.1 and K2P1 channels to two levels of resting membrane potential. Second, in Chinese hamster ovary cells that heterologously express the channels, Kir2.1 currents non-linearly counterbalance hypokalaemia-induced K2P1 leak cation currents, yielding the N-shaped current-voltage relationships, causing the resting membrane potential to spontaneously jump from hyperpolarization at the first zero-current potential to depolarization at the third zero-current potential, again recapitulating two levels of resting membrane potential. These findings reveal ionic mechanisms of the two levels of resting membrane potential, demonstrating a previously unknown mechanism for the regulation of excitability, and support the hypothesis that Kir2 currents non-linearly balance inward background cation currents, accounting for two levels of resting membrane potential of human cardiomyocytes.
Collapse
Affiliation(s)
- Dongchuan Zuo
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Kuihao Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Min Zhou
- Department of Neuroscience, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zheng Liu
- Department of Cardiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haijun Chen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY, USA
| |
Collapse
|
19
|
Kanaporis G, Blatter LA. Alternans in atria: Mechanisms and clinical relevance. MEDICINA-LITHUANIA 2017; 53:139-149. [PMID: 28666575 DOI: 10.1016/j.medici.2017.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 04/25/2017] [Indexed: 12/29/2022]
Abstract
Atrial fibrillation is the most common sustained arrhythmia and its prevalence is rapidly rising with the aging of the population. Cardiac alternans, defined as cyclic beat-to-beat alternations in contraction force, action potential (AP) duration and intracellular Ca2+ release at constant stimulation rate, has been associated with the development of ventricular arrhythmias. Recent clinical data also provide strong evidence that alternans plays a central role in arrhythmogenesis in atria. The aim of this article is to review the mechanisms that are responsible for repolarization alternans and contribute to the transition from spatially concordant alternans to the more arrhythmogenic spatially discordant alternans in atria.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, USA.
| | - Lothar A Blatter
- Department of Physiology & Biophysics, Rush University Medical Center, Chicago, USA
| |
Collapse
|
20
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
21
|
Christensen AH, Chatelain FC, Huttner IG, Olesen MS, Soka M, Feliciangeli S, Horvat C, Santiago CF, Vandenberg JI, Schmitt N, Olesen SP, Lesage F, Fatkin D. The two-pore domain potassium channel, TWIK-1, has a role in the regulation of heart rate and atrial size. J Mol Cell Cardiol 2016; 97:24-35. [PMID: 27103460 DOI: 10.1016/j.yjmcc.2016.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/11/2016] [Accepted: 04/14/2016] [Indexed: 12/24/2022]
Abstract
The two-pore domain potassium (K(+)) channel TWIK-1 (or K2P1.1) contributes to background K(+) conductance in diverse cell types. TWIK-1, encoded by the KCNK1 gene, is present in the human heart with robust expression in the atria, however its physiological significance is unknown. To evaluate the cardiac effects of TWIK-1 deficiency, we studied zebrafish embryos after knockdown of the two KCNK1 orthologues, kcnk1a and kcnk1b. Knockdown of kcnk1a or kcnk1b individually caused bradycardia and atrial dilation (p<0.001 vs. controls), while ventricular stroke volume was preserved. Combined knockdown of both kcnk1a and kcnk1b resulted in a more severe phenotype, which was partially reversed by co-injection of wild-type human KCNK1 mRNA, but not by a dominant negative variant of human KCNK1 mRNA. To determine whether genetic variants in KCNK1 might cause atrial fibrillation (AF), we sequenced protein-coding regions in two independent cohorts of patients (373 subjects) and identified three non-synonymous variants, p.R171H, p.I198M and p.G236S, that were all located in highly conserved amino acid residues. In transfected mammalian cells, zebrafish and wild-type human TWIK-1 channels had a similar cellular distribution with predominant localization in the endosomal compartment. Two-electrode voltage-clamp experiments using Xenopus oocytes showed that both zebrafish and wild-type human TWIK-1 channels produced K(+) currents that are sensitive to external K(+) concentration as well as acidic pH. There were no effects of the three KCNK1 variants on cellular localization, current amplitude or reversal potential at pH7.4 or pH6. Our data indicate that TWIK-1 has a highly conserved role in cardiac function and is required for normal heart rate and atrial morphology. Despite the functional importance of TWIK-1 in the atrium, genetic variation in KCNK1 is not a common primary cause of human AF.
Collapse
Affiliation(s)
- Alex Hørby Christensen
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Franck C Chatelain
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Inken G Huttner
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Morten Salling Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Magdalena Soka
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Sylvain Feliciangeli
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Claire Horvat
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Celine F Santiago
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia
| | - Jamie I Vandenberg
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia
| | - Nicole Schmitt
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Søren-Peter Olesen
- Danish National Research Foundation Centre for Cardiac Arrhythmia, University of Copenhagen, Copenhagen, Denmark
| | - Florian Lesage
- LabEx ICST, Institut de Pharmacologie Moléculaire et Cellulaire, CNRS, and Université de Nice Sophia-Antipolis, Sophia-Antipolis, Valbonne, France
| | - Diane Fatkin
- Molecular Cardiology Division, Victor Chang Cardiac Research Institute, Darlinghurst, New South Wales, Australia; Faculty of Medicine, University of New South Wales, Kensington, New South Wales, Australia; Cardiology Department, St Vincent's Hospital, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
22
|
Taghli-Lamallem O, Plantié E, Jagla K. Drosophila in the Heart of Understanding Cardiac Diseases: Modeling Channelopathies and Cardiomyopathies in the Fruitfly. J Cardiovasc Dev Dis 2016; 3:jcdd3010007. [PMID: 29367558 PMCID: PMC5715700 DOI: 10.3390/jcdd3010007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 01/23/2016] [Accepted: 02/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cardiovascular diseases and, among them, channelopathies and cardiomyopathies are a major cause of death worldwide. The molecular and genetic defects underlying these cardiac disorders are complex, leading to a large range of structural and functional heart phenotypes. Identification of molecular and functional mechanisms disrupted by mutations causing channelopathies and cardiomyopathies is essential to understanding the link between an altered gene and clinical phenotype. The development of animal models has been proven to be efficient for functional studies in channelopathies and cardiomyopathies. In particular, the Drosophila model has been largely applied for deciphering the molecular and cellular pathways affected in these inherited cardiac disorders and for identifying their genetic modifiers. Here we review the utility and the main contributions of the fruitfly models for the better understanding of channelopathies and cardiomyopathies. We also discuss the investigated pathological mechanisms and the discoveries of evolutionarily conserved pathways which reinforce the value of Drosophila in modeling human cardiac diseases.
Collapse
Affiliation(s)
- Ouarda Taghli-Lamallem
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Emilie Plantié
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| | - Krzysztof Jagla
- GReD (Genetics, Reproduction and Development laboratory), INSERM U1103, CNRS UMR6293, University of Clermont-Ferrand, 28 place Henri-Dunant, 63000 Clermont-Ferrand, France.
| |
Collapse
|
23
|
Identification of Region-Specific Myocardial Gene Expression Patterns in a Chronic Swine Model of Repaired Tetralogy of Fallot. PLoS One 2015; 10:e0134146. [PMID: 26252659 PMCID: PMC4529093 DOI: 10.1371/journal.pone.0134146] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 07/06/2015] [Indexed: 12/20/2022] Open
Abstract
Surgical repair of Tetralogy of Fallot (TOF) is highly successful but may be complicated in adulthood by arrhythmias, sudden death, and right ventricular or biventricular dysfunction. To better understand the molecular and cellular mechanisms of these delayed cardiac events, a chronic animal model of postoperative TOF was studied using microarrays to perform cardiac transcriptomic studies. The experimental study included 12 piglets (7 rTOF and 5 controls) that underwent surgery at age 2 months and were further studied after 23 (+/- 1) weeks of postoperative recovery. Two distinct regions (endocardium and epicardium) from both ventricles were analyzed. Expression levels from each localization were compared in order to decipher mechanisms and signaling pathways leading to ventricular dysfunction and arrhythmias in surgically repaired TOF. Several genes were confirmed to participate in ventricular remodeling and cardiac failure and some new candidate genes were described. In particular, these data pointed out FRZB as a heart failure marker. Moreover, calcium handling and contractile function genes (SLN, ACTC1, PLCD4, PLCZ), potential arrhythmia-related genes (MYO5B, KCNA5), and cytoskeleton and cellular organization-related genes (XIRP2, COL8A1, KCNA6) were among the most deregulated genes in rTOF ventricles. To our knowledge, this is the first comprehensive report on global gene expression profiling in the heart of a long-term swine model of repaired TOF.
Collapse
|
24
|
Wen SN, Liu N, Li SN, Wu XY, Salim M, Kang JP, Ning M, Wu JH, Ruan YF, Yu RH, Long DY, Tang RB, Sang CH, Jiang CX, Bai R, Du X, Dong JZ, Liu XH, Ma CS. QTc Interval Prolongation Predicts Arrhythmia Recurrence After Catheter Ablation of Atrial Fibrillation in Patients With Hypertrophic Cardiomyopathy. Circ J 2015; 79:1024-30. [PMID: 25739859 DOI: 10.1253/circj.cj-14-1290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND In hypertrophic cardiomyopathy (HCM) patients complicated with atrial fibrillation (AF), catheter ablation has been recommended as a treatment option. Meanwhile, prolongation of QTc interval has been linked to an increased AF incidence in the general population and to poor outcomes in HCM patients. However, whether QTc prolongation predicts arrhythmia recurrence after AF ablation in the HCM population remains unknown. METHODS AND RESULTS Thirty-nine HCM patients undergoing primary AF ablation were enrolled. The ablation strategy included bilateral pulmonary vein isolation (PVI) for paroxysmal AF (n=27) and PVI plus left atrial roof, mitral isthmus and tricuspid isthmus linear ablations for persistent AF (n=12). Pre-procedural QTc was corrected by using the Bazett's formula. At a 14.8-month follow up, 23 patients experienced atrial tachyarrhythmia recurrence. Recurrent patients had longer QTc than non-recurrent patients (461.0±28.8 ms vs. 434.3±18.2 ms, P=0.002). QTc and left atrial diameter (LAD) were independent predictors of recurrence. The cut-off value of QTc 448 ms predicted arrhythmia recurrence with a sensitivity of 73.9% and a specificity of 81.2%. A combination of LAD and QTc (global chi-squared=13.209) was better than LAD alone (global chi-squared=6.888) or QTc alone (global chi-squared=8.977) in predicting arrhythmia recurrence after AF ablation in HCM patients. CONCLUSIONS QTc prolongation is an independent predictor of arrhythmia recurrence in HCM patients undergoing AF ablation, and might be useful for identifying those patients likely to have a better outcome following the procedure.
Collapse
Affiliation(s)
- Song-Nan Wen
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hoshino T, Nagao T, Shiga T, Maruyama K, Toi S, Mizuno S, Ishizuka K, Shimizu S, Uchiyama S, Kitagawa K. Prolonged QTc Interval Predicts Poststroke Paroxysmal Atrial Fibrillation. Stroke 2015; 46:71-6. [DOI: 10.1161/strokeaha.114.006612] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background and Purpose—
Paroxysmal atrial fibrillation (PAF) is often difficult to detect in patients with acute ischemic stroke. We aimed to assess the predictive value of a prolonged QT interval corrected for heart rate (QTc) in PAF detection after acute ischemic stroke.
Methods—
We enrolled 972 patients with acute ischemic stroke consecutively extracted from our observational stroke registry system. Exclusion criteria were as follows: (1) AF on the initial 12-lead ECG (n=171); (2) previously diagnosed PAF (n=47); and (3) the use of a cardiac pacemaker (n=10). Of the 972 patients, 744 (mean age, 67.6 years; men, 62.6%) were eligible for analysis. The clinical characteristics and 12-lead ECG findings of the patients with and without PAF were compared, and multiple logistic regression analysis was performed to identify predictors of poststroke PAF.
Results—
The poststroke cardiac work-up yielded 69 (9.3%) de novo PAF cases among the 744 patients. The QTc interval was significantly longer in patients with PAF than in those without PAF (436 versus 417 ms;
P
<0.001). Each 10-ms increase in the QTc interval was associated with an increased risk of PAF after multivariate adjustments (odds ratio, 1.41; 95% confidence interval, 1.24–1.61;
P
<0.001). The optimal threshold value of QTc interval calculated by a receiver-operating characteristic curve was 438 ms, and the area under the curve was 0.73 in this data set.
Conclusions—
The QTc interval prolongation is potentially a strong and useful predictor for poststroke PAF.
Collapse
Affiliation(s)
- Takao Hoshino
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Takehiko Nagao
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Tsuyoshi Shiga
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Kenji Maruyama
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Sono Toi
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Satoko Mizuno
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Kentaro Ishizuka
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Satoru Shimizu
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Shinichiro Uchiyama
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| | - Kazuo Kitagawa
- From the Department of Neurology (T.H., T.N., K.M., S.T., S.M., K.I., S.U., K.K.), Department of Cardiology (T.S.), and Medical Research Institute (S.S.), Tokyo Women’s Medical University, Tokyo, Japan; Clinical Research Center for Medicine, International University of Health and Welfare, Tokyo, Japan (S.U.); and Center for Brain and Cerebral Vessels, Sanno Hospital Sanno Medical Center, Tokyo, Japan (S.U.)
| |
Collapse
|
26
|
Abstract
RATIONALE Alternans is a risk factor for cardiac arrhythmia, including atrial fibrillation. At the cellular level alternans manifests as beat-to-beat alternations in contraction, action potential duration (APD), and magnitude of the Ca(2+) transient (CaT). Electromechanical and CaT alternans are highly correlated, however, it has remained controversial whether the primary cause of alternans is a disturbance of cellular Ca(2+) signaling or electrical membrane properties. OBJECTIVE To determine whether a primary failure of intracellular Ca(2+) regulation or disturbances in membrane potential and AP regulation are responsible for the occurrence of alternans in atrial myocytes. METHODS AND RESULTS Pacing-induced APD and CaT alternans were studied in single rabbit atrial and ventricular myocytes using combined [Ca(2+)]i and electrophysiological measurements. In current-clamp experiments, APD and CaT alternans strongly correlated in time and magnitude. CaT alternans was observed without alternation in L-type Ca(2+) current, however, elimination of intracellular Ca(2+) release abolished APD alternans, indicating that [Ca(2+)]i dynamics have a profound effect on the occurrence of CaT alternans. Trains of 2 distinctive voltage commands in form of APs recorded during large and small alternans CaTs were applied to voltage-clamped cells. CaT alternans was observed with and without alternation in the voltage command shape. During alternans AP-clamp large CaTs coincided with both long and short AP waveforms, indicating that CaT alternans develop irrespective of AP dynamics. CONCLUSIONS The primary mechanism underlying alternans in atrial cells, similarly to ventricular cells, resides in a disturbance of Ca(2+) signaling, whereas APD alternans are a secondary consequence, mediated by Ca(2+)-dependent AP modulation.
Collapse
Affiliation(s)
- Giedrius Kanaporis
- From the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL
| | - Lothar A Blatter
- From the Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, IL.
| |
Collapse
|
27
|
The role of acid-sensitive two-pore domain potassium channels in cardiac electrophysiology: focus on arrhythmias. Pflugers Arch 2014; 467:1055-67. [PMID: 25404566 DOI: 10.1007/s00424-014-1637-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/14/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
The current kinetics of two-pore domain potassium (K2P) channels resemble those of the steady-state K(+) currents being active during the plateau phase of cardiac action potentials. Recent studies support that K2P channels contribute to these cardiac currents and thereby influence action potential duration in the heart. Ten of the 15 K2P channels present in the human genome are sensitive to variations of the extracellular and/or intracellular pH value. This review focuses on a set of K2P channels which are inhibited by extracellular protons, including the subgroup of tandem of P domains in a weak inward-rectifying K(+) (TWIK)-related acid-sensitive potassium (TASK) and TWIK-related alkaline-activated K(+) (TALK) channels. The role of TWIK-1 in the heart is also discussed since, after successful expression, an extracellular pH dependence, similar to that of TASK-1, was described as a hallmark of TWIK-1. The expression profile in cardiac tissue of different species and the functional data in the heart are summarized. The distinct role of the different acid-sensitive K2P channels in cardiac electrophysiology, inherited forms of arrhythmias and pharmacology, and their role as drug targets is currently emerging and is the subject of this review.
Collapse
|
28
|
Altered and dynamic ion selectivity of K+ channels in cell development and excitability. Trends Pharmacol Sci 2014; 35:461-9. [PMID: 25023607 DOI: 10.1016/j.tips.2014.06.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 12/21/2022]
Abstract
K(+) channels play a key role in regulating cellular excitability. It was thought that the strong K(+) selectivity of these channels was static, only altered by mutations in their selectivity filter, which can cause severe genetic disorders. Recent studies demonstrate that selectivity of K(+) channels can also exhibit dynamic changes. Under acidic conditions or in low extracellular K(+) concentrations, the two-pore domain K(+) channel (K2P) TWIK1 becomes permeable to Na(+), shifting from an inhibitory role to an excitatory role. This phenomenon is responsible for the paradoxical depolarization of human cardiomyocytes in pathological hypokalemia, and therefore may contribute to cardiac arrhythmias. In other cell types, TWIK1 produces depolarizing leak currents under physiological conditions. Dynamic ion selectivity also occurs in other K2P channels. Here we review evidence that dynamic selectivity of K2P channels constitutes a new regulatory mechanism of cellular excitability, whose significance is only now becoming appreciated.
Collapse
|
29
|
Schmitt N, Grunnet M, Olesen SP. Cardiac potassium channel subtypes: new roles in repolarization and arrhythmia. Physiol Rev 2014; 94:609-53. [PMID: 24692356 DOI: 10.1152/physrev.00022.2013] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
About 10 distinct potassium channels in the heart are involved in shaping the action potential. Some of the K+ channels are primarily responsible for early repolarization, whereas others drive late repolarization and still others are open throughout the cardiac cycle. Three main K+ channels drive the late repolarization of the ventricle with some redundancy, and in atria this repolarization reserve is supplemented by the fairly atrial-specific KV1.5, Kir3, KCa, and K2P channels. The role of the latter two subtypes in atria is currently being clarified, and several findings indicate that they could constitute targets for new pharmacological treatment of atrial fibrillation. The interplay between the different K+ channel subtypes in both atria and ventricle is dynamic, and a significant up- and downregulation occurs in disease states such as atrial fibrillation or heart failure. The underlying posttranscriptional and posttranslational remodeling of the individual K+ channels changes their activity and significance relative to each other, and they must be viewed together to understand their role in keeping a stable heart rhythm, also under menacing conditions like attacks of reentry arrhythmia.
Collapse
|
30
|
Frolov RV, Singh S. Celecoxib and ion channels: a story of unexpected discoveries. Eur J Pharmacol 2014; 730:61-71. [PMID: 24630832 DOI: 10.1016/j.ejphar.2014.02.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 01/28/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
Abstract
Celecoxib (Celebrex), a highly popular selective inhibitor of cyclooxygenase-2, can modulate ion channels and alter functioning of neurons and myocytes at clinically relevant concentrations independently of cyclooxygenase inhibition. In experimental systems varying from Drosophila to primary mammalian and human cell lines, celecoxib inhibits many voltage-activated Na(+), Ca(2+), and K(+) channels, including NaV1.5, L- and T-type Ca(2+) channels, KV1.5, KV2.1, KV4.3, KV7.1, KV11.1 (hERG), while stimulating other K(+) channels-KV7.2-5 and, possibly, KV11.1 (hERG) channels under certain conditions. In this review, we summarize the information currently available on the effects of celecoxib on ion channels, examine mechanistic aspects of drug action and the concomitant changes at the cellular and organ levels, and discuss these findings in the therapeutic context.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Physical Sciences, Division of Biophysics, University of Oulu, PO Box 3000, 90014 Oulun Yliopisto, Finland.
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, NY 14214, USA
| |
Collapse
|
31
|
Differential gene expression of cardiac ion channels in human dilated cardiomyopathy. PLoS One 2013; 8:e79792. [PMID: 24339868 PMCID: PMC3855055 DOI: 10.1371/journal.pone.0079792] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. Methods and Results Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT). The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples) validated the gene expression of SCN2B (p < 0.0001), KCNJ5 (p < 0.05), KCNJ8 (p < 0.05), CLIC2 (p < 0.05), and CACNB2 (p < 0.05). Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. Conclusion This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.
Collapse
|
32
|
Nielsen JB, Graff C, Pietersen A, Lind B, Struijk JJ, Olesen MS, Haunsø S, Gerds TA, Svendsen JH, Køber L, Holst AG. J-Shaped Association Between QTc Interval Duration and the Risk of Atrial Fibrillation. J Am Coll Cardiol 2013; 61:2557-64. [DOI: 10.1016/j.jacc.2013.03.032] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 03/01/2013] [Accepted: 03/19/2013] [Indexed: 11/28/2022]
|
33
|
Frolov RV, Bagati A, Casino B, Singh S. Potassium channels in Drosophila: historical breakthroughs, significance, and perspectives. J Neurogenet 2013. [PMID: 23181728 DOI: 10.3109/01677063.2012.744990] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drosophila has enabled important breakthroughs in K(+) channel research, including identification and fi rst cloning of a voltage-activated K(+) channel, Shaker, a founding member of the K(V)1 family. Drosophila has also helped in discovering other K(+) channels, such as Shab, Shaw, Shal, Eag, Sei, Elk, and also Slo, a Ca(2+) - and voltage-dependent K(+) channel. These findings have contributed significantly to our understanding of ion channels and their role in physiology. Drosophila continues to play an important role in ion channel studies, benefiting from an unparalleled arsenal of genetic tools and availability of tens of thousands of genetically modified strains. These tools allow deletion, expression, or misexpression of almost any gene in question with temporal and spatial control. The combination of these tools and resources with the use of forward genetic approach in Drosophila further enhances its strength as a model system. There are many areas in which Drosophila can further help our understanding of ion channels and their function. These include signaling pathways involved in regulating and modulating ion channels, basic information on channels and currents where very little is currently known, and the role of ion channels in physiology and pathology.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Pharmacology and Toxicology, State University of New York at Buffalo, Buffalo, New York 14214-3000, USA
| | | | | | | |
Collapse
|
34
|
Ma L, Zhang X, Zhou M, Chen H. Acid-sensitive TWIK and TASK two-pore domain potassium channels change ion selectivity and become permeable to sodium in extracellular acidification. J Biol Chem 2012; 287:37145-53. [PMID: 22948150 DOI: 10.1074/jbc.m112.398164] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Two-pore domain K(+) channels (K2P) mediate background K(+) conductance and play a key role in a variety of cellular functions. Among the 15 mammalian K2P isoforms, TWIK-1, TASK-1, and TASK-3 K(+) channels are sensitive to extracellular acidification. Lowered or acidic extracellular pH (pH(o)) strongly inhibits outward currents through these K2P channels. However, the mechanism of how low pH(o) affects these acid-sensitive K2P channels is not well understood. Here we show that in Na(+)-based bath solutions with physiological K(+) gradients, lowered pH(o) largely shifts the reversal potential of TWIK-1, TASK-1, and TASK-3 K(+) channels, which are heterologously expressed in Chinese hamster ovary cells, into the depolarizing direction and significantly increases their Na(+) to K(+) relative permeability. Low pH(o)-induced inhibitions in these acid-sensitive K2P channels are more profound in Na(+)-based bath solutions than in channel-impermeable N-methyl-D-glucamine-based bath solutions, consistent with increases in the Na(+) to K(+) relative permeability and decreases in electrochemical driving forces of outward K(+) currents of the channels. These findings indicate that TWIK-1, TASK-1, and TASK-3 K(+) channels change ion selectivity in response to lowered pH(o), provide insights on the understanding of how extracellular acidification modulates acid-sensitive K2P channels, and imply that these acid-sensitive K2P channels may regulate cellular function with dynamic changes in their ion selectivity.
Collapse
Affiliation(s)
- Liqun Ma
- Department of Biological Sciences and the Center for Neuroscience Research, University at Albany, State University of New York, Albany, New York 12222, USA
| | | | | | | |
Collapse
|
35
|
Verkerk AO, Remme CA. Zebrafish: a novel research tool for cardiac (patho)electrophysiology and ion channel disorders. Front Physiol 2012; 3:255. [PMID: 22934012 PMCID: PMC3429032 DOI: 10.3389/fphys.2012.00255] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/19/2012] [Indexed: 12/19/2022] Open
Abstract
The zebrafish is a cold-blooded tropical freshwater teleost with two-chamber heart morphology. A major advantage of the zebrafish for heart studies is that the embryo is transparent, allowing for easy assessment of heart development, heart rate analysis and phenotypic characterization. Moreover, rapid and effective gene-specific knockdown can be achieved using morpholino oligonucleotides. Lastly, zebrafish are small in size, are easy to maintain and house, grow fast, and have large offspring size, making them a cost-efficient research model. Zebrafish embryonic and adult heart rates as well as action potential (AP) shape and duration and electrocardiogram morphology closely resemble those of humans. However, whether the zebrafish is truly an attractive alternative model for human cardiac electrophysiology depends on the presence and gating properties of the various ion channels in the zebrafish heart, but studies into the latter are as yet limited. The rapid component of the delayed rectifier K+ current (IKr) remains the best characterized and validated ion current in zebrafish myocytes, and zebrafish may represent a valuable model to investigate human IKr channel-related disease, including long QT syndrome. Arguments against the use of zebrafish as model for human cardiac (patho)electrophysiology include its cold-bloodedness and two-chamber heart morphology, absence of t-tubuli, sarcoplamatic reticulum function, and a different profile of various depolarizing and repolarizing ion channels, including a limited Na+ current density. Based on the currently available literature, we propose that zebrafish may constitute a relevant research model for investigating ion channel disorders associated with abnormal repolarization, but may be less suitable for studying depolarization disorders or Ca2+-modulated arrhythmias.
Collapse
Affiliation(s)
- Arie O Verkerk
- Department of Anatomy, Embryology, and Physiology, Academic Medical Center, University of Amsterdam Amsterdam, Netherlands
| | | |
Collapse
|
36
|
The voltage-gated channel accessory protein KCNE2: multiple ion channel partners, multiple ways to long QT syndrome. Expert Rev Mol Med 2011; 13:e38. [DOI: 10.1017/s1462399411002092] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The single-pass transmembrane protein KCNE2 or MIRP1 was once thought to be the missing accessory protein that combined with hERG to fully recapitulate the cardiac repolarising current IKr. As a result of this role, it was an easy next step to associate mutations in KCNE2 to long QT syndrome, in which there is delayed repolarisation of the heart. Since that time however, KCNE2 has been shown to modify the behaviour of several other channels and currents, and its role in the heart and in the aetiology of long QT syndrome has become less clear. In this article, we review the known interactions of the KCNE2 protein and the resulting functional effects, and the effects of mutations in KCNE2 and their clinical role.
Collapse
|
37
|
Synnergren J, Améen C, Jansson A, Sartipy P. Global transcriptional profiling reveals similarities and differences between human stem cell-derived cardiomyocyte clusters and heart tissue. Physiol Genomics 2011; 44:245-58. [PMID: 22166955 DOI: 10.1152/physiolgenomics.00118.2011] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It is now well documented that human embryonic stem cells (hESCs) can differentiate into functional cardiomyocytes. These cells constitute a promising source of material for use in drug development, toxicity testing, and regenerative medicine. To assess their utility as replacement or complement to existing models, extensive phenotypic characterization of the cells is required. In the present study, we used microarrays and analyzed the global transcription of hESC-derived cardiomyocyte clusters (CMCs) and determined similarities as well as differences compared with reference samples from fetal and adult heart tissue. In addition, we performed a focused analysis of the expression of cardiac ion channels and genes involved in the Ca(2+)-handling machinery, which in previous studies have been shown to be immature in stem cell-derived cardiomyocytes. Our results show that hESC-derived CMCs, on a global level, have a highly similar gene expression profile compared with human heart tissue, and their transcriptional phenotype was more similar to fetal than to adult heart. Despite the high similarity to heart tissue, a number of significantly differentially expressed genes were identified, providing some clues toward understanding the molecular difference between in vivo sourced tissue and stem cell derivatives generated in vitro. Interestingly, some of the cardiac-related ion channels and Ca(2+)-handling genes showed differential expression between the CMCs and heart tissues. These genes may represent candidates for future genetic engineering to create hESC-derived CMCs that better mimic the phenotype of the cardiomyocytes present in the adult human heart.
Collapse
Affiliation(s)
- Jane Synnergren
- Systems Biology Research Center, University of Skövde, Skövde, Sweden.
| | | | | | | |
Collapse
|
38
|
Ma L, Zhang X, Chen H. TWIK-1 two-pore domain potassium channels change ion selectivity and conduct inward leak sodium currents in hypokalemia. Sci Signal 2011; 4:ra37. [PMID: 21653227 DOI: 10.1126/scisignal.2001726] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Background potassium (K+) channels, which are normally selectively permeable to K+, maintain the cardiac resting membrane potential at around -80 mV. In subphysiological extracellular K+ concentrations ([K+]o), which occur in pathological hypokalemia, the resting membrane potential of human cardiomyocytes can depolarize to around -50 mV, whereas rat and mouse cardiomyocytes become hyperpolarized, consistent with the Nernst equation for K+. This paradoxical depolarization of cardiomyocytes in subphysiological [K+]o, which may contribute to cardiac arrhythmias, is thought to involve an inward leak sodium (Na+) current. Here, we show that human cardiac TWIK-1 (also known as K2P1) two-pore domain K+ channels change ion selectivity, becoming permeable to external Na+, and conduct inward leak Na+ currents in subphysiological [K+]o. A specific threonine residue (Thr118) within the pore selectivity sequence TxGYG was required for this altered ion selectivity. Mouse cardiomyocyte-derived HL-1 cells exhibited paradoxical depolarization with ectopic expression of TWIK-1 channels, whereas TWIK-1 knockdown in human spherical primary cardiac myocytes eliminated paradoxical depolarization. These findings indicate that ion selectivity of TWIK-1 K+ channels changes during pathological hypokalemia, elucidate a molecular basis for inward leak Na+ currents that could trigger or contribute to cardiac paradoxical depolarization in lowered [K+]o, and identify a mechanism for regulating cardiac excitability.
Collapse
Affiliation(s)
- Liqun Ma
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | | | | |
Collapse
|
39
|
Abstract
Cardiac ion channels play an essential role in the generation of the action potential of cardiomyocytes. Over the past 15 years, a new field of research called channelopathies has emerged; it regroups all diseases caused by ion channel dysfunction. Investigators have largely determined the physiological roles of cardiac ion channels, but little is known about the molecular determinants of their regulation. Two posttranslational mechanisms that are crucial in determining the fate of proteins are the ubiquitylation and the SUMOylation pathways, which lead to the degradation and/or regulation of modified proteins. Recently, several groups have investigated the physiological impacts of these mechanisms on the regulation of different classes of cardiac ion channels. The objective of this review was to summarize and briefly discuss these results.
Collapse
|
40
|
Mechanism of Kv2.1 channel inhibition by a selective COX-2 inhibitor SC-791—modification of gating. Brain Res 2010; 1359:67-74. [DOI: 10.1016/j.brainres.2010.08.062] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2010] [Revised: 08/18/2010] [Accepted: 08/20/2010] [Indexed: 11/22/2022]
|
41
|
Kim DG, Oh JH, Lee EH, Lee JH, Park HJ, Kim CY, Kwon MS, Yoon S. The stoichiometric relationship between KCNH-2 and KCNE-2 in IKr channel formation. Int J Cardiol 2010; 145:272-274. [DOI: 10.1016/j.ijcard.2009.09.552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 08/25/2009] [Accepted: 09/09/2009] [Indexed: 11/27/2022]
|
42
|
Ng SY, Wong CK, Tsang SY. Differential gene expressions in atrial and ventricular myocytes: insights into the road of applying embryonic stem cell-derived cardiomyocytes for future therapies. Am J Physiol Cell Physiol 2010; 299:C1234-49. [PMID: 20844252 DOI: 10.1152/ajpcell.00402.2009] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Myocardial infarction has been the leading cause of morbidity and mortality in developed countries over the past few decades. The transplantation of cardiomyocytes offers a potential method of treatment. However, cardiomyocytes are in high demand and their supply is extremely limited. Embryonic stem cells (ESCs), which have been isolated from the inner cell mass of blastocysts, can self-renew and are pluripotent, meaning they have the ability to develop into any type of cell, including cardiomyocytes. This suggests that ESCs could be a good source of genuine cardiomyocytes for future therapeutic purposes. However, problems with the yield and purity of ESC-derived cardiomyocytes, among other hurdles for the therapeutic application of ESC-derived cardiomyocytes (e.g., potential immunorejection and tumor formation problems), need to be overcome before these cells can be used effectively for cell replacement therapy. ESC-derived cardiomyocytes consist of nodal, atrial, and ventricular cardiomyocytes. Specifically, for treatment of myocardial infarction, transplantation of a sufficient quantity of ventricular cardiomyocytes, rather than nodal or atrial cardiomyocytes, is preferred. Hence, it is important to find ways of increasing the yield and purity of specific types of cardiomyocytes. Atrial and ventricular cardiomyocytes have differential expression of genes (transcription factors, structural proteins, ion channels, etc.) and are functionally distinct. This paper presents a thorough review of differential gene expression in atrial and ventricular myocytes, their expression throughout development, and their regulation. An understanding of the molecular and functional differences between atrial and ventricular myocytes allows discussion of potential strategies for preferentially directing ESCs to differentiate into chamber-specific cells, or for fine tuning the ESC-derived cardiomyocytes into specific electrical and contractile phenotypes resembling chamber-specific cells.
Collapse
Affiliation(s)
- Sze Ying Ng
- Biochemistry Programme, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|
43
|
Frolov RV, Bondarenko VE, Singh S. Mechanisms of Kv2.1 channel inhibition by celecoxib--modification of gating and channel block. Br J Pharmacol 2009; 159:405-18. [PMID: 20015088 DOI: 10.1111/j.1476-5381.2009.00539.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Selective cyclooxygenase-2 (COX-2) inhibitors such as rofecoxib (Vioxx) and celecoxib (Celebrex) were developed as NSAIDs with reduced gastric side effects. Celecoxib has now been shown to affect cellular physiology via an unexpected, COX-independent, pathway - by inhibiting K(v)2.1 and other ion channels. In this study, we investigated the mechanism of the action of celecoxib on K(v)2.1 channels. EXPERIMENTAL APPROACH The mode of action of celecoxib on rat K(v)2.1 channels was studied by whole-cell patch-clamping to record currents from channels expressed in HEK-293 cells. KEY RESULTS Celecoxib reduced current through K(v)2.1 channels when applied from the extracellular side. At low concentrations (<or=3 microM), celecoxib accelerated kinetics of activation, deactivation and inactivation. Recovery of rat K(v)2.1 channels from inactivation could be characterized by two components, with celecoxib selectively accelerating the slow component of recovery at <or=10 microM. At >3 microM, celecoxib led to closed-channel block with relative slowing of activation. At 30 microM, it additionally induced open-channel block that manifested in use-dependent inhibition and slower recovery from inactivation. CONCLUSIONS AND IMPLICATIONS Celecoxib reduced current through K(v)2.1 channels by modifying gating and inducing closed- and open-channel block, with the three effects manifesting at different concentrations. These data will help to elucidate the mechanisms of action of this widely prescribed drug on ion channels and those underlying its neurological, cardiovascular and other effects.
Collapse
Affiliation(s)
- R V Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214-3000, USA
| | | | | |
Collapse
|
44
|
Noguchi C, Yang J, Sakamoto K, Maeda R, Takahashi K, Takasugi H, Ono T, Murakawa M, Kimura J. Inhibitory effects of isoliquiritigenin and licorice extract on voltage-dependent K(+) currents in H9c2 cells. J Pharmacol Sci 2009; 108:439-45. [PMID: 19098391 DOI: 10.1254/jphs.08227fp] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
The effect of isoliquiritigenin (ISL), a component of licorice, on the voltage-dependent, ultra-rapidly activating delayed-rectifier K(+) current (IKur) was examined in H9c2 cells, a cell-line derived from rat cardiac myoblasts. IKur was recorded using the whole-cell patch clamp method with a pipette solution containing 140 mM K(+). Depolarizing voltage pulses of 200-ms duration were given with 10-mV steps every 10 s from -40 mV holding potential. ISL inhibited IKur in a concentration-dependent manner. The median inhibitory concentration (IC(50)) of ISL was approximately 0.11 microM and the Hill coefficient was 0.71. Using CHO cells expressing Kv1.5 IKur channels, ISL also inhibited Kv1.5 IKur, but less potently than the IKur current in H9c2 cells. Furthermore, in H9c2 cells, the licorice extract itself inhibited IKur in a manner similar to ISL. We conclude that ISL, one component of licorice, is a potent inhibitor of K(+) channels, which specifically in H9c2 cells could be Kv2.1, and that this inhibition may be involved in various pharmacological effects of licorice.
Collapse
Affiliation(s)
- Chisato Noguchi
- Department of Anesthesiology, Fukushima Medical University, School of Medicine, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Wang YJ, Chen BS, Lin MW, Lin AA, Peng H, Sung RJ, Wu SN. Time-Dependent Block of Ultrarapid-Delayed Rectifier K+ Currents by Aconitine, a Potent Cardiotoxin, in Heart-Derived H9c2 Myoblasts and in Neonatal Rat Ventricular Myocytes. Toxicol Sci 2008; 106:454-63. [DOI: 10.1093/toxsci/kfn189] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
46
|
Frolov RV, Berim IG, Singh S. Inhibition of delayed rectifier potassium channels and induction of arrhythmia: a novel effect of celecoxib and the mechanism underlying it. J Biol Chem 2007; 283:1518-1524. [PMID: 17984087 DOI: 10.1074/jbc.m708100200] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Selective inhibitors of cyclooxygenase-2 (COX-2), such as rofecoxib (Vioxx), celecoxib (Celebrex), and valdecoxib (Bextra), have been developed for treating arthritis and other musculoskeletal complaints. Selective inhibition of COX-2 over COX-1 results in preferential decrease in prostacyclin production over thromboxane A2 production, thus leading to less gastric effects than those seen with nonselective COX inhibitors such as acetylsalicylic acid (aspirin). Here we show a novel effect of celecoxib via a mechanism that is independent of COX-2 inhibition. The drug inhibited the delayed rectifier (Kv2) potassium channels from Drosophila, rats, and humans and led to pronounced arrhythmia in Drosophila heart and arrhythmic beating of rat heart cells in culture. These effects occurred despite the genomic absence of cyclooxygenases in Drosophila and the failure of acetylsalicylic acid, a potent inhibitor of both COX-1 and COX-2, to inhibit rat Kv2.1 channels. A genetically null mutant of Drosophila Shab (Kv2) channels reproduced the cardiac effect of celecoxib, and the drug was unable to further enhance the effect of the mutation. These observations reveal an unanticipated effect of celecoxib on Drosophila hearts and on heart cells from rats, implicating the inhibition of Kv2 channels as the mechanism underlying this effect.
Collapse
Affiliation(s)
- Roman V Frolov
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214
| | - Ilya G Berim
- Department of Medicine, State University of New York, Buffalo, New York 14214
| | - Satpal Singh
- Department of Pharmacology and Toxicology, State University of New York, Buffalo, New York 14214.
| |
Collapse
|
47
|
O'Connell KMS, Whitesell JD, Tamkun MM. Localization and mobility of the delayed-rectifer K+ channel Kv2.1 in adult cardiomyocytes. Am J Physiol Heart Circ Physiol 2007; 294:H229-37. [PMID: 17965280 DOI: 10.1152/ajpheart.01038.2007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The delayed-rectifier voltage-gated K(+) channel (Kv) 2.1 underlies the cardiac slow K(+) current in the rodent heart and is particularly interesting in that both its function and localization are regulated by many stimuli in neuronal systems. However, standard immunolocalization approaches do not detect cardiac Kv2.1; therefore, little is known regarding its localization in the heart. In the present study, we used recombinant adenovirus to determine the subcellular localization and lateral mobility of green fluorescent protein (GFP)-Kv2.1 and yellow fluorescent protein-Kv1.4 in atrial and ventricular myocytes. In atrial myocytes, Kv2.1 formed large clusters on the cell surface similar to those observed in hippocampal neurons, whereas Kv1.4 was evenly distributed over both the peripheral sarcolemma and the transverse tubules. However, fluorescence recovery after photobleach (FRAP) experiments indicate that atrial Kv2.1 was immobile, whereas Kv1.4 was mobile (tau = 252 +/- 42 s). In ventricular myocytes, Kv2.1 did not form clusters and was localized primarily in the transverse-axial tubules and sarcolemma. In contrast, Kv1.4 was found only in transverse tubules and sarcolemma. FRAP studies revealed that Kv2.1 has a higher mobility in ventricular myocytes (tau = 479 +/- 178 s), although its mobility is slower than Kv1.4 (tau(1) = 18.9 +/- 2.3 s; tau(2) = 305 +/- 55 s). We also observed the movement of small, intracellular transport vesicles containing GFP-Kv2.1 within ventricular myocytes. These data are the first evidence of Kv2.1 localization in living myocytes and indicate that Kv2.1 may have distinct physiological roles in atrial and ventricular myocytes.
Collapse
Affiliation(s)
- Kristen M S O'Connell
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | |
Collapse
|
48
|
Affiliation(s)
- Diane Fatkin
- Sr Bernice Research Program in Inherited Heart Diseases, Victor Chang Cardiac Research Institute, Darlinghurst, Australia.
| | | | | |
Collapse
|
49
|
Sridhar A, da Cunha DNQ, Lacombe VA, Zhou Q, Fox JJ, Hamlin RL, Carnes CA. The plateau outward current in canine ventricle, sensitive to 4-aminopyridine, is a constitutive contributor to ventricular repolarization. Br J Pharmacol 2007; 152:870-9. [PMID: 17700726 PMCID: PMC2078232 DOI: 10.1038/sj.bjp.0707403] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE I(Kur) (Ultra-rapid delayed rectifier current) has microM sensitivity to 4-aminopyridine (4-AP) and is an important modulator of the plateau amplitude and action potential duration in canine atria. Kv1.5 encodes I(Kur) and is present in both atria and ventricles in canines and humans. We hypothesized that a similar plateau outward current with microM sensitivity to 4-AP is present in canine ventricle. EXPERIMENTAL APPROACH We used established voltage clamp protocols and used 4-AP (50 and 100 microM) to measure a plateau outward current in normal canine myocytes isolated from the left ventricular mid-myocardium. KEY RESULTS Action potential recordings in the presence of 4-AP showed significant prolongation of action potential duration at 50 and 90% repolarization at 0.5 and 1 Hz (P<0.05), while no prolongation occurred at 2 Hz. Voltage clamp experiments revealed a rapidly activating current, similar to current characteristics of canine atrial I(Kur), in approximately 70% of left ventricular myocytes. The IC(50) of 4-AP for this current was 24.2 microM. The concentration of 4-AP used in our experiments resulted in selective blockade of an outward current that was not I(to) or I(Kr). Beta-adrenergic stimulation with isoprenaline significantly increased the 4-AP sensitive outward current density (P<0.05), suggesting a role for this current during increased sympathetic stimulation. In silico incorporation into a canine ventricular cell model revealed selective AP prolongation after current blockade. CONCLUSIONS AND IMPLICATIONS Our results support the existence of a canine ventricular plateau outward current sensitive to micromolar 4-AP and its constitutive role in ventricular repolarization.
Collapse
Affiliation(s)
- A Sridhar
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Biophysics Program, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - D N Q da Cunha
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | - V A Lacombe
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
| | - Q Zhou
- Gene Network Sciences Ithaca, NY, USA
| | - J J Fox
- Gene Network Sciences Ithaca, NY, USA
| | - R L Hamlin
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Department of Veterinary Biosciences, The Ohio State University Columbus, OH, USA
| | - C A Carnes
- Davis Heart and Lung Research Institute, The Ohio State University Columbus, OH, USA
- Biophysics Program, The Ohio State University Columbus, OH, USA
- College of Pharmacy, The Ohio State University Columbus, OH, USA
- Author for correspondence:
| |
Collapse
|
50
|
Finol-Urdaneta RK, Strüver N, Terlau H. Molecular and Functional Differences between Heart mKv1.7 Channel Isoforms. ACTA ACUST UNITED AC 2006; 128:133-45. [PMID: 16801386 PMCID: PMC2151556 DOI: 10.1085/jgp.200609498] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Ion channels are membrane-spanning proteins that allow ions to permeate at high rates. The kinetic characteristics of the channels present in a cell determine the cell signaling profile and therefore cell function in many different physiological processes. We found that Kv1.7 channels from mouse heart muscle have two putative translation initiation start sites that generate two channel isoforms with different functional characteristics, mKv1.7L (489 aa) and a shorter mKv1.7S (457 aa). The electrophysiological analysis of mKv1.7L and mKv1.7S channels revealed that the two channel isoforms have different inactivation kinetics. The channel resulting from the longer protein (L) inactivates faster than the shorter channels (S). Our data supports the hypothesis that mKv1.7L channels inactivate predominantly due to an N-type related mechanism, which is impaired in the mKv1.7S form. Furthermore, only the longer version mKv1.7L is regulated by the cell redox state, whereas the shorter form mKv1.7S is not. Thus, expression starting at each translation initiation site results in significant functional divergence. Our data suggest that the redox modulation of mKv1.7L may occur through a site in the cytoplasmic N-terminal domain that seems to encompass a metal coordination motif resembling those found in many redox-sensitive proteins. The mRNA expression profile and redox modulation of mKv1.7 kinetics identify these channels as molecular entities of potential importance in cellular redox-stress states such as hypoxia.
Collapse
Affiliation(s)
- Rocio K Finol-Urdaneta
- Max-Planck-Institute for Experimental Medicine, Group of Molecular and Cellular Neuropharmacology, Göttingen, Germany
| | | | | |
Collapse
|