1
|
Werner S, Wallukat G, Becker NP, Wenzel K, Müller J, Schimke I, Wess G. The aptamer BC 007 for treatment of dilated cardiomyopathy: evaluation in Doberman Pinschers of efficacy and outcomes. ESC Heart Fail 2020; 7:844-855. [PMID: 32212256 PMCID: PMC7261533 DOI: 10.1002/ehf2.12628] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 12/14/2019] [Accepted: 01/06/2020] [Indexed: 12/17/2022] Open
Abstract
Aims Aptamer BC 007, a 15‐mer single‐strand DNA oligonucleotide (5'‐GGTTGGTGTGGTTGG‐3'), was developed to neutralize functional autoantibodies that bind to the extracellular domains of G protein‐coupled receptors (GPCR‐AAB), leading to the modulation of receptor‐mediated signalling cascades that induce pathophysiological states. Among the GPCR‐AAB, there are those directed against the β1‐adrenergic receptor (β1‐AAB) that are highly present in patients with dilated cardiomyopathy (DCM) and are increasingly accepted as disease drivers. Using Doberman Pinschers (DP) with DCM, which possess similarities with human DCM among these β1‐AAB positivity for that the disease‐driving role in DP DCM was demonstrated, the safety of BC 007, efficacy for neutralizing β1‐AAB, and the DP's outcome were investigated. Methods and results Fourteen client‐owned β1‐AAB‐positive DP with electrocardiographically and echocardiographically indicated DCM were treated with BC 007. For controlling, two groups were created: 14 β1‐AAB‐positive DP with DCM not treated with BC 007 (Control 1) and 14 DP with DCM closely matched to the BC 007‐treated DP (Control 2), retrospectively selected from the institutional database of DP. After treatment, DP were monitored both echocardiographically, and for β1‐AAB, and survival curves were calculated. Based on clinical and laboratory examination, no adverse effects associated with BC 007 treatment were observed during the study. Forty‐eight hours after treatment, the DP's blood was free of β1‐AAB, which led to a reduction or stabilization of left ventricular end‐systolic volume (ESVI) during β1‐AAB free time in 10 of the treated DP. In one DP, where β1‐AAB returned after 3 months and ESVI worsened again, a second BC 007 treatment after 9 months again cleared the blood from β1‐AAB and improved the ESVI. Compared with the controls, DP treated with BC 007 showed a significantly longer survival time [572 days, interquartile range (IQR) 442–840 days] vs. Control group 1 (266 days, IQR 97–438 days; logrank: P = 0.009) and Control group 2 (229 days, IQR 174–319 days; logrank: P = 0.012). Conclusions Treatment with BC 007 for β1‐AAB neutralization was safe, resulted in a long‐lasting reduction of β1‐AAB combined with improved cardiac function and prolonged the survival of DP with DCM. Using a natural large animal model of DCM considered superior to small animal models of immunization‐induced cardiomyopathy, combined with a study design comparable with clinical trials, we believe that our results provide the basis for optimism that treatment with BC 007 might also be effective in human patients with DCM.
Collapse
Affiliation(s)
- Sabine Werner
- Department of Cardiology, Clinic of Small Animal Medicine, Ludwig-Maximilians-University, Munich, Germany
| | - Gerd Wallukat
- Department of Research & Development, Berlin Cures GmbH, Berlin, Germany
| | - Niels-Peter Becker
- Department of Research & Development, Berlin Cures GmbH, Berlin, Germany
| | - Katrin Wenzel
- Department of Research & Development, Berlin Cures GmbH, Berlin, Germany
| | - Johannes Müller
- Department of Research & Development, Berlin Cures GmbH, Berlin, Germany
| | - Ingolf Schimke
- Department of Research & Development, Berlin Cures GmbH, Berlin, Germany
| | - Gerhard Wess
- Department of Cardiology, Clinic of Small Animal Medicine, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
2
|
Lethal immunoglobulins: Autoantibodies and sudden cardiac death. Autoimmun Rev 2019; 18:415-425. [DOI: 10.1016/j.autrev.2018.12.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 02/08/2023]
|
3
|
Liu L, Zhao M, Yu X, Zang W. Pharmacological Modulation of Vagal Nerve Activity in Cardiovascular Diseases. Neurosci Bull 2019; 35:156-166. [PMID: 30218283 PMCID: PMC6357265 DOI: 10.1007/s12264-018-0286-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 06/13/2018] [Indexed: 01/17/2023] Open
Abstract
Cardiovascular diseases are life-threatening illnesses with high morbidity and mortality. Suppressed vagal (parasympathetic) activity and increased sympathetic activity are involved in these diseases. Currently, pharmacological interventions primarily aim to inhibit over-excitation of sympathetic nerves, while vagal modulation has been largely neglected. Many studies have demonstrated that increased vagal activity reduces cardiovascular risk factors in both animal models and human patients. Therefore, the improvement of vagal activity may be an alternate approach for the treatment of cardiovascular diseases. However, drugs used for vagus nerve activation in cardiovascular diseases are limited in the clinic. In this review, we provide an overview of the potential drug targets for modulating vagal nerve activation, including muscarinic, and β-adrenergic receptors. In addition, vagomimetic drugs (such as choline, acetylcholine, and pyridostigmine) and the mechanism underlying their cardiovascular protective effects are also discussed.
Collapse
Affiliation(s)
- Longzhu Liu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Ming Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Xiaojiang Yu
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China
| | - Weijin Zang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, China.
| |
Collapse
|
4
|
Dong Y, Bai Y, Zhang S, Xu W, Xu J, Zhou Y, Zhang S, Wu Y, Yu H, Cao N, Liu H, Wang W. Cyclic peptide RD808 reduces myocardial injury induced by β 1-adrenoreceptor autoantibodies. Heart Vessels 2018; 34:1040-1051. [PMID: 30554265 DOI: 10.1007/s00380-018-1321-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 12/07/2018] [Indexed: 10/27/2022]
Abstract
Autoantibodies against the second extracellular loop of β1-adrenergic receptor (β1-AA) have been shown to be involved in the development of cardiovascular diseases. Recently, there has been considerable interest in strategies to remove these autoantibodies, particularly therapeutic peptides to neutralize β1-AA. Researchers are investigating the roles of cyclic peptides that mimic the structure of relevant epitopes on the β1-AR-ECII in a number of immune-mediated diseases. Here, we used a cyclic peptide, namely, RD808, to neutralize β1-AA, consequently alleviating β1-AA-induced myocardial injury. We investigated the protective effects of RD808 on the myocardium both in vitro and in vivo. RD808 was found to increase the survival rate of cardiomyocytes; furthermore, it decreased myocardial necrosis and apoptosis and improved the cardiac function of BalB/c mice in a β1-AA transfer model. In vitro and in vivo experiments showed that myocardial autophagy was increased in the presence of RD808, which might contribute to its cardioprotective effects. Our findings indicate that RD808 reduced myocardial injury induced by β1-AA.
Collapse
Affiliation(s)
- Yu Dong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Yan Bai
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Shangyue Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Wenli Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Jiahui Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Yi Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Suli Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ye Wu
- Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Haicun Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Ning Cao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China.,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China.
| | - Wen Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, No. 10 Xitoutiao, You An Men Wai, Beijing, 100069, China. .,Beijing Key Laboratory of Metabolic Disorders Related Cardiovascular Diseases, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Liu Y, Shi Q, Ma Y, Liu Q. The role of immune cells in atrial fibrillation. J Mol Cell Cardiol 2018; 123:198-208. [DOI: 10.1016/j.yjmcc.2018.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 12/23/2022]
|
6
|
Lund A, Giil LM, Slettom G, Nygaard O, Heidecke H, Nordrehaug JE. Antibodies to receptors are associated with biomarkers of inflammation and myocardial damage in heart failure. Int J Cardiol 2017; 250:253-259. [PMID: 29046223 DOI: 10.1016/j.ijcard.2017.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/03/2017] [Accepted: 10/02/2017] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Naturally occurring antibodies are linked to inflammation, tissue injury and apoptosis, processes also linked to heart failure. Associations between antibodies, inflammation and myocardial damage, have not been elucidated in heart failure. OBJECTIVE We investigated if 25 antibodies to receptors expressed in the cardiovascular system were associated with troponin-T, biomarkers of inflammation and clinical measures of disease severity, in patients with heart failure. METHODS Antibodies in sera from patients (n=191) with ischemic (n=155) or non-ischemic (n=36) heart failure were measured with full-receptor sandwich enzyme-linked immunosorbent assays. All patients underwent coronary angiography with determination of left ventricular ejection fraction (LVEF) and left ventricular end-diastolic pressure (LVEDP). Measured biomarkers included troponin-T, C-reactive protein, erythrocyte sedimentation rate, fibrinogen and neopterin. RESULTS Stabilin-1-antibodies correlated with troponin-T (β 0.23 p=0.008), soluble endoglin-antibodies with erythrocyte sedimentation rate (β 0.19, p=0.007) and fibrinogen (β 0.28, p<0.001). Platelet-derived growth factor subunit β-antibodies were associated with neopterin (β 0.17, p=0.002). All antibodies were correlated (R 0.26 to 0.91) and formed 4 principal components (PCs). Patients with high CRP and high PC2 had higher NYHA class and patients with high troponin-T and high PC1 had lower LVEDP (interactions, all p<0.05). CONCLUSION Antibodies to receptors are correlated and are associated with biomarkers of inflammation and myocardial damage, which further modifies their association with disease severity in heart failure. Their functional activity and immunological function, remain undecided.
Collapse
Affiliation(s)
- Anders Lund
- Department of Clinical Science, University of Bergen, Bergen, Norway.
| | - Lasse Melvaer Giil
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Internal Medicine, Haraldsplass Deaconess Hospital, Bergen, Norway
| | - Grete Slettom
- Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | - Ottar Nygaard
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Heart Disease, Haukeland University Hospital, Bergen, Norway
| | | | - Jan Erik Nordrehaug
- Department of Clinical Science, University of Bergen, Bergen, Norway; Department of Cardiology, Stavanger University Hospital, Stavanger, Norway
| |
Collapse
|
7
|
MRI Assessment of Cardiomyopathy Induced by β1-Adrenoreceptor Autoantibodies and Protection Through β3-Adrenoreceptor Overexpression. Sci Rep 2017; 7:43951. [PMID: 28276515 PMCID: PMC5343428 DOI: 10.1038/srep43951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/01/2017] [Indexed: 11/29/2022] Open
Abstract
The cardiopathogenic role of autoantibodies (aabs) directed against β1-adrenoreceptors (β1-AR) is well established. In mouse models, they cause progressive dilated cardiomyopathy (DCM) whose characterization with echocardiography requires prolonged protocols with numerous animals, complicating the evaluation of new treatments. Here, we report on the characterization of β1-aabs-induced DCM in mice using 11.7T MRI. C57BL/6J mice (n = 10 per group) were immunized against the β1-AR and left ventricular (LV) systolic function was assessed at 10, 18 and 27 weeks. Increase in LV mass/tibial length ratio was detected as the first modification at 10 weeks together with dilation of cavities, thereby outperforming echocardiography. Significant impairment in diastolic index was also observed in immunized animals before the onset of systolic dysfunction. Morphometric and histological measurements confirmed these observations. The same protocol performed on β3-AR-overexpressing mice and wild-type littermates (n = 8–12 per group) showed that transgenic animals were protected with reduced LV/TL ratio compared to wild-type animals and maintenance of the diastolic index. This study demonstrates that MRI allows a precocious detection of the subtle myocardial dysfunction induced by β1-aabs and that β3-AR stimulation blunts the development of β1-aabs-induced DCM, thereby paving the way for the use of β3AR-stimulating drugs to treat this autoimmune cardiomyopathy.
Collapse
|
8
|
Cardiomyopathy - An approach to the autoimmune background. Autoimmun Rev 2017; 16:269-286. [PMID: 28163240 DOI: 10.1016/j.autrev.2017.01.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 11/20/2016] [Indexed: 12/15/2022]
Abstract
Autoimmunity is increasingly accepted as the origin or amplifier of various diseases. In contrast to classic autoantibodies (AABs), which induce immune responses resulting in the destruction of the affected tissue, an additional class of AABs is directed against G-protein-coupled receptors (GPCRs; GPCR-AABs). GPCR-AABs functionally affect their related GPCRs for activation of receptor mediated signal cascades. Diseases which are characterized by the presence of GPCR-AABs with evidence for disease-specific pathogenic activity could be named "functional autoantibody disease". We briefly summarize here the historical view on autoimmunity in cardiomyopathy, followed by an approach to the mechanistic autoimmunity background. Furthermore, autoantibodies with outstanding importance for cardiomyopathies as a functional autoantibody disease, such as GPCR-AABs, and mainly those directed against the beta1-adrenergic and muscarinic 2 receptor autoantibodies, are introduced. Anti-cardiac myosin and anti-cardiac troponin autoantibodies, as further potential players in autoimmune cardiomyopathy, are additionally taken into account. The basic view on the autoantibodies, their related receptor interactions and pathogenic consequences are presented. Focused specifically on GPCR-AABs, "pros and cons" of assays such as indirect assays (functional changes of cell preparations are monitored after GPCR-AAB receptor binding) and direct assays based on the ELISA technologies (GPCR epitope mimics for GPCR-AAB binding) are critically discussed. Last but not least, treatment strategies for "functional autoantibody disease", such as for GPCR-AAB removal (therapeutic plasma exchange, immunoadsorption) and in vivo GPCR-AAB attack such as intravenous IgG treatment (IVIG), B-cell depletion and GPCR-AAB binding and neutralization, are critically reflected with respect to their patient benefits.
Collapse
|
9
|
HU BING, SUN YANXIANG, LI SHA, SUN JIE, LIU TONG, WU ZIDI, FENG LI. Association of β1-Adrenergic, M2-Muscarinic Receptor Autoantibody with Occurrence and Development of Nonvalvular Atrial Fibrillation. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2016; 39:1379-1387. [PMID: 27862036 DOI: 10.1111/pace.12976] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 10/06/2016] [Accepted: 10/28/2016] [Indexed: 11/28/2022]
Affiliation(s)
- BING HU
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - YANXIANG SUN
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - SHA LI
- Department of Laboratory Diagnosis; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - JIE SUN
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - TONG LIU
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - ZIDI WU
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| | - LI FENG
- Department of Cardiology; Zhongshan Affiliated Hospital of Sun Yat-sen University; Zhongshan Guangdong China
| |
Collapse
|
10
|
Abstract
Myocarditis is a heterogeneous group of disorders defined by inflammation of the heart muscle. The primary clinical manifestations of myocarditis are heart failure and sudden death in children and young adults. Numerous interventions have been investigated for the treatment of myocarditis, including broad spectrum alteration of the immune response and antiviral treatments; however, success has been limited. Since the myocarditis treatment trials in the 1990s there has been an improved understanding of disease progression and new facets of the immune response have been discovered. This new information provides fresh opportunities to develop therapeutics to treat myocarditis. This review analyzes previous pharmacologic approaches including immunosuppression, high dose intravenous immunoglobulin treatment, immunoadsorption and antiviral treatments, and looks forward toward recently identified immune factors that can be exploited as targets for new treatments. Such strategies include bolstering beneficial regulatory T cells or mitigating the detrimental Th17 T cells which can drive autoimmunity in the heart. The surging interest of the application of humanized monoclonal antibodies makes targeting deleterious arms of the immune response like Th17 cells a tangible goal in the near future. Promising constituents of herbal remedies have also been identified that may hold potential as new pharmacological treatments for myocarditis, however, significant work remains to elucidate the pharmacokinetics and side-effects of these compounds. Finally, advances in our understanding of the function of Matrix Metalloproteinases yield another target for altering disease progression given their role in the development of fibrosis during Dilated Cardiomyopathy. In bringing to light the various new targets and treatments available since the last myocarditis treatment trials, the aim of this review is to explore the new treatments that are possible in new myocarditis treatment trials.
Collapse
|
11
|
Fett JD, Markham DW. Discoveries in peripartum cardiomyopathy. Trends Cardiovasc Med 2014; 25:401-6. [PMID: 25557957 DOI: 10.1016/j.tcm.2014.10.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/23/2014] [Accepted: 10/25/2014] [Indexed: 01/10/2023]
Abstract
The past decade has seen remarkable gains for outcomes in peripartum cardiomyopathy (PPCM), one of the leading causes of maternal mortality and morbidity in the USA and many other countries, including the high-incidence areas of Haiti and South Africa. This review article emphasizes the importance of continuing the process of increasing awareness of PPCM and presents details of this evolving picture, including important discoveries that point the way to full recovery for almost all PPCM subjects. In addition, new interventions will be highlighted, which may facilitate recovery. Numerous studies have demonstrated that when the diagnosis of PPCM is made with LVEF > 0.30, the probability is that recovery to LVEF ≥ 0.50 will occur in the overwhelming majority of subjects. PPCM patients diagnosed with severely depressed systolic function (LVEF < 0.30) and a remodeled left ventricle with greater dilatation (LVEDd ≥ 60mm) are least likely to reach the outcome recovery goals. These are the patients with the greatest need for newer interventional strategies.
Collapse
Affiliation(s)
- James D Fett
- Cardiovascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA; Department of Adult Medicine, Hospital Albert Schweitzer, Deschapelles, Haiti.
| | | |
Collapse
|
12
|
Agonistic autoantibodies directed against G-protein-coupled receptors and their relationship to cardiovascular diseases. Semin Immunopathol 2014; 36:351-63. [PMID: 24777744 DOI: 10.1007/s00281-014-0425-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Accepted: 04/01/2014] [Indexed: 02/06/2023]
Abstract
Agonistic autoantibodies (AABs) against G-protein-coupled receptor (GPCR) are present mainly in diseases of the cardiovascular system or in diseases associated with cardiovascular disturbances. The increasing knowledge about the role of autoantibodies against G-protein-coupled receptor (GPCR-AABs) as pathogenic drivers, the resulting development of strategies aimed at their removal or neutralization, and the evidenced patient benefit associated with such therapies have created the need for a summary of GPCR-AAB-associated diseases. Here, we summarize the present knowledge about GPCR-AABs in cardiovascular diseases. The identity of the GPCR-AABs and their prevalence in each of several specific cardiovascular diseases are documented. The structure of GPCR is also briefly discussed. Using this information, differences between classic agonists and GPCR-AABs in their GPCR binding and activation are presented and the resulting pathogenic consequences are discussed. Furthermore, treatment strategies that are currently under study, most of which are aimed at the removal and in vivo neutralization of GPCR-AABs, are indicated and their patient benefits discussed. In this context, immunoadsorption using peptides/proteins or aptamers as binders are introduced. The use of peptides or aptamers for in vivo neutralization of GPCR-AABs is also described. Particular attention is given to the GPCR-AABs directed against the adrenergic beta1-, beta2-, and α1-receptor as well as the muscarinic receptor M2, angiotensin II-angiotensin receptor type I, endothelin1 receptor type A, angiotensin (1-7) Mas-receptor, and 5-hydroxytryptamine receptor 4. Among the diseases associated with GPCR-AABs, special focus is given to idiopathic dilated cardiomyopathy, Chagas' cardiomyopathy, malignant and pulmonary hypertension, and kidney diseases. Relationships of GPCR-AABs are indicated to glaucoma, peripartum cardiomyopathy, myocarditis, pericarditis, preeclampsia, Alzheimer's disease, Sjörgren's syndrome, and metabolic syndrome after cancer chemotherapy.
Collapse
|
13
|
Du Y, Yan L, Wang J, Zhan W, Song K, Han X, Li X, Cao J, Liu H. β1-Adrenoceptor autoantibodies from DCM patients enhance the proliferation of T lymphocytes through the β1-AR/cAMP/PKA and p38 MAPK pathways. PLoS One 2012; 7:e52911. [PMID: 23300817 PMCID: PMC3534136 DOI: 10.1371/journal.pone.0052911] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2012] [Accepted: 11/21/2012] [Indexed: 11/21/2022] Open
Abstract
Background Autoantibodies against the second extracellular loop of the β1-adrenergic receptor (β1-AA) not only contribute to increased susceptibility to heart failure, but also play a causative role in myocardial remodeling through their sympathomimetic-like effects that are induced upon binding to the β1-adrenergic receptor. However, their role in the function of T lymphocytes has never been previously investigated. Our present study was designed to determine whether β1-AA isolated from the sera of dilated cardiomyopathy (DCM) patients caused the proliferation of T cells and the secretion of cytokines. Methods Blood samples were collected from 95 DCM patients as well as 95 healthy subjects, and β1-AA was detected using ELISA. The CD3+T lymphocytes were selected separately through flow cytometry and the effect of β1-AA on T lymphocyte proliferation was examined by CCK-8 kits and CFSE assay. Western blotting was used to analyze the expressions of phospho-VASP and phospho-p38 MAPK. Results β1-AA enhanced the proliferation of T lymphocytes. This effect could be blocked by the selective β1-adrenergic receptor antagonist metoprolol, PKA inhibitor H89, and p38 MAPK inhibitor SB203580. Furthermore, the expression of the phosphorylated forms of phospho-VASP and phospho-p38 MAPK were markedly increased in the presence of β1-AA. β1-AA also inhibited the secretion of interferon-γ (IFN-γ) while promoting an increase in interleukin-4 (IL-4) levels. Conclusions These results demonstrate that β1-AA isolated from DCM patients binds to β1-AR on the surface of T cells, causing changes in T-cell proliferation and secretion through the β1-AR/cAMP/PKA and p38 MAPK pathways.
Collapse
Affiliation(s)
- Yunhui Du
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Marine Bioengineering, Marine College, Shandong University, Weihai, Shandong, China
| | - Li Yan
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jin Wang
- Department of Physiology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Wenzhang Zhan
- Department of Internal Medicine, General Hospital of Tonghua Mining Group CO. LTD, Baishan, Jilin, China
| | - Kai Song
- Department of Internal Medicine, A Peace Hospital Attached to Changzhi Medical College, Changzhi, Shanxi, China
| | - Xue Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jimin Cao
- Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences, Peking Union Medical College, Beijing, China
| | - Huirong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- The Key Laboratory of Remodeling-related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing, China
- * E-mail:
| |
Collapse
|
14
|
|
15
|
Herda LR, Felix SB, Boege F. Drug-like actions of autoantibodies against receptors of the autonomous nervous system and their impact on human heart function. Br J Pharmacol 2012; 166:847-57. [PMID: 22220626 PMCID: PMC3412294 DOI: 10.1111/j.1476-5381.2012.01828.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Antibodies against cholinergic and adrenergic receptors (adrenoceptors) are frequent in serum of patients with chronic heart failure. Their prevalence is associated with Chagas' disease, idiopathic dilated cardiomyopathy (DCM), and ischaemic heart disease. Among the epitopes targeted are first and second extracellular loops of the β-adrenergic (β-adrenoceptor) and M2 muscarinic receptor. β1-adrenoceptor autoantibodies affect radioligand binding and cardiomyocyte function similar to agonists. Corresponding rodent immunizations induce symptoms compatible with chronic heart failure that are reversible upon removal of the antibodies, transferable via the serum and abrogated by adrenergic antagonists. In DCM patients, prevalence and stimulatory efficacy of β1-adrenoceptor autoantibodies are correlated to the decline in cardiac function, ventricular arrhythmia and higher incidence of cardiac death. In conclusion, such autoantibodies seem to cause or promote chronic human left ventricular dysfunction by acting on their receptor targets in a drug-like fashion. However, the pharmacology of this interaction is poorly understood. It is unclear how the autoantibodies trigger changes in receptor activity and second messenger coupling and how that is related to the pathogenesis and severity of the associated diseases. Here, we summarize the available evidence regarding these issues and discuss these findings in the light of recent knowledge about the conformational activation of the human β2-adrenoceptor and the properties of bona fide cardiopathogenic autoantibodies derived from immune-adsorption therapy of DCM patients. These considerations might contribute to the conception of therapy regimen aimed at counteracting or neutralizing cardiopathogenic receptor autoantibodies.
Collapse
Affiliation(s)
- L R Herda
- Department of Internal Medicine B, University of Greifswald, Greifswald, Germany
| | | | | |
Collapse
|
16
|
Roggero E, Wildmann J, Passerini MO, del Rey A, Besedovsky HO. Different peripheral neuroendocrine responses to Trypanosoma cruzi infection in mice lacking adaptive immunity. Ann N Y Acad Sci 2012; 1262:37-44. [PMID: 22823433 DOI: 10.1111/j.1749-6632.2012.06645.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Trypanosoma cruzi infection in mice triggers neuroendocrine responses that affect the course of the disease. To analyze the contribution of adaptive immunity to these responses, comparative studies between normal C57Bl/6J and recombinase activator gene 1 (RAG-1)-deficient mice, which lack mature B and T lymphocytes, were performed. There was no difference between both types of mice in basal body weight. Following infection, higher parasitemia, increased IL-1β and IL-6 blood levels, less marked changes in lymphoid organs weight, no cardiomegaly, and earlier mortality were observed in RAG-1-deficient, compared with normal mice. The response of the hypothalamus-pituitary-adrenal axis after infection occurred earlier and was more intense in RAG-1-deficient mice than in normal mice. Noradrenaline concentration and serotonergic metabolism in the spleen, lymph nodes, and heart differed between RAG-1-deficient and normal mice. Our studies indicate that the absence of adaptive immunity to T. cruzi influences the neuroendocrine response to the infection with this parasite.
Collapse
Affiliation(s)
- Eduardo Roggero
- CAECHIS, Universidad Abierta Interamericana, Rosario, Argentina
| | | | | | | | | |
Collapse
|
17
|
Nussinovitch U, Shoenfeld Y. The diagnostic and clinical significance of anti-muscarinic receptor autoantibodies. Clin Rev Allergy Immunol 2012; 42:298-308. [PMID: 21207192 DOI: 10.1007/s12016-010-8235-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The role of autoimmunity in cardiovascular diseases has become one of the focal points of research studies. Autoimmune response and autoreactive autoantibodies have been found in dilated cardiomyopathy, heart failure, rheumatic fever, myocarditis, atherosclerosis, and other diseases. Autoantibodies may appear due to tissue injury and exposure of autoantigens, in addition to molecular mimicry and cross-reactivity with antigens found in infectious agents in predisposed individuals. In the early 1990s, autoantibodies reacting with the M2 muscarinic receptor were found in patients with dilated cardiomyopathy and subsequently, in patients with Chagas heart disease and arrhythmic disorders. Immunization of animals with the corresponding antigen triggered cardiac abnormalities also appearing in dilated cardiomyopathy of humans. It has been suggested that antibodies against M2 muscarinic receptors play a role in the pathogenesis of cardiac diseases and may also alter the electrophysiological properties of cardiac tissue. Herein, we review the current knowledge of antibodies against M2 muscarinic receptors and the possible use of a targeted therapy against these autoantibodies.
Collapse
Affiliation(s)
- Udi Nussinovitch
- Department of Internal Medicine B and Zabludowicz Center for Autoimmune Diseases, Chaim Sheba Medical Center, Ramat-Gan, 52621, Israel
| | | |
Collapse
|
18
|
Muñoz-Saravia SG, Haberland A, Wallukat G, Schimke I. Chronic Chagas' heart disease: a disease on its way to becoming a worldwide health problem: epidemiology, etiopathology, treatment, pathogenesis and laboratory medicine. Heart Fail Rev 2012; 17:45-64. [PMID: 21165698 DOI: 10.1007/s10741-010-9211-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Chagas' disease, caused by Trypanosoma cruzi infection, is ranked as the most serious parasitic disease in Latin America. Nearly 30% of infected patients develop life-threatening complications, and with a latency of 10-30 years, mostly Chagas' heart disease which is currently the major cause of morbidity and mortality in Latin America, enormously burdening economic resources and dramatically affecting patients' social and labor situations. Because of increasing migration, international tourism and parasite transfer by blood contact, intrauterine transfer and organ transplantation, Chagas' heart disease could potentially become a worldwide problem. To raise awareness of this problem, we reflect on the epidemiology and etiopathology of Chagas' disease, particularly Chagas' heart disease. To counteract Chagas' heart disease, in addition to the general interruption of the infection cycle and chemotherapeutic elimination of the infection agent, early and effective causal or symptomatic therapies would be indispensable. Prerequisites for this are improved knowledge of the pathogenesis and optimized patient management. From economic and logistics viewpoints, this last prerequisite should be performed using laboratory medicine tools. Consequently, we first summarize the mechanisms that have been suggested as driving Chagas' heart disease, mainly those associated with the presence of autoantibodies against G-protein-coupled receptors; secondly, we indicate new treatment strategies involving autoantibody apheresis and in vivo autoantibody neutralization; thirdly, we present laboratory medicine tools such as autoantibody estimation and heart marker measurement, proposed for diagnosis, risk assessment and patient guidance and lastly, we critically reflect upon the increase in inflammation and oxidative stress markers in Chagas' heart disease.
Collapse
|
19
|
Xia Y, Kellems RE. Receptor-activating autoantibodies and disease: preeclampsia and beyond. Expert Rev Clin Immunol 2011; 7:659-74. [PMID: 21895478 DOI: 10.1586/eci.11.56] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The research reviewed in this article provides examples of autoantibody-mediated receptor activation that likely contributes to disease. The classic example is Graves' hyperthyroidism, in which autoantibodies activate the thyroid-stimulating hormone receptor resulting in overproduction of thyroid hormones. Other compelling examples come from the cardiovascular literature and include agonistic autoantibodies targeting the cardiac β(1)-adrenergic receptor, which are associated with dilated cardiomyopathy. Autoantibodies capable of activating α(1)-adrenergic receptors are associated with refractory hypertension and cardiomyopathy. A prominent example is preeclampsia, a hypertensive disease of pregnancy, characterized by the presence of autoantibodies that activate the major angiotensin receptor, AT(1). AT(1) receptor-activating autoantibodies are also observed in kidney transplant recipients suffering from severe vascular rejection and malignant hypertension. AT(1) receptor-activating autoantibodies and antibodies that activate the endothelin-1 receptor, ET(A), are prevalent in individuals diagnosed with systemic sclerosis. Thus, the presence of agonistic autoantibodies directed to G protein-coupled receptors has been observed in numerous cardiovascular disease states. Rapidly emerging evidence indicates that receptor-activating autoantibodies contribute to disease, and that efforts to detect and remove these pathogenic autoantibodies or block their actions will provide promising therapeutic possibilities.
Collapse
Affiliation(s)
- Yang Xia
- Department of Biochemistry and Molecular Biology, The University of Texas Medical School, Houston, TX 77030, USA.
| | | |
Collapse
|
20
|
Long-term active immunization with a synthetic peptide corresponding to the second extracellular loop of β1-adrenoceptor induces both morphological and functional cardiomyopathic changes in rats. Int J Cardiol 2011; 149:89-94. [DOI: 10.1016/j.ijcard.2009.12.023] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 09/16/2009] [Accepted: 12/14/2009] [Indexed: 11/22/2022]
|
21
|
The Clinical and Diagnostic Significance of Anti-myosin Autoantibodies in Cardiac Disease. Clin Rev Allergy Immunol 2011; 44:98-108. [DOI: 10.1007/s12016-010-8229-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
22
|
The Clinical Significance of Anti-Beta-1 Adrenergic Receptor Autoantibodies in Cardiac Disease. Clin Rev Allergy Immunol 2010; 44:75-83. [DOI: 10.1007/s12016-010-8228-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
A network against failing hearts—Introducing the German “Competence Network Heart Failure”. Int J Cardiol 2010; 145:135-8. [DOI: 10.1016/j.ijcard.2009.06.061] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Accepted: 06/27/2009] [Indexed: 11/20/2022]
|
24
|
Sesarman A, Vidarsson G, Sitaru C. The neonatal Fc receptor as therapeutic target in IgG-mediated autoimmune diseases. Cell Mol Life Sci 2010; 67:2533-50. [PMID: 20217455 PMCID: PMC11115620 DOI: 10.1007/s00018-010-0318-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 01/29/2010] [Accepted: 02/12/2010] [Indexed: 01/01/2023]
Abstract
Therapy approaches based on lowering levels of pathogenic autoantibodies represent rational, effective, and safe treatment modalities of autoimmune diseases. The neonatal Fc receptor (FcRn) is a major factor regulating the serum levels of IgG antibodies. While FcRn-mediated half-life extension is beneficial for IgG antibody responses against pathogens, it also prolongs the serum half-life of IgG autoantibodies and thus promotes tissue damage in autoimmune diseases. In the present review article, we examine current evidence on the relevance of FcRn in maintaining high autoantibody levels and discuss FcRn-targeted therapeutic approaches. Further investigation of the FcRn-IgG interaction will not only provide mechanistic insights into the receptor function, but should also greatly facilitate the design of therapeutics combining optimal pharmacokinetic properties with the appropriate antibody effector functions in autoimmune diseases.
Collapse
Affiliation(s)
- Alina Sesarman
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
| | - Gestur Vidarsson
- Department of Experimental Immunohematology, Sanquin Research and Landsteiner Laboratory, Amsterdam, The Netherlands
| | - Cassian Sitaru
- Department of Dermatology, University of Freiburg, Hauptstrasse 7, 79104 Freiburg, Germany
- Centre for Biological Signalling Studies (bioss), University of Freiburg, Freiburg, Germany
| |
Collapse
|
25
|
|
26
|
Kaya Z, Katus HA, Rose NR. Cardiac troponins and autoimmunity: their role in the pathogenesis of myocarditis and of heart failure. Clin Immunol 2009; 134:80-8. [PMID: 19446498 DOI: 10.1016/j.clim.2009.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2009] [Revised: 04/16/2009] [Accepted: 04/19/2009] [Indexed: 01/22/2023]
Abstract
Despite the widespread use of cardiac troponins as biomarkers for the diagnosis and quantitation of cardiac injury, the effect of troponin release and a possible autoimmune response to the troponins is unknown. Other investigators reported that programmed cell death-1 (PD-1)-receptor deficient mice developed severe cardiomyopathy with autoantibodies to troponin I. We found that immunization of genetically susceptible mice with troponin I but not troponin T induced a robust autoimmune response leading to marked inflammation and fibrosis in the myocardium. At later times, antibodies to cardiac myosin were detected in troponin-immunized mice. The severity of inflammation correlated with expression of chemokines RANTES, MIP-2, IP-10 and MCP-1 in the myocardium. Prior immunization with troponin I increased the severity of experimental infarctions, indicating that an autoimmune response to troponin I aggravates acute cardiac damage. Cardiac inflammation, fibrosis and functional impairment were transferred from immunized to naive recipients by CD4+ T cells, and the cytokine profile suggested both Th2 and Th17 profiles in A/J mice. Finally we identified an 18-mer of troponin I containing an immuno-dominant epitope.
Collapse
Affiliation(s)
- Ziya Kaya
- Department of Cardiology, University of Heidelberg, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
27
|
Nussinovitch U, Shoenfeld Y. Autoimmunity and heart diseases: pathogenesis and diagnostic criteria. Arch Immunol Ther Exp (Warsz) 2009; 57:95-104. [PMID: 19333734 DOI: 10.1007/s00005-009-0013-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 12/05/2008] [Indexed: 12/11/2022]
Abstract
Autoimmunity may evolve in predisposed individuals following an exogenous trigger. Autoimmunity is affected by genetic, immune, hormonal, and environmental factors. Immune mechanisms in heart diseases are complex and often not completely understood. Several cardiac disorders are believed to be mediated by an immune reaction. Both humoral and cellular immunity are associated with the development of myocarditis, dilated cardiomyopathy, heart failure, rheumatic fever, and atherosclerosis. Here the diagnostic criteria and autoimmune aspects of autoimmune-mediated cardiac disorders are reviewed. New diagnostic criteria for "autoimmune dilated cardiomyopathy" were recently suggested by the authors. They presume that establishing a dominant autoimmune etiology in some patients will have clinical significance because these patients will potentially gain the greatest benefit from immunosuppressive and immunomodulating treatments.
Collapse
Affiliation(s)
- Udi Nussinovitch
- Department of Medicine B, Chaim Sheba Medical Center, Tel-Hashomer, Israel
| | | |
Collapse
|
28
|
Fischer V, Gabauer I, Tillinger A, Novakova M, Pechan I, Krizanova O, Kvetnanský R, Myslivecek J. Heart adrenoceptor gene expression and binding sites in the human failing heart. Ann N Y Acad Sci 2009; 1148:400-8. [PMID: 19120134 DOI: 10.1196/annals.1410.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Adrenergic regulation of the heart function is well documented by many studies. Catecholamines act through alpha(1)-, beta(1)-, beta(2)-, and beta(3)-adrenoceptors (ARs) in the heart. There are many findings about the changes of beta(1)- and beta(2)-AR in heart failure (HF). On the other hand, the role of other AR subtypes is not clear yet. We focused on determining how HF could affect gene expression and specific ligand binding to alpha(1A)-, alpha(1B)-, alpha(1D)-, beta(1)-, beta(2)-, and beta(3)-AR. Hearts from 11 patients with HF subjected to transplantation were investigated. As a control, corresponding parts from hearts not suitable for transplantation were used. We have found significantly higher mRNA levels of alpha(1A)-, alpha(1B)-,beta(1)-, and beta(2)-AR in the left ventricle of failing hearts compared to the levels in controls. beta(3)-AR mRNA levels in the left ventricle of failing hearts were not changed. No changes in mRNA levels of all receptors studied in other cardiac areas were found. On the other hand, binding studies showed a substantial decrease in left ventricles of failing hearts in all alpha(1)-AR subtypes and in beta(1)- and beta(2)-AR. However, the binding to beta(3)-AR was not changed. Our results suggest that alpha(1)-AR changes might be part of a compensatory mechanism, by which the heart suffering from the HF tries to secure its function, and it could be hypothesized that ineffective beta(3)-AR regulation might be involved in development of HF. According to our knowledge, this is the first report about the beta(3)-AR binding in HF.
Collapse
Affiliation(s)
- Viliam Fischer
- The National Institute of Cardiovascular Diseases, Bratislava, Slovakia
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Liu J, Mao W, Iwai C, Fukuoka S, Vulapalli R, Huang H, Wang T, Sharma VK, Sheu SS, Fu M, Liang CS. Adoptive passive transfer of rabbit beta1-adrenoceptor peptide immune cardiomyopathy into the Rag2-/- mouse: participation of the ER stress. J Mol Cell Cardiol 2007; 44:304-14. [PMID: 18155231 DOI: 10.1016/j.yjmcc.2007.11.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2007] [Revised: 10/02/2007] [Accepted: 11/13/2007] [Indexed: 01/07/2023]
Abstract
Auto-antibodies against the beta(1)-adrenoceptors are present in 30-40% of patients with dilated cardiomyopathy. Recently, a synthetic peptide corresponding to a sequence of the second extracellular loop of the human beta(1)-adrenoceptor (beta(1)-EC(II)) has been shown to produce endoplasmic reticulum (ER) stress, myocyte apoptosis and cardiomyopathy in immunized rabbits. To study the direct cardiac effects of anti-beta(1)-EC(II) antibody in intact animals and if they are mediated via beta(1)-adrenoceptor stimulation, we administered IgG purified from beta(1)-EC(II)-immunized rabbits to recombination activating gene 2 knock-out (Rag2(-/-)) mice every 2 weeks with and without metoprolol treatment. Serial echocardiography and cardiac catheterization showed that beta(1)-EC(II) IgG reduced cardiac systolic function after 3 months. This was associated with increase in heart weight, myocyte apoptosis, activation of caspase-3, -9 and -12, and increased ER stress as evidenced by upregulation of GRP78 and CHOP and cleavage of ATF6. The Rag2(-/-) mice also exhibited increased phosphorylation of CaMKII and p38 MAPK. Metoprolol administration, which attenuated the phosphorylation of CaMKII and p38 MAPK, reduced the ER stress, caspase activation and cell death. Finally, we employed the small-interfering RNA technology to reduce caspase-12 in cultured rat cardiomyocytes. This reduced not only the increase of cleaved caspase-12 but also of the number of myocyte apoptosis produced by beta(1)-EC(II) IgG. Thus, we conclude that ER stress plays an important role in cell death and cardiac dysfunction in beta(1)-EC(II) IgG cardiomyopathy, and the effects of beta(1)-EC(II) IgG are mediated via the beta(1)-adrenergic receptor.
Collapse
Affiliation(s)
- Jiahao Liu
- Cardiology Division, Department of Medicine, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Xia Y, Zhou CC, Ramin SM, Kellems RE. Angiotensin receptors, autoimmunity, and preeclampsia. THE JOURNAL OF IMMUNOLOGY 2007; 179:3391-5. [PMID: 17785770 PMCID: PMC3262172 DOI: 10.4049/jimmunol.179.6.3391] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Preeclampsia is a pregnancy-induced hypertensive disorder that causes substantial maternal and fetal morbidity and mortality. Despite being a leading cause of maternal death and a major contributor to maternal and perinatal morbidity, the mechanisms responsible for the pathogenesis of preeclampsia are poorly understood. Recent studies indicate that women with preeclampsia have autoantibodies that activate the angiotensin receptor, AT1, and that autoantibody-mediated receptor activation contributes to pathophysiology associated with preeclampsia. The research reviewed here raises the intriguing possibility that preeclampsia may be a pregnancy-induced autoimmune disease.
Collapse
Affiliation(s)
- Yang Xia
- Department of Biochemistry and Molecular Biology, University of Texas Medical School, Houston, TX 77030, USA.
| | | | | | | |
Collapse
|