1
|
Herring N, Ajijola OA, Foreman RD, Gourine AV, Green AL, Osborn J, Paterson DJ, Paton JFR, Ripplinger CM, Smith C, Vrabec TL, Wang HJ, Zucker IH, Ardell JL. Neurocardiology: translational advancements and potential. J Physiol 2024. [PMID: 39340173 DOI: 10.1113/jp284740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
In our original white paper published in the The Journal of Physiology in 2016, we set out our knowledge of the structural and functional organization of cardiac autonomic control, how it remodels during disease, and approaches to exploit such knowledge for autonomic regulation therapy. The aim of this update is to build on this original blueprint, highlighting the significant progress which has been made in the field since and major challenges and opportunities that exist with regard to translation. Imbalances in autonomic responses, while beneficial in the short term, ultimately contribute to the evolution of cardiac pathology. As our understanding emerges of where and how to target in terms of actuators (including the heart and intracardiac nervous system (ICNS), stellate ganglia, dorsal root ganglia (DRG), vagus nerve, brainstem, and even higher centres), there is also a need to develop sensor technology to respond to appropriate biomarkers (electrophysiological, mechanical, and molecular) such that closed-loop autonomic regulation therapies can evolve. The goal is to work with endogenous control systems, rather than in opposition to them, to improve outcomes.
Collapse
Affiliation(s)
- N Herring
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - O A Ajijola
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| | - R D Foreman
- Department of Biochemistry and Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - A V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, University College London, London, UK
| | - A L Green
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK
| | - J Osborn
- Department of Surgery, University of Minnesota, Minneapolis, MN, USA
| | - D J Paterson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - J F R Paton
- Manaaki Manawa - The Centre for Heart Research, Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - C M Ripplinger
- Department of Pharmacology, University of California Davis, Davis, CA, USA
| | - C Smith
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH, USA
| | - T L Vrabec
- Department of Physical Medicine and Rehabilitation, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - H J Wang
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - I H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - J L Ardell
- UCLA Neurocardiology Research Center of Excellence, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
2
|
Packer M, Anker SD, Butler J, Cleland JGF, Kalra PR, Mentz RJ, Ponikowski P. Identification of three mechanistic pathways for iron-deficient heart failure. Eur Heart J 2024; 45:2281-2293. [PMID: 38733250 PMCID: PMC11231948 DOI: 10.1093/eurheartj/ehae284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/29/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Current understanding of iron-deficient heart failure is based on blood tests that are thought to reflect systemic iron stores, but the available evidence suggests greater complexity. The entry and egress of circulating iron is controlled by erythroblasts, which (in severe iron deficiency) will sacrifice erythropoiesis to supply iron to other organs, e.g. the heart. Marked hypoferraemia (typically with anaemia) can drive the depletion of cardiomyocyte iron, impairing contractile performance and explaining why a transferrin saturation < ≈15%-16% predicts the ability of intravenous iron to reduce the risk of major heart failure events in long-term trials (Type 1 iron-deficient heart failure). However, heart failure may be accompanied by intracellular iron depletion within skeletal muscle and cardiomyocytes, which is disproportionate to the findings of systemic iron biomarkers. Inflammation- and deconditioning-mediated skeletal muscle dysfunction-a primary cause of dyspnoea and exercise intolerance in patients with heart failure-is accompanied by intracellular skeletal myocyte iron depletion, which can be exacerbated by even mild hypoferraemia, explaining why symptoms and functional capacity improve following intravenous iron, regardless of baseline haemoglobin or changes in haemoglobin (Type 2 iron-deficient heart failure). Additionally, patients with advanced heart failure show myocardial iron depletion due to both diminished entry into and enhanced egress of iron from the myocardium; the changes in iron proteins in the cardiomyocytes of these patients are opposite to those expected from systemic iron deficiency. Nevertheless, iron supplementation can prevent ventricular remodelling and cardiomyopathy produced by experimental injury in the absence of systemic iron deficiency (Type 3 iron-deficient heart failure). These observations, taken collectively, support the possibility of three different mechanistic pathways for the development of iron-deficient heart failure: one that is driven through systemic iron depletion and impaired erythropoiesis and two that are characterized by disproportionate depletion of intracellular iron in skeletal and cardiac muscle. These mechanisms are not mutually exclusive, and all pathways may be operative at the same time or may occur sequentially in the same patients.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, 621 North Hall Street, Dallas, TX 75226, USA
- Imperial College, London, UK
| | - Stefan D Anker
- Department of Cardiology of German Heart Center Charité, Institute of Health Center for Regenerative Therapies, German Centre for Cardiovascular Research, partner site Berlin, Charité Universitätsmedizin, Berlin, Germany
| | - Javed Butler
- Baylor Scott and White Research Institute, Baylor University Medical Center, Dallas, TX, USA
- University of Mississippi Medical Center, Jackson, MS, USA
| | - John G F Cleland
- British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Paul R Kalra
- Department of Cardiology, Portsmouth Hospitals University NHS Trust, Portsmouth, UK
- College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
- Faculty of Science and Health, University of Portsmouth, Portsmouth, UK
| | - Robert J Mentz
- Division of Cardiology, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Duke Clinical Research Institute, Durham, NC, USA
| | - Piotr Ponikowski
- Institute of Heart Diseases, Wroclaw Medical University, Wroclaw, Poland
- Institute of Heart Diseases, University Hospital, Wroclaw, Poland
| |
Collapse
|
3
|
Ogoh S. Cardiac output-mediated regulation of cerebral blood flow during exercise: Clinical perspectives on the indirect impact of muscle metaboreflex. Exp Physiol 2024. [PMID: 38500291 DOI: 10.1113/ep091591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/15/2024] [Indexed: 03/20/2024]
Abstract
The muscle metaboreflex stimulates the elevation of arterial blood pressure, aiming to rectify the oxygen deficit by enhancing oxygen delivery to support muscle activity. Moreover, activating the muscle metaboreflex significantly increases cardiac output (CO) by increasing factors such as heart rate, ventricular contractility, preload, stroke volume and mobilization of central blood volume. Previous studies indicate that ageing and cardiovascular diseases modify the muscle metaboreflex during exercise, limiting the ability to increase CO during physical activity. Alongside reduced exercise capacity, the attenuated rise in CO due to abnormal muscle metaboreflex in these patients impedes the increase in cerebral blood flow during exercise. Considering that CO plays a pivotal role in regulating cerebral blood flow adequately during exercise, this occurrence might contribute to an elevated risk of cerebral diseases, and it could also, at least, reduce the effective role of exercise in preventing cerebral disease and dementia among elderly individuals and patients with cardiovascular conditions. Therefore, it is important to consider this phenomenon when optimizing the effectiveness of exercise rehabilitation in patients with cardiovascular disease to prevent cerebral diseases and dementia.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical engineering, Toyo University, Kawagoe, Japan
| |
Collapse
|
4
|
Fujita D, Kubo Y. Influence of blood lactate variations and passive exercise on cardiac responses. J Phys Ther Sci 2024; 36:69-73. [PMID: 38304152 PMCID: PMC10830155 DOI: 10.1589/jpts.36.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/16/2023] [Indexed: 02/03/2024] Open
Abstract
[Purpose] This study aimed to investigate cardiovascular responses, including heart rate (HR) and heart rate variability (HRV), to various hyperlactatemia-passive exercise interactions. [Participants and Methods] Nine healthy male participants performed upper limb passive cycling movement, and their HR and HRV were assessed while their blood lactate levels were manipulated by sustained handgrip exercise at control, 15% maximum voluntary contraction (MVC), and 30% MVC, followed by postexercise circulatory occlusion. [Results] HR and root mean squared standard difference (rMSSD) of HRV response remained constant at all blood lactate levels during passive exercise (HR: control, 75.8 ± 3.4 bpm; 15% MVC, 76.9 ± 2.7 bpm; and 30% MVC, 77.0 ± 3.7 bpm; rMSSD: control, 33.2 ± 6.9 ms; 15% MVC, 36.3 ± 7.3 ms; and 30% MVC, 37.3 ± 8.9 ms). [Conclusion] Manipulating metaboreflex activation did not significantly alter HR or HRV during passive exercise. These results suggest that, in healthy participants, the interactions between mechanical and metabolic stimuli do not affect HR and HRV responses, implying that passive exercise may be safely implemented.
Collapse
Affiliation(s)
- Daisuke Fujita
- Department of Physical Therapy, Faculty of Medical Science,
Fukuoka International University of Health and Welfare: 3-6-40 Momochihama, Sawara-ku,
Fukuoka-shi, Fukuoka 814-0001, Japan
| | - Yusuke Kubo
- Department of Rehabilitation, Kobori Orthopedic Clinic,
Japan
| |
Collapse
|
5
|
Comparison of Hemodynamic Response between Patients with Systolic Heart Failure Differing in Serum Aldosterone Concentrations during and after a 6-Minute Walk Test. J Clin Med 2023; 12:jcm12031007. [PMID: 36769655 PMCID: PMC9917580 DOI: 10.3390/jcm12031007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 02/03/2023] Open
Abstract
Aldosterone regulates hemodynamics, including blood pressure (BP), and is involved in the development and progression of cardiovascular diseases, including systolic heart failure (HF). While exercise intolerance is typical for HF, neither BP nor heart rate (HR) have specific characteristics in HF patients. This study compares BP and HR profiles during and after standardized exercise between patients with systolic HF with either lower or higher aldosterone concentrations. We measured BP and HR in 306 ambulatory adults with systolic HF (left ventricular ejection fraction (LVEF) <50%) during and after a 6 min walk test (6MWT). All patients underwent a resting transthoracic echocardiography, and venous blood samples were collected for biochemical analyses. The patients were also divided into tertiles of serum aldosterone concentration: T1 (<106 pg/mL), T2 (106 and 263 pg/mL) and T3 (>263 pg/mL), respectively. Individuals from T1 and T2 were combined into T1-T2 as the reference group for comparisons with patients from T3. The individuals from T3 had significantly lower systolic, mean and diastolic BPs at rest, at the end and at 1 and 3 min post-6MWT recovery, as well as a more dilated left atrium and right ventricle alongside a higher concentration of N-terminal pro-B-type natriuretic peptide (NT-proBNP). Higher serum aldosterone concentration in HF patients with an LVEF < 50% is associated with a lower 6MWT BP but not an HR profile.
Collapse
|
6
|
Crisafulli A. Meet the Editorial Board Member. Curr Cardiol Rev 2022. [DOI: 10.2174/1573403x1801220315085936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Antonio Crisafulli
- Department of Medical Sciences and Public Health Sports Physiology Lab,
University of Cagliari,
Cagliari,
Italy
| |
Collapse
|
7
|
Kambic T, Jug B, Lainscak M. Response: Commentary: Blood Flow Restriction Exercise: Considerations of Methodology, Application, and Safety. Front Physiol 2021; 12:665568. [PMID: 33868031 PMCID: PMC8044887 DOI: 10.3389/fphys.2021.665568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 02/26/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Tim Kambic
- Cardiac Rehabilitation Unit, Department of Research and Education, General Hospital Murska Sobota, Murska Sobota, Slovenia
| | - Borut Jug
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Division of Internal Medicine, Department of Vascular Diseases, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Mitja Lainscak
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia.,Division of Cardiology, General Hospital Murska Sobota, Murska Sobota, Slovenia.,Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia
| |
Collapse
|
8
|
Sympathetic neural responses in heart failure during exercise and after exercise training. Clin Sci (Lond) 2021; 135:651-669. [DOI: 10.1042/cs20201306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/01/2021] [Accepted: 02/15/2021] [Indexed: 12/25/2022]
Abstract
Abstract
The sympathetic nervous system coordinates the cardiovascular response to exercise. This regulation is impaired in both experimental and human heart failure with reduced ejection fraction (HFrEF), resulting in a state of sympathoexcitation which limits exercise capacity and contributes to adverse outcome. Exercise training can moderate sympathetic excess at rest. Recording sympathetic nerve firing during exercise is more challenging. Hence, data acquired during exercise are scant and results vary according to exercise modality. In this review we will: (1) describe sympathetic activity during various exercise modes in both experimental and human HFrEF and consider factors which influence these responses; and (2) summarise the effect of exercise training on sympathetic outflow both at rest and during exercise in both animal models and human HFrEF. We will particularly highlight studies in humans which report direct measurements of efferent sympathetic nerve traffic using intraneural recordings. Future research is required to clarify the neural afferent mechanisms which contribute to efferent sympathetic activation during exercise in HFrEF, how this may be altered by exercise training, and the impact of such attenuation on cardiac and renal function.
Collapse
|
9
|
Unraveling the Role of Respiratory Muscle Metaboloreceptors under Inspiratory Training in Patients with Heart Failure. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041697. [PMID: 33578776 PMCID: PMC7916511 DOI: 10.3390/ijerph18041697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 12/15/2022]
Abstract
Exercise intolerance may be considered a hallmark in patients who suffer from heart failure (HF) syndrome. Currently, there is enough scientific evidence regarding functional and structural deterioration of skeletal musculature in these patients. It is worth noting that muscle weakness appears first in the respiratory muscles and then in the musculature of the limbs, which may be considered one of the main causes of exercise intolerance. Functional deterioration and associated atrophy of these respiratory muscles are related to an increased muscle metaboreflex leading to sympathetic–adrenal system hyperactivity and increased pulmonary ventilation. This issue contributes to increased dyspnea and/or fatigue and decreased aerobic function. Consequently, respiratory muscle weakness produces exercise limitations in these patients. In the present review, the key role that respiratory muscle metaboloreceptors play in exercise intolerance is accurately addressed in patients who suffer from HF. In conclusion, currently available scientific evidence seems to affirm that excessive metaboreflex activity of respiratory musculature under HF is the main cause of exercise intolerance and sympathetic–adrenal system hyperactivity. Inspiratory muscle training seems to be a useful personalized medicine intervention to reduce respiratory muscle metaboreflex in order to increase patients’ exercise tolerance under HF condition.
Collapse
|
10
|
Smith JR, Joyner MJ, Curry TB, Borlaug BA, Keller-Ross ML, Van Iterson EH, Olson TP. Locomotor muscle group III/IV afferents constrain stroke volume and contribute to exercise intolerance in human heart failure. J Physiol 2020; 598:5379-5390. [PMID: 32886795 PMCID: PMC10039366 DOI: 10.1113/jp280333] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 08/24/2020] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Heart failure patients with reduced ejection fraction (HFrEF) exhibit severe limitations in exercise capacity ( V̇O2 peak). One of the primary peripheral mechanisms suggested to underlie exercise intolerance in HFrEF is excessive locomotor muscle group III/IV afferent feedback; however, this has never been investigated in human heart failure. HFrEF patients and controls performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output, leg blood flow and radial artery and femoral venous blood gases were measured. With fentanyl, compared with placebo, patients with HFrEF achieved a higher peak workload, V̇O2 peak, cardiac output, stroke volume and leg blood flow. These findings suggest that locomotor muscle group III/IV afferent feedback in HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery thereby impairing V̇O2 peak and thus exercise capacity. ABSTRACT To better understand the underlying mechanisms contributing to exercise limitation in heart failure with reduced ejection fraction (HFrEF), we investigated the influence of locomotor muscle group III/IV afferent inhibition via lumbar intrathecal fentanyl on peak exercise capacity ( V̇O2 peak) and the contributory mechanisms. Eleven HFrEF patients and eight healthy matched controls were recruited. The participants performed an incremental exercise test to volitional exhaustion to determine V̇O2 peak with lumbar intrathecal fentanyl or placebo. During exercise, cardiac output and leg blood flow ( Q̇L ) were measured via open-circuit acetylene wash-in technique and constant infusion thermodilution, respectively. Radial artery and femoral venous blood gases were measured. V̇O2 peak was 15% greater with fentanyl compared with placebo for HFrEF (P < 0.01), while no different in the controls. During peak exercise with fentanyl, cardiac output was 12% greater in HFrEF secondary to significant decreases in systemic vascular resistance and increases in stroke volume compared with placebo (all, P < 0.01). From placebo to fentanyl, leg V̇O2 , Q̇L and O2 delivery were greater for HFrEF during peak exercise (all, P < 0.01), but not control. These findings indicate that locomotor muscle group III/IV afferent feedback in patients with HFrEF leads to increased systemic vascular resistance, which constrains stroke volume, cardiac output and O2 delivery, thereby impairing V̇O2 peak and thus exercise capacity. These findings have important clinical implications as V̇O2 peak is highly predictive of morbidity and mortality in HF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | - Timothy B Curry
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, MN, USA
| | | | - Manda L Keller-Ross
- Division of Physical Therapy and Rehabilitation Sciences, University of Minnesota, MN, USA
| | - Erik H Van Iterson
- Section of Preventative Cardiology and Rehabilitation, Cleveland Clinic, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, MN, USA
| |
Collapse
|
11
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
12
|
Egbuche O, Hanna B, Onuorah I, Uko E, Taha Y, Ghali JK, Onwuanyi A. Contemporary Pharmacologic Management of Heart Failure with Reduced Ejection Fraction: A Review. Curr Cardiol Rev 2020; 16:55-64. [PMID: 31288726 PMCID: PMC7393599 DOI: 10.2174/1573403x15666190709185011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/11/2019] [Accepted: 06/21/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure with reduced ejection fraction (HFrEF) is defined as the presence of typical symptoms of heart failure (HF) and a left ventricular ejection fraction ≤ 40%. HFrEF patients constitute approximately 50% of all patients with clinical HF. Despite breakthrough discoveries and advances in the pharmacologic management of HF, HFrEF patients continue to pose a significant economic burden due to a progressive disease characterized by recurrent hospitalizations and need for advanced therapy. Although there are effective, guideline-directed medical therapies for patients with HFrEF, a significant proportion of these patients are either not on appropriate medications’ combination or on optimal tolerable medications’ doses. Since the morbidity and mortality benefits of some of the pharmacologic therapies are dose-dependent, optimal medical therapy is required to impact the burden of disease, quality of life, prognosis, and to curb health care expenditure. In this review, we summarize landmark trials that have impacted the management of HF and we review contemporary pharmacologic management of patients with HFrEF. We also provide insight on general considerations in the management of HFrEF in specific populations. We searched PubMed, Scopus, Medline and Cochrane library for relevant articles published until April 2019 using the following key words “heart failure”, “management”, “treatment”, “device therapy”, “reduced ejection fraction”, “guidelines”, “guideline directed medical therapy”, “trials” either by itself or in combination. We also utilized the cardiology trials portal to identify trials related to heart failure. We reviewed guidelines, full articles, review articles and clinical trials and focused on the pharmacologic management of HFrEF.
Collapse
Affiliation(s)
- Obiora Egbuche
- Division of Cardiovascular Disease, Morehouse School of Medicine, Atlanta, GA 30303, United States
| | - Bishoy Hanna
- Division of Cardiovascular Disease, Morehouse School of Medicine, Atlanta, GA 30303, United States
| | - Ifeoma Onuorah
- Division of Cardiovascular Disease, Emory University Hospital, Atlanta, GA 30322, United States
| | - Emmanuela Uko
- Division of Peadiatric Medicine, Icahn School of Medicine at Mount Sinai, NYC, New York, United States
| | - Yasir Taha
- Division of Cardiovascular Disease, Morehouse School of Medicine, Atlanta, GA 30303, United States
| | - Jalal K Ghali
- Division of Cardiovascular Disease, Morehouse School of Medicine, Atlanta, GA 30303, United States
| | - Anekwe Onwuanyi
- Division of Cardiovascular Disease, Morehouse School of Medicine, Atlanta, GA 30303, United States
| |
Collapse
|
13
|
Smith JR, Hart CR, Ramos PA, Akinsanya JG, Lanza IR, Joyner MJ, Curry TB, Olson TP. Metabo- and mechanoreceptor expression in human heart failure: Relationships with the locomotor muscle afferent influence on exercise responses. Exp Physiol 2020; 105:809-818. [PMID: 32105387 DOI: 10.1113/ep088353] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/20/2020] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? How do locomotor muscle metabo- and mechanoreceptor expression compare in heart failure patients and controls? Do relationships exist between the protein expression and cardiopulmonary responses during exercise with locomotor muscle neural afferent feedback inhibition? What is the main finding and its importance? Heart failure patients exhibited greater protein expression of transient receptor potential vanilloid type 1 and cyclooxygenase-2 than controls. These findings are important as they identify receptors that may underlie the augmented locomotor muscle neural afferent feedback in heart failure. ABSTRACT Heart failure patients with reduced ejection fraction (HFrEF) exhibit abnormal locomotor group III/IV afferent feedback during exercise; however, the underlying mechanisms are unclear. Therefore, the purpose of this study was to determine (1) metabo- and mechanoreceptor expression in HFrEF and controls and (2) relationships between receptor expression and changes in cardiopulmonary responses with afferent inhibition. Ten controls and six HFrEF performed 5 min of cycling exercise at 65% peak workload with lumbar intrathecal fentanyl (FENT) or placebo (PLA). Arterial blood pressure and catecholamines were measured via radial artery catheter. A vastus lateralis muscle biopsy was performed to quantify cyclooxygenase-2 (COX-2), purinergic 2X3 (P2X3 ), transient receptor potential vanilloid type 1 (TRPV 1), acid-sensing ion channel 3 (ASIC3 ), Piezo 1 and Piezo 2 protein expression. TRPV 1 and COX-2 protein expression was greater in HFrEF than controls (both P < 0.04), while P2X3 , ASIC3 , and Piezo 1 and 2 were not different between groups (all P > 0.16). In all participants, COX-2 protein expression was related to the percentage change in ventilation (r = -0.66) and mean arterial pressure (MAP) (r = -0.82) (both P < 0.01) with FENT (relative to PLA) during exercise. In controls, TRPV 1 protein expression was related to the percentage change in systolic blood pressure (r = -0.77, P = 0.02) and MAP (r = -0.72, P = 0.03) with FENT (relative to PLA) during exercise. TRPV 1 and COX-2 protein levels are elevated in HFrEF compared to controls. These findings suggest that the elevated TRPV 1 and COX-2 expression may contribute to the exaggerated locomotor muscle afferent feedback during cycling exercise in HFrEF.
Collapse
Affiliation(s)
- Joshua R Smith
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Corey R Hart
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | - Paola A Ramos
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Ian R Lanza
- Division of Endocrinology, Mayo Clinic, Rochester, MN, USA
| | | | - Timothy B Curry
- Department of Anesthesiology, Mayo Clinic, Rochester, MN, USA
| | - Thomas P Olson
- Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
14
|
Angius L, Crisafulli A. Exercise intolerance and fatigue in chronic heart failure: is there a role for group III/IV afferent feedback? Eur J Prev Cardiol 2020; 27:1862-1872. [PMID: 32046526 PMCID: PMC7672669 DOI: 10.1177/2047487320906919] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Exercise intolerance and early fatiguability are hallmark symptoms of chronic heart failure. While the malfunction of the heart is certainly the leading cause of chronic heart failure, the patho-physiological mechanisms of exercise intolerance in these patients are more complex, multifactorial and only partially understood. Some evidence points towards a potential role of an exaggerated afferent feedback from group III/IV muscle afferents in the genesis of these symptoms. Overactivity of feedback from these muscle afferents may cause exercise intolerance with a double action: by inducing cardiovascular dysregulation, by reducing motor output and by facilitating the development of central and peripheral fatigue during exercise. Importantly, physical inactivity appears to affect the progression of the syndrome negatively, while physical training can partially counteract this condition. In the present review, the role played by group III/IV afferent feedback in cardiovascular regulation during exercise and exercise-induced muscle fatigue of healthy people and their potential role in inducing exercise intolerance in chronic heart failure patients will be summarised.
Collapse
Affiliation(s)
- Luca Angius
- Faculty of Health and Life Sciences, Sport, Exercise and Rehabilitation, Northumbria University, UK
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Laboratory, University of Cagliari, Italy
| |
Collapse
|
15
|
Bruce RM, Jolley C, White MJ. Control of exercise hyperpnoea: Contributions from thin-fibre skeletal muscle afferents. Exp Physiol 2019; 104:1605-1621. [PMID: 31429500 DOI: 10.1113/ep087649] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 08/16/2019] [Indexed: 12/16/2022]
Abstract
NEW FINDINGS What is the topic of this review? In this review, we examine the evidence for control mechanisms underlying exercise hyperpnoea, giving attention to the feedback from thin-fibre skeletal muscle afferents, and highlight the frequently conflicting findings and difficulties encountered by researchers using a variety of experimental models. What advances does it highlight? There has been a recent resurgence of interest in the role of skeletal muscle afferent involvement, not only as a mechanism of healthy exercise hyperpnoea but also in the manifestation of breathlessness and exercise intolerance in chronic disease. ABSTRACT The ventilatory response to dynamic submaximal exercise is immediate and proportional to metabolic rate, which maintains isocapnia. How these respiratory responses are controlled remains poorly understood, given that the most tightly controlled variable (arterial partial pressure of CO2 /H+ ) provides no error signal for arterial chemoreceptors to trigger reflex increases in ventilation. This review discusses evidence for different postulated control mechanisms, with a focus on the feedback from group III/IV skeletal muscle mechanosensitive and metabosensitive afferents. This concept is attractive, because the stimulation of muscle mechanoreceptors might account for the immediate increase in ventilation at the onset of exercise, and signals from metaboreceptors might be proportional to metabolic rate. A variety of experimental models have been used to establish the contribution of thin-fibre muscle afferents in ventilatory control during exercise, with equivocal results. The inhibition of afferent feedback via the application of lumbar intrathecal fentanyl during exercise suppresses ventilation, which provides the most compelling supportive evidence to date. However, stimulation of afferent feedback at rest has no consistent effect on respiratory output. However, evidence is emerging for synergistic interactions between muscle afferent feedback and other stimulatory inputs to the central respiratory neuronal pool. These seemingly hyperadditive effects might explain the conflicting findings encountered when using different experimental models. We also discuss the increasing evidence that patients with certain chronic diseases exhibit exaggerated muscle afferent activation during exercise, resulting in enhanced cardiorespiratory responses. This might provide a neural link between the well-established limb muscle dysfunction and the associated exercise intolerance and exertional dyspnoea, which might offer therapeutic targets for these patients.
Collapse
Affiliation(s)
- Richard M Bruce
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Caroline Jolley
- Centre for Human and Applied Physiological Sciences, School of Basic and Medical Sciences, King's College London, London, UK
| | - Michael J White
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
16
|
Spaggiari CV, Kuniyoshi RR, Antunes-Correa LM, Groehs RV, de Siqueira SF, Martinelli Filho M. Cardiac resynchronization therapy restores muscular metaboreflex control. J Cardiovasc Electrophysiol 2019; 30:2591-2598. [PMID: 31544272 DOI: 10.1111/jce.14195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 11/28/2022]
Abstract
INTRODUCTION The muscular metaboreflex, whose activation regulates blood flow during isometric and aerobic exercise, is blunted in patients with heart failure (HF), and cardiac resynchronization therapy (CRT) may restore this regulatory reflex. OBJECTIVE To evaluate metaboreflex responses after CRT. METHODS Thirteen HF patients and 12 age-matched healthy control subjects underwent the following evaluations (pre- and post-CRT implantation in the patient group): (a) heart rate, blood pressure, and forearm blood flow measurements; (b) muscle sympathetic nerve activity (MSNA) evaluation; and (c) peak oxygen consumption (VO2peak ). Examinations were performed at rest, during moderate isometric exercise (IE), and during forearm ischemia (metaboreflex activation). The primary outcome was the increment in MSNA during limb ischemia compared to the rest moment (ΔMSNA rest to metaboreflex activation). RESULTS After CRT, rest MSNA decreased in the HF participants: 50.4 ± 9.2 bursts/min pre-CRT vs 34.0 ± 14.4 bursts/min post-CRT, P = .001, accompanied by an improvement in systolic blood pressure and in rate-pressure product. MSNA during limb ischemia decreased: 56.6 ± 11.5 bursts/min pre-CRT vs 43.6 ± 12.7 bursts/min post-CRT, P = .001, and the ΔMSNA rest to metaboreflex activation increased: 0% (interquartile range [IQR)], -7 to 9) vs 13% (IQR, 5-30), P = .03. An augmentation of mean blood pressure during limb ischemia post-CRT was noticed: 94 mmHg (IQR, 81-104) vs 110 mmHg (IQR, 100-117), P = .04. CRT improved VO2peak , and this improvement was correlated with diminution in ΔMSNA pre- to post-CRT at rest moment (rs = -0.74, P = .006). CONCLUSION CRT provides metaboreflex sensitization and MSNA enhancement. The restoration of sympathetic responsiveness correlates with the improvement in functional capacity.
Collapse
Affiliation(s)
- Caio V Spaggiari
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | | | - Lígia M Antunes-Correa
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Raphaela V Groehs
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Sérgio F de Siqueira
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Martino Martinelli Filho
- Department of Artificial Cardiac Stimulation and Department of Cardiac Rehabilitation, Instituto do Coracao (InCor), Hospital das Clinicas HCFMUSP, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Crisafulli A, de Farias RR, Farinatti P, Lopes KG, Milia R, Sainas G, Pinna V, Palazzolo G, Doneddu A, Magnani S, Mulliri G, Roberto S, Oliveira RB. Blood Flow Restriction Training Reduces Blood Pressure During Exercise Without Affecting Metaboreflex Activity. Front Physiol 2018; 9:1736. [PMID: 30618781 PMCID: PMC6299290 DOI: 10.3389/fphys.2018.01736] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 11/16/2018] [Indexed: 12/12/2022] Open
Abstract
Objective: Blood flow restriction training (BFRT) has been proposed to induce muscle hypertrophy, but its safety remains controversial as it may increase mean arterial pressure (MAP) due to muscle metaboreflex activation. However, BFR training also causes metabolite accumulation that may desensitize type III and IV nerve endings, which trigger muscle metaboreflex. Then, we hypothesized that a period of BFR training would result in blunted hemodynamic activation during muscle metaboreflex. Methods: 17 young healthy males aged 18–25 yrs enrolled in this study. Hemodynamic responses during muscle metaboreflex were assessed by means of postexercise muscle ischemia (PEMI) at baseline (T0) and after 1 month (T1) of dynamic BFRT. BFRT consisted of 3-min rhythmic handgrip exercise applied 3 days/week (30 contractions per minute at 30% of maximum voluntary contraction) in the dominant arm. On the first week, the occlusion was set at 75% of resting systolic blood pressure (always obtained after 3 min of resting) and increased 25% every week, until reaching 150% of resting systolic pressure at week four. Hemodynamic measurements were assessed by means of impedance cardiography. Results: BFRT reduced MAP during handgrip exercise (T1: 96.3 ± 8.3 mmHg vs. T0: 102.0 ± 9.53 mmHg, p = 0.012). However, no significant time effect was detected for MAP during the metaboreflex activation (P > 0.05). Additionally, none of the observed hemodynamic outcomes, including systemic vascular resistance (SVR), showed significant difference between T0 and T1 during the metaboreflex activation (P > 0.05). Conclusion: BFRT reduced blood pressure during handgrip exercise, thereby suggesting a potential hypotensive effect of this modality of training. However, MAP reduction during handgrip seemed not to be provoked by lowered metaboreflex activity.
Collapse
Affiliation(s)
- Antonio Crisafulli
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Rafael Riera de Farias
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Paulo Farinatti
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Graduate Program in Physical Activity Sciences, Salgado de Oliveira University, Niterói, Brazil
| | - Karynne Grutter Lopes
- Laboratory of Physical Activity and Health Promotion, University of Rio de Janeiro, Rio de Janeiro, Brazil.,Graduate Program in Clinical and Experimental Physiopathology, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Vascular Biology, University of Rio de Janeiro State, Rio de Janeiro, Brazil
| | - Raffaele Milia
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Gianmarco Sainas
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Virginia Pinna
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Girolamo Palazzolo
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Azzurra Doneddu
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Sara Magnani
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Gabriele Mulliri
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- Sports Physiology Laboratory, The Department of Medical Sciences and Public Health, and International PhD in Innovation Sciences and Technologies, University of Cagliari, Cagliari, Italy
| | - Ricardo Brandão Oliveira
- Graduate Program in Exercise and Sport Sciences, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Graduate Program in Clinical and Experimental Physiopathology, University of Rio de Janeiro State, Rio de Janeiro, Brazil.,Laboratory of Active Living (LaVA), University of Rio de Janeiro State, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Paneroni M, Pasini E, Comini L, Vitacca M, Schena F, Scalvini S, Venturelli M. Skeletal Muscle Myopathy in Heart Failure: the Role of Ejection Fraction. Curr Cardiol Rep 2018; 20:116. [PMID: 30259199 DOI: 10.1007/s11886-018-1056-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE OF REVIEW This review summarizes: (1) the structural and functional features coupled with pathophysiological factors responsible of skeletal muscle myopathy (SMM) in both heart failure with reduced (HFrEF) and preserved (HFpEF) ejection fraction and (2) the role of exercise as treatment of SMM in these HF-related phenotypes. RECENT FINDINGS The recent literature showed two main phenotypes of heart failure (HF): (1) HFrEF primarily due to a systolic dysfunction of the left ventricle and (2) HFpEF, mainly related to a diastolic dysfunction. Exercise intolerance is one of most disabling symptoms of HF and it is shown that persists after the normalization of the central hemodynamic impairments by therapy and/or cardiac surgery including heart transplant. A specific skeletal muscle myopathy (SMM) has been defined as one of the main causes of exercise intolerance in HF. The SMM has been well described in the last 20 years in the HFrEF; on the contrary, few studies are available in HFpEF. Recent evidences have revealed that exercise training counteracts HF-related SMM and in turn ameliorates exercise intolerance.
Collapse
Affiliation(s)
- Mara Paneroni
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Evasio Pasini
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | - Laura Comini
- Istituti Clinici Scientifici Maugeri, IRCCS, Pavia, Italy
| | | | - Federico Schena
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37100, Verona, Italy
| | | | - Massimo Venturelli
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Via Casorati 43, 37100, Verona, Italy.
- Division of Geriatrics, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA.
| |
Collapse
|
19
|
Crisafulli A. The Impact of Cardiovascular Diseases on Cardiovascular Regulation During Exercise in Humans: Studies on Metaboreflex Activation Elicited by the Post-exercise Muscle Ischemia Method. Curr Cardiol Rev 2018; 13:293-300. [PMID: 28782491 PMCID: PMC5730962 DOI: 10.2174/1573403x13666170804165928] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Revised: 07/26/2017] [Accepted: 07/28/2017] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Hemodynamics during dynamic exercise is finely regulated by some neural mechanisms. One of these mechanisms is the metabolic part of the exercise pressor reflex, i.e. the muscle metaboreflex. Hemodynamic response during the metaboreflex is characterised by the recruitment of the reserves in cardiac inotropism, pre-load, after-load and chronotropism. If one of these reserves is exhausted, then the cardiovascular response is achieved by recruiting one of the other reserves, thereby indicating a remarkable plasticity of the control of circulation. CONCLUSION In this review, the effects of a number of cardiovascular diseases - such as heart failure, heart failure with preserved ejection fraction, hypertension, type 1 and type 2 diabetes mellitus, obesity and metabolic syndrome - on hemodynamics during the metaboreflex are reviewed.
Collapse
Affiliation(s)
- Antonio Crisafulli
- Department of Medical Sciences and Public Health, Sports Physiology Lab., University of Cagliari, Via Porcell 4, 09124 Cagliari. Italy
| |
Collapse
|
20
|
Magnani S, Roberto S, Sainas G, Milia R, Palazzolo G, Cugusi L, Pinna V, Doneddu A, Kakhak SAH, Tocco F, Mercuro G, Crisafulli A. Metaboreflex-mediated hemodynamic abnormalities in individuals with coronary artery disease without overt signs or symptoms of heart failure. Am J Physiol Heart Circ Physiol 2017; 314:H452-H463. [PMID: 29127237 DOI: 10.1152/ajpheart.00436.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study was devised to investigate the effect of coronary artery disease (CAD) without overt signs of heart failure on the cardiovascular responses to muscle metaboreflex activation. We hypothesized that any CAD-induced preclinical systolic and/or diastolic dysfunction could impair hemodynamic response to the metaboreflex test. Twelve men diagnosed with CAD without any sign or symptoms of heart failure and 11 age-matched healthy control (CTL) subjects participated in the study. Subjects performed a postexercise muscle ischemia (PEMI) test to activate the metaboreflex. They also performed a control exercise recovery test to compare data from the PEMI test. The main results were that the CAD group reached a similar mean arterial blood pressure response as the CTL group during PEMI. However, the mechanism by which this response was achieved was different between groups. In particular, CAD achieved the target mean arterial blood pressure by increasing systemic vascular resistance (+383.8 ± 256.6 vs. +91.2 ± 293.5 dyn·s-1·cm-5 for the CAD and CTL groups, respectively), the CTL group by increasing cardiac preload (-0.92 ± 8.53 vs. 5.34 ± 4.29 ml in end-diastolic volume for the CAD and CTL groups, respectively), which led to an enhanced stroke volume and cardiac output. Furthermore, the ventricular filling rate response was higher in the CTL group than in the CAD group during PEMI ( P < 0.05 for all comparisons). This study confirms that diastolic function is pivotal for normal hemodynamics during the metaboreflex. Moreover, it provides evidence that early signs of diastolic impairment attributable to CAD can be detected by the metaboreflex test. NEW & NOTEWORTHY Individuals suffering from coronary artery disease without overt signs of heart failure may show early signs of diastolic dysfunction, which can be detected by the metaboreflex test. During the metaboreflex, these subjects show impaired preload and stroke volume responses and exaggerated vasoconstriction compared with controls.
Collapse
Affiliation(s)
- Sara Magnani
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Silvana Roberto
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Gianmarco Sainas
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Raffaele Milia
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Girolamo Palazzolo
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Lucia Cugusi
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Virginia Pinna
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Azzurra Doneddu
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | | | - Filippo Tocco
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Giuseppe Mercuro
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| | - Antonio Crisafulli
- Department of Medical Sciences and Public Health, University of Cagliari , Cagliari , Italy
| |
Collapse
|
21
|
Dumitrescu D, Sitbon O, Weatherald J, Howard LS. Exertional dyspnoea in pulmonary arterial hypertension. Eur Respir Rev 2017; 26:26/145/170039. [PMID: 28877974 PMCID: PMC9488798 DOI: 10.1183/16000617.0039-2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 06/03/2017] [Indexed: 01/01/2023] Open
Abstract
Dyspnoea is a principal presenting symptom in pulmonary arterial hypertension (PAH), and often the most distressing. The pathophysiology of PAH is relatively well understood, with the primary abnormality of pulmonary vascular disease resulting in a combination of impaired cardiac output on exercise and abnormal gas exchange, both contributing to increased ventilatory drive. However, increased ventilatory drive is not the sole explanation for the complex neurophysiological and neuropsychological symptom of dyspnoea, with other significant contributions from skeletal muscle reflexes, respiratory muscle function, and psychological and emotional status. In this review, we explore the physiological aspects of dyspnoea in PAH, both in terms of the central cardiopulmonary abnormalities of PAH and the wider, systemic impact of PAH, and how these interact with common comorbidities. Finally, we discuss its relationship with disease severity. Dyspnoea is a complex integration of all the cardiopulmonary and systemic abnormalities in PAHhttp://ow.ly/D13W30dMDwJ
Collapse
|
22
|
Roberto S, Mulliri G, Milia R, Solinas R, Pinna V, Sainas G, Piepoli MF, Crisafulli A. Hemodynamic response to muscle reflex is abnormal in patients with heart failure with preserved ejection fraction. J Appl Physiol (1985) 2016; 122:376-385. [PMID: 27979984 DOI: 10.1152/japplphysiol.00645.2016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/22/2016] [Accepted: 12/12/2016] [Indexed: 11/22/2022] Open
Abstract
The aim of the present investigation was to assess the role of cardiac diastole on the hemodynamic response to metaboreflex activation. We wanted to determine whether patients with diastolic function impairment showed a different hemodynamic response compared with normal subjects during this reflex. Hemodynamics during activation of the metaboreflex obtained by postexercise muscle ischemia (PEMI) was assessed in 10 patients with diagnosed heart failure with preserved ejection fraction (HFpEF) and in 12 age-matched healthy controls (CTL). Subjects also performed a control exercise-recovery test to compare data from the PEMI test. The main results were that patients with HFpEF achieved a similar mean arterial blood pressure (MAP) response as the CTL group during the PEMI test. However, the mechanism by which this response was achieved was markedly different between the two groups. Patients with HFpEF achieved the target MAP via an increase in systemic vascular resistance (+389.5 ± 402.9 vs. +80 ± 201.9 dynes·s-1·cm-5 for HFpEF and CTL groups respectively), whereas MAP response in the CTL group was the result of an increase in cardiac preload (-1.3 ± 5.2 vs. 6.1 ± 10 ml in end-diastolic volume for HFpEF and CTL groups, respectively), which led to a rise in stroke volume and cardiac output. Moreover, early filling peak velocities showed a higher response in the CTL group than in the HFpEF group. This study demonstrates that diastolic function is important for normal hemodynamic adjustment to the metaboreflex. Moreover, it provides evidence that HFpEF causes hemodynamic impairment similar to that observed in systolic heart failure.NEW & NOTEWORTHY This study provides evidence that diastolic function is important for normal hemodynamic responses during the activation of the muscle metaboreflex in humans. Moreover, it demonstrates that diastolic impairment leads to hemodynamic consequences similar to those provoked by systolic heart failure. In both cases the target blood pressure is obtained mainly by means of exaggerated vasoconstriction than by a flow-mediated mechanism.
Collapse
Affiliation(s)
- Silvana Roberto
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Gabriele Mulliri
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Raffaele Milia
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Roberto Solinas
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Virginia Pinna
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | - Gianmarco Sainas
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| | | | - Antonio Crisafulli
- Department of Medical Sciences, Sports Physiology Lab., University of Cagliari, Cagliari, Italy; and
| |
Collapse
|
23
|
Venturelli M, Cè E, Limonta E, Bisconti AV, Devoto M, Rampichini S, Esposito F. Central and peripheral responses to static and dynamic stretch of skeletal muscle: mechano- and metaboreflex implications. J Appl Physiol (1985) 2016; 122:112-120. [PMID: 27856718 DOI: 10.1152/japplphysiol.00721.2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/02/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Passive static stretching (SS), circulatory cuff occlusion (CCO), and the combination of both (SS + CCO) have been used to investigate the mechano- and metaboreflex, respectively. However, the effects of dynamic stretching (DS) alone or in combination with CCO (DS + CCO) on the same reflexes have never been explored. The aim of the study was to compare central and peripheral hemodynamic responses to DS, SS, DS + CCO, and SS + CCO. In 10 participants, femoral blood flow (FBF), heart rate (HR), cardiac output (CO), and mean arterial pressure (MAP) were assessed during DS and SS of the quadriceps muscle with and without CCO. Blood lactate concentration [La-] in the lower limb undergoing CCO was also measured. FBF increased significantly in DS and SS by 365 ± 98 and 377 ± 102 ml/min, respectively. Compared with baseline, hyperemia was negligible during DS + CCO and SS + CCO (+11 ± 98 and +5 ± 87 ml/min, respectively). DS generated a significant, sustained increase in HR and CO (∼40s), while SS induced a blunted and delayed cardioacceleration (∼20 s). After CCO, [La-] in the lower limb increased by 135%. Changes in HR and CO during DS + CCO and SS + CCO were similar to DS and SS alone. MAP decreased significantly by ∼5% during DS and SS, did not change in DS + CCO, and increased by 4% in SS + CCO. The present data indicate a reduced mechanoreflex response to SS compared with DS (i.e., different HR and CO changes). SS evoked a hyperemia similar to DS. The similar central hemodynamics recorded during stretching and [La-] accumulation suggest a marginal interaction between mechano- and metaboreflex. NEW & NOTEWORTHY Different modalities of passive stretching administration (dynamic or static) in combination with circulatory cuff occlusion may reduce or amplify the mechano- and metaboreflex. We showed a reduced mechanoreflex response to static compared with dynamic stretching. The lack of increase in central hemodynamics during the combined mechano- and metaboreflex stimulation implicates marginal interactions between these two pathways.
Collapse
Affiliation(s)
- Massimo Venturelli
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy; .,Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Emiliano Cè
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Eloisa Limonta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | | | - Michela Devoto
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Susanna Rampichini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Fabio Esposito
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,Center of Sport Medicine, Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Don Gnocchi Foundation, Milan, Italy; and
| |
Collapse
|
24
|
Magnani S, Olla S, Pau M, Palazzolo G, Tocco F, Doneddu A, Marcelli M, Loi A, Corona F, Corona F, Coghe G, Marrosu MG, Concu A, Cocco E, Marongiu E, Crisafulli A. Effects of Six Months Training on Physical Capacity and Metaboreflex Activity in Patients with Multiple Sclerosis. Front Physiol 2016; 7:531. [PMID: 27895592 PMCID: PMC5108173 DOI: 10.3389/fphys.2016.00531] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 10/25/2016] [Indexed: 12/20/2022] Open
Abstract
Patients with multiple sclerosis (MS) have an increased systemic vascular resistance (SVR) response during the metaboreflex. It has been hypothesized that this is the consequence of a sedentary lifestyle secondary to MS. The purpose of this study was to discover whether a 6-month training program could reverse this hemodynamic dysregulation. Patients were randomly assigned to one of the following two groups: the intervention group (MSIT, n = 11), who followed an adapted training program; and the control group (MSCTL, n = 10), who continued with their sedentary lifestyle. Cardiovascular response during the metaboreflex was evaluated using the post-exercise muscle ischemia (PEMI) method and during a control exercise recovery (CER) test. The difference in hemodynamic variables such as stroke volume (SV), cardiac output (CO), and SVR between the PEMI and the CER tests was calculated to assess the metaboreflex response. Moreover, physical capacity was measured during a cardiopulmonary test till exhaustion. All tests were repeated after 3 and 6 months (T3 and T6, respectively) from the beginning of the study. The main result was that the MSIT group substantially improved parameters related to physical capacity (+5.31 ± 5.12 ml·min−1/kg in maximal oxygen uptake at T6) in comparison with the MSCTL group (−0.97 ± 4.89 ml·min−1/kg at T6; group effect: p = 0.0004). However, none of the hemodynamic variables changed in response to the metaboreflex activation. It was concluded that a 6-month period of adapted physical training was unable to reverse the hemodynamic dys-regulation in response to metaboreflex activation in these patients.
Collapse
Affiliation(s)
- Sara Magnani
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Sergio Olla
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Massimiliano Pau
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Girolamo Palazzolo
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Filippo Tocco
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Azzurra Doneddu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Maura Marcelli
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Andrea Loi
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Federica Corona
- Department of Mechanical, Chemical and Materials Engineering, University of CagliariCagliari, Italy; Department of Public Health, Clinical and Molecular Medicine, University of CagliariCagliari, Italy
| | - Francesco Corona
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Giancarlo Coghe
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Maria G Marrosu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Alberto Concu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Eleonora Cocco
- Department of Mechanical, Chemical and Materials Engineering, University of Cagliari Cagliari, Italy
| | - Elisabetta Marongiu
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| | - Antonio Crisafulli
- Sports Physiology Lab, Department of Medical Sciences, University of Cagliari Cagliari, Italy
| |
Collapse
|
25
|
Peçanha T, de Brito LC, Fecchio RY, de Sousa PN, da Silva Junior ND, de Abreu AP, da Silva GV, Mion-Junior D, Forjaz CLDM. Metaboreflex activation delays heart rate recovery after aerobic exercise in never-treated hypertensive men. J Physiol 2016; 594:6211-6223. [PMID: 27435799 PMCID: PMC5088244 DOI: 10.1113/jp272851] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/12/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Recent evidence indicates that metaboreflex regulates heart rate recovery after exercise (HRR). An increased metaboreflex activity during the post-exercise period might help to explain the reduced HRR observed in hypertensive subjects. Using lower limb circulatory occlusion, the present study showed that metaboreflex activation during the post-exercise period delayed HRR in never-treated hypertensive men compared to normotensives. These findings may be relevant for understanding the physiological mechanisms associated with autonomic dysfunction in hypertensive men. ABSTRACT Muscle metaboreflex influences heart rate (HR) regulation after aerobic exercise. Therefore, increased metaboreflex sensitivity may help to explain the delayed HR recovery (HRR) reported in hypertension. The present study assessed and compared the effect of metaboreflex activation after exercise on HRR, cardiac baroreflex sensitivity (cBRS) and heart rate variability (HRV) in normotensive (NT) and hypertensive (HT) men. Twenty-three never-treated HT and 25 NT men randomly underwent two-cycle ergometer exercise sessions (30 min, 70% V̇O2 peak ) followed by 5 min of inactive recovery performed with (occlusion) or without (control) leg circulatory occlusion (bilateral thigh cuffs inflated to a suprasystolic pressure). HRR was assessed via HR reduction after 30, 60 and 300 s of recovery (HRR30s, HRR60s and HRR300s), as well as by the analysis of short- and long-term time constants of HRR. cBRS was assessed by sequence technique and HRV by the root mean square residual and the root mean square of successive differences between adjacent RR intervals on subsequent 30 s segments. Data were analysed using two- and three-way ANOVA. HRR60s and cBRS were significant and similarly reduced in both groups in the occlusion compared to the control session (combined values: 20 ± 10 vs. 26 ± 9 beats min-1 and 2.1 ± 1.2 vs. 3.2 ± 2.4 ms mmHg-1 , respectively, P < 0.05). HRR300s and HRV were also reduced in the occlusion session, although these reductions were significantly greater in HT compared to NT (-16 ± 11 vs. -8 ± 15 beats min-1 for HRR300s, P < 0.05). The results support the role of metaboreflex in HRR and suggest that increased metaboreflex sensitivity may partially explain the delayed HRR observed in HT men.
Collapse
Affiliation(s)
- Tiago Peçanha
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Leandro Campos de Brito
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Rafael Yokoyama Fecchio
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Patricia Nascimento de Sousa
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Natan Daniel da Silva Junior
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Andrea Pio de Abreu
- Hypertension Unit, General Hospital, University of São Paulo, São Paulo, São Paulo, Brazil
| | | | - Décio Mion-Junior
- Hypertension Unit, General Hospital, University of São Paulo, São Paulo, São Paulo, Brazil
| | - Cláudia Lúcia de Moraes Forjaz
- Exercise Hemodynamic Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, São Paulo, Brazil.
| |
Collapse
|
26
|
Sawicka M, Janowska J, Chudek J. Potential beneficial effect of some adipokines positively correlated with the adipose tissue content on the cardiovascular system. Int J Cardiol 2016; 222:581-589. [PMID: 27513655 DOI: 10.1016/j.ijcard.2016.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/12/2016] [Accepted: 07/04/2016] [Indexed: 01/30/2023]
Abstract
Obesity is a risk factor of cardiovascular diseases. However, in the case of heart failure, obese and overweight patients have a more favourable prognosis compared to patients who have a normal body weight. This phenomenon is referred to as the "obesity paradox," and it is explained by, among others, a positive effect of adipokines produced by adipose tissue, particularly by the tissue located in the direct vicinity of the heart and blood vessels. The favourable effect on the cardiovascular system is mostly associated with adiponectin and omentin, but the levels of these substances are reduced in obese patients. Among the adipokines which levels are positively correlated with the adipose tissue content, favourable activity is demonstrated by apelin, progranulin, chemerin, TNF-α (tumour necrosis factor-)α, CTRP-3 (C1q/tumour necrosis factor (TNF) related protein), leptin, visfatin and vaspin. This activity is associated with the promotion of regeneration processes in the damaged myocardium, formation of new blood vessels, reduction of the afterload, improvement of metabolic processes in cardiomyocytes and myocardial contractile function, inhibition of apoptosis and fibrosis of the myocardium, as well as anti-inflammatory and anti-atheromatous effects. The potential use of these properties in the treatment of heart failure and ischaemic heart disease, as well as in pulmonary hypertension, arterial hypertension and the limitation of the loss of cardiomyocytes during cardioplegia-requiring cardiosurgical procedures, is studied. The most advanced studies focus on analogues of apelin and progranulin.
Collapse
Affiliation(s)
- Magdalena Sawicka
- Department of Cardiology, Congenital Heart Diseases and Electrotherapy, Silesian Center for Heart Diseases, 9 Maria Skłodowska- Curie Street, 41-800 Zabrze, Poland; Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland.
| | - Joanna Janowska
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| | - Jerzy Chudek
- Department of Pathophysiology, Faculty of Medicine, Medical University of Silesia, 18 Medyków Street, 40-027 Katowice, Poland
| |
Collapse
|
27
|
Bruce RM, Turner A, White MJ. Ventilatory responses to muscle metaboreflex activation in chronic obstructive pulmonary disease. J Physiol 2016; 594:6025-6035. [PMID: 27170272 DOI: 10.1113/jp272329] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 05/05/2016] [Indexed: 12/31/2022] Open
Abstract
KEY POINTS Recent evidence indicates a role for group III/IV muscle afferents in reflex control of the human ventilatory response to exercise. Dyspnoea in chronic obstructive pulmonary disease (COPD) may be linked to this reflex response. This study shows that activation of the muscle metaboreflex causes a ventilatory response in COPD patients but not in healthy controls. This indicates abnormal involvement of muscle afferents in the control of ventilation in COPD which may be a contributing factor to exercise dyspnoea. ABSTRACT Blockade of thin fibre muscle afferent feedback during dynamic exercise reduces exercise hyperpnoea in health and chronic obstructive pulmonary disease (COPD). Therefore, we hypothesised that activation of the muscle metaboreflex at rest would cause hyperpnoea. We evaluated the effect of muscle metaboreflex activation on ventilation, in resting COPD patients and healthy participants. Following a bout of rhythmic hand grip exercise, post exercise circulatory occlusion (PECO) was applied to the resting forearm to sustain activation of the muscle metaboreflex, in 18 COPD patients (FEV1 /FVC ratio < 70%), 9 also classified as chronically hypercapnic, and 9 age- and gender-matched controls. The cardiovascular response to exercise and the sustained blood pressure elevation during PECO was similar in patients and controls. During exercise ventilation increased by 6.64 ± 0.84 in controls and significantly (P < 0.05) more, 8.38 ± 0.81 l min-1 , in patients. During PECO it fell to baseline levels in controls but remained significantly (P < 0.05) elevated by 2.78 ± 0.51 l min-1 in patients until release of circulatory occlusion, with no significant difference in responses between patient groups. Muscle metaboreflex activation causes increased ventilation in COPD patients but not in healthy participants. Chronic hypercapnia in COPD patients does not exaggerate this response. The muscle metaboreflex appears to be abnormally involved in the control of ventilation in COPD and may be a contributing factor to exercise dyspnoea.
Collapse
Affiliation(s)
- Richard M Bruce
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK
| | - Alice Turner
- School of Clinical and Experimental Medicine, University of Birmingham, UK
| | - Michael J White
- School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, UK.
| |
Collapse
|
28
|
Aerobic Interval Training Elicits Different Hemodynamic Adaptations Between Heart Failure Patients with Preserved and Reduced Ejection Fraction. Am J Phys Med Rehabil 2016; 95:15-27. [PMID: 26053189 DOI: 10.1097/phm.0000000000000312] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This investigation explored how aerobic interval training influences central or peripheral hemodynamic response(s) to exercise in patients with heart failure (HF) with preserved ejection fraction (HFpEF) or those with HF with reduced ejection fraction (HFrEF). DESIGN One hundred twenty HF patients were divided into four groups: HFpEF and HFrEF with aerobic interval training (3-min intervals at 40% and 80% VO2peak for 30 mins/day, 3 days/wk for 12 wks) and general health care groups. Exercise hemodynamics in the heart, frontal cerebral lobe, and vastus lateralis muscle, and oxygenation in the frontal cerebral lobe and vastus lateralis muscle were measured before and after the intervention. RESULTS Aerobic interval training significantly (1) improved pumping function with enhanced peak cardiac power index in the HFrEF group and improved diastolic function with reduction of the E/E' ratio in the HFpEF group, (2) increased blood distribution to the frontal cerebral lobe/vastus lateralis muscle and O2 extraction by vastus lateralis muscle during exercise in the HFpEF group compared with the HFrEF group, (3) heightened VO2peak in both HFpEF and HFrEF groups and lowered the VE/VCO2 slope in the HFpEF group, and (4) increased the Short Form-36 physical/mental component scores and decreased the Minnesota Living with Heart Failure questionnaire score in both HFpEF and HFrEF groups. CONCLUSIONS Aerobic interval training effectively enhances cardiac hemodynamic response to exercise in HFrEF patients while increasing the delivery/use of O2 to exercising skeletal muscles and frontal cerebral lobe tissues in HFpEF patients, thereby improving global/disease-specific quality-of-life measures in these HF patients.
Collapse
|
29
|
Aerobic Exercise and Pharmacological Therapies for Skeletal Myopathy in Heart Failure: Similarities and Differences. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:4374671. [PMID: 26904163 PMCID: PMC4745416 DOI: 10.1155/2016/4374671] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022]
Abstract
Skeletal myopathy has been identified as a major comorbidity of heart failure (HF) affecting up to 20% of ambulatory patients leading to shortness of breath, early fatigue, and exercise intolerance. Neurohumoral blockade, through the inhibition of renin angiotensin aldosterone system (RAS) and β-adrenergic receptor blockade (β-blockers), is a mandatory pharmacological therapy of HF since it reduces symptoms, mortality, and sudden death. However, the effect of these drugs on skeletal myopathy needs to be clarified, since exercise intolerance remains in HF patients optimized with β-blockers and inhibitors of RAS. Aerobic exercise training (AET) is efficient in counteracting skeletal myopathy and in improving functional capacity and quality of life. Indeed, AET has beneficial effects on failing heart itself despite being of less magnitude compared with neurohumoral blockade. In this way, AET should be implemented in the care standards, together with pharmacological therapies. Since both neurohumoral inhibition and AET have a direct and/or indirect impact on skeletal muscle, this review aims to provide an overview of the isolated effects of these therapeutic approaches in counteracting skeletal myopathy in HF. The similarities and dissimilarities of neurohumoral inhibition and AET therapies are also discussed to identify potential advantageous effects of these combined therapies for treating HF.
Collapse
|
30
|
Kasahara Y, Izawa KP, Watanabe S, Osada N, Omiya K. The Relation of Respiratory Muscle Strength to Disease Severity and Abnormal Ventilation During Exercise in Chronic Heart Failure Patients. Res Cardiovasc Med 2015; 4:e28944. [PMID: 26528451 PMCID: PMC4623381 DOI: 10.5812/cardiovascmed.28944] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 05/08/2015] [Accepted: 06/07/2015] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Breathlessness is a common problem in chronic heart failure (CHF) patients, and respiratory muscle strength has been proposed to play an important role in causing breathlessness in these patients. OBJECTIVES The aim of this study was to investigate the relation between respiratory muscle strength and the severity of CHF, and the influence of respiratory muscle strength on abnormal ventilation during exercise in CHF patients. PATIENTS AND METHODS In this case series study, we assessed clinically stable CHF outpatients (N = 66, age: 57.7 ± 14.6 years). The peak oxygen consumption (peak VO2), the slope relating minute ventilation to carbon dioxide production (VE/VCO2 slope), and the slope relating tidal volume to respiratory rate (TV/RR slope) were measured during cardiopulmonary exercise testing. Respiratory muscle strength was assessed by measuring the maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP). RESULTS The MIP and MEP decreased significantly as the New York Heart Association functional class increased (MIP, P = 0.021; MEP, P < 0.01). The MIP correlated with the TV/RR slope (r = 0.57, P < 0.001) and the VE/VCO2 slope (r = -0.44, P < 0.001), and the MEP also correlated with the TV/RR slope (r = 0.53, P < 0.001) and the VE/VCO2 slope (r = -0.25, P < 0.040). Stepwise multiple regression analysis revealed that age and MIP were statistically significant predictors of the TV/RR and VE/VCO2 slopes (both P < 0.05). CONCLUSIONS Respiratory muscle strength is related to the severity of CHF, and associated with rapid and shallow ventilation or excessive ventilation during exercise.
Collapse
Affiliation(s)
- Yusuke Kasahara
- Department of Rehabilitation Medicine, St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| | | | - Satoshi Watanabe
- Department of Rehabilitation Medicine St. Marianna University School of Medicine Hospital, Kawasaki, Japan
| | - Naohiko Osada
- Division of Cardiology, St. Marianna University School of Medicine Toyoko Hospital, Kawasaki, Japan
| | - Kazuto Omiya
- Division of Cardiology, Department of Internal Medicine (NO, KO), St. Marianna University School of Medicine, Yokohama City Seibu Hospital, Yokohama, Japan
| |
Collapse
|
31
|
Cardiovascular Reflexes Activity and Their Interaction during Exercise. BIOMED RESEARCH INTERNATIONAL 2015; 2015:394183. [PMID: 26557662 PMCID: PMC4628760 DOI: 10.1155/2015/394183] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/26/2015] [Accepted: 07/28/2015] [Indexed: 02/07/2023]
Abstract
Cardiac output and arterial blood pressure increase during dynamic exercise notwithstanding the exercise-induced vasodilation due to functional sympatholysis. These cardiovascular adjustments are regulated in part by neural reflexes which operate to guarantee adequate oxygen supply and by-products washout of the exercising muscles. Moreover, they maintain adequate perfusion of the vital organs and prevent excessive increments in blood pressure. In this review, we briefly summarize neural reflexes operating during dynamic exercise with particular emphasis on their interaction.
Collapse
|
32
|
Milia R, Velluzzi F, Roberto S, Palazzolo G, Sanna I, Sainas G, Pusceddu M, Mulliri G, Loviselli A, Crisafulli A. Differences in hemodynamic response to metaboreflex activation between obese patients with metabolic syndrome and healthy subjects with obese phenotype. Am J Physiol Heart Circ Physiol 2015; 309:H779-89. [DOI: 10.1152/ajpheart.00250.2015] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Accepted: 06/30/2015] [Indexed: 01/07/2023]
Abstract
Patients suffering from obesity and metabolic syndrome (OMS) manifest a dysregulation in hemodynamic response during exercise, with an exaggerated systemic vascular increase. However, it is not clear whether this is the consequence of metabolic syndrome per se or whether it is due to concomitant obesity. The aim of the present investigation was to discover whether OMS and noncomplicated obesity resulted in different hemodynamic responses during the metaboreflex. Twelve metabolically healthy but obese subjects (MHO; 7 women), 13 OMS patients (5 women), and 12 normal age-matched controls (CTL; 6 women) took part in this study. All participants underwent a postexercise muscle ischemia protocol to evaluate the metaboreflex activity. Central hemodynamics were evaluated by impedance cardiography. The main result shows an exaggerated increase in systemic vascular resistance from baseline during the metaboreflex in the OMS patients as compared with the other groups (481.6 ± 180.3, −0.52 ± 177.6, and −60.5 ± 58.6 dynes·s−1·cm−5 for the OMS, the MHO, and the CTL groups, respectively; P < 0.05). Moreover, the MHO subjects and the CTL group showed an increase in cardiac output during the metaboreflex (288.7 ± 325.8 and 703.8 ± 276.2 ml/m increase with respect to baseline), whereas this parameter tended to decrease in the OMS group (−350 ± 236.5 ml/m). However, the blood pressure response, which tended to be higher in the OMS patients, was not statistically different between groups. The results of the present investigation suggest that OMS patients have an exaggerated vasoconstriction in response to metaboreflex activation and that this fact is not due to obesity per se.
Collapse
Affiliation(s)
- Raffaele Milia
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
| | - Fernanda Velluzzi
- The Obesity Center of the Department of Medical Sciences of the University of Cagliari, Cagliari, Italy
| | - Silvana Roberto
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
- The Obesity Center of the Department of Medical Sciences of the University of Cagliari, Cagliari, Italy
| | - Girolamo Palazzolo
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
| | - Irene Sanna
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
| | - Gianmarco Sainas
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
- The Obesity Center of the Department of Medical Sciences of the University of Cagliari, Cagliari, Italy
| | - Matteo Pusceddu
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
| | - Gabriele Mulliri
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
- The Obesity Center of the Department of Medical Sciences of the University of Cagliari, Cagliari, Italy
| | - Andrea Loviselli
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
- The Obesity Center of the Department of Medical Sciences of the University of Cagliari, Cagliari, Italy
| | - Antonio Crisafulli
- From the Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy; and
| |
Collapse
|
33
|
Keller-Ross ML, Johnson BD, Carter RE, Joyner MJ, Eisenach JH, Curry TB, Olson TP. Improved Ventilatory Efficiency with Locomotor Muscle Afferent Inhibition is Strongly Associated with Leg Composition in Heart Failure. Int J Cardiol 2015; 202:159-66. [PMID: 26397403 DOI: 10.1016/j.ijcard.2015.08.212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 08/26/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND Skeletal muscle atrophy contributes to increased afferent feedback (group III and IV) and may influence ventilatory control (high VE/VCO2 slope) in heart failure (HF). OBJECTIVE This study examined the influence of muscle mass on the change in VE/VCO2 with afferent neural block during exercise in HF. METHODS 17 participants [9 HF (60±6 yrs) and 8 controls (CTL) (63±7 yrs, mean±SD)] completed 3 sessions. Session 1: dual energy x-ray absorptiometry and graded cycle exercise to volitional fatigue. Sessions 2 and 3: 5 min of constant-work cycle exercise (65% of peak power) randomized to lumbar intrathecal injection of fentanyl (afferent blockade) or placebo. Ventilation (VE) and gas exchange (oxygen consumption, VO2; carbon dioxide production, VCO2) were measured. RESULTS Peak work and VO2 were lower in HF (p<0.05). Leg fat was greater in HF (34.4±3.0 and 26.3±1.8%) and leg muscle mass was lower in HF (63.0±2.8 and 70.4±1.8%, respectively, p<0.05). VE/VCO2 slope was reduced in HF during afferent blockade compared with CTL (-18.8±2.7 and -1.4±2.0%, respectively, p=0.02) and was positively associated with leg muscle mass (r2=0.58, p<0.01) and negatively associated with leg fat mass (r2=0.73, p<0.01) in HF only. CONCLUSIONS HF patients with the highest fat mass and the least leg muscle mass had the greatest improvement in VE/VCO2 with afferent blockade with leg fat mass being the only predictor for the improvement in VE/VCO2 slope. Both leg muscle mass and fat mass are important contributors to ventilatory abnormalities and strongly associated to improvements in VE/VCO2 slope with locomotor afferent inhibition in HF.
Collapse
Affiliation(s)
- Manda L Keller-Ross
- Department of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN 55905.
| | - Bruce D Johnson
- Department of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN 55905
| | - Rickey E Carter
- Department of Health Sciences Research, Mayo College of Medicine, Rochester, MN 55905
| | - Michael J Joyner
- Department of Anesthesiology, Mayo College of Medicine, Rochester, MN 55905
| | - John H Eisenach
- Department of Anesthesiology, Mayo College of Medicine, Rochester, MN 55905
| | - Timothy B Curry
- Department of Anesthesiology, Mayo College of Medicine, Rochester, MN 55905
| | - Thomas P Olson
- Department of Cardiovascular Diseases, Mayo College of Medicine, Rochester, MN 55905
| |
Collapse
|
34
|
Sabharwal R, Weiss RM, Zimmerman K, Domenig O, Cicha MZ, Chapleau MW. Angiotensin-dependent autonomic dysregulation precedes dilated cardiomyopathy in a mouse model of muscular dystrophy. Exp Physiol 2015; 100:776-95. [PMID: 25921929 PMCID: PMC4505616 DOI: 10.1113/ep085066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022]
Abstract
NEW FINDINGS What is the central question of this study? Is autonomic dysregulation in a mouse model of muscular dystrophy dependent on left ventricular systolic dysfunction and/or activation of the renin-angiotensin system (RAS) and does it predict development of dilated cardiomyopathy (DCM)? What is the main finding and its importance? The results demonstrate that autonomic dysregulation precedes and predicts left ventricular dysfunction and DCM in sarcoglycan-δ-deficient (Sgcd-/-) mice. The autonomic dysregulation is prevented by treatment of young Sgcd-/- mice with the angiotensin II type 1 receptor blocker losartan. Measurements of RAS activation and autonomic dysregulation may predict risk of DCM, and therapies targeting the RAS and autonomic dysregulation at a young age may slow disease progression in patients. Sarcoglycan mutations cause muscular dystrophy. Patients with muscular dystrophy develop autonomic dysregulation and dilated cardiomyopathy (DCM), but the temporal relationship and mechanism of autonomic dysregulation are not well understood. We hypothesized that activation of the renin-angiotensin system (RAS) causes autonomic dysregulation prior to development of DCM in sarcoglycan-δ-deficient (Sgcd-/-) mice and that the severity of autonomic dysfunction at a young age predicts the severity of DCM at older ages. At 10-12 weeks of age, when left ventricular function assessed by echocardiography remained normal, Sgcd-/- mice exhibited decreases in arterial pressure, locomotor activity, baroreflex sensitivity and cardiovagal tone and increased sympathetic tone compared with age-matched C57BL/6 control mice (P < 0.05). Systemic and skeletal muscle RAS were activated, and angiotensin II type 1 receptor (AT1 R) expression, superoxide and fibrosis were increased in dystrophic skeletal muscle (P < 0.05). Treatment with the AT1 R blocker losartan for 7-9 weeks beginning at 3 weeks of age prevented or strongly attenuated the abnormalities in Sgcd-/- mice (P < 0.05). Repeated assessment of phenotypes between 10 and 75 weeks of age demonstrated worsening of autonomic function, progressive cardiac dysfunction and DCM and increased mortality in Sgcd-/- mice. High sympathetic tone predicted subsequent left ventricular dysfunction. We conclude that activation of the RAS causes severe autonomic dysregulation in young Sgcd-/- mice, which portends a worse long-term prognosis. Therapeutic targeting of the RAS at a young age may improve autonomic function and slow disease progression in muscular dystrophy.
Collapse
Affiliation(s)
- Rasna Sabharwal
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Robert M. Weiss
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Kathy Zimmerman
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
| | - Oliver Domenig
- Department of Internal Medicine III, Clinical Division of Nephrology and Dialysis, Medical University of Vienna, Austria
| | | | - Mark W. Chapleau
- Department of Internal Medicine, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Veterans Affairs Medical Center, Iowa City, IA 52246, USA
| |
Collapse
|
35
|
Wang HJ, Cahoon R, Cahoon EB, Zheng H, Patel KP, Zucker IH. Glutamatergic receptor dysfunction in spinal cord contributes to the exaggerated exercise pressor reflex in heart failure. Am J Physiol Heart Circ Physiol 2014; 308:H447-55. [PMID: 25502111 DOI: 10.1152/ajpheart.00735.2014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Excitatory amino acids (e.g., glutamate) released by contraction-activated skeletal muscle afferents into the dorsal horn of the spinal cord initiate the central component of the exercise pressor reflex (EPR) in physiological conditions. However, the role of glutamate and glutamate receptors in mediating the exaggerated EPR in the chronic heart failure (CHF) state remains to be determined. In the present study, we performed microinjection of glutamate receptor antagonists into ipisilateral L4/L5 dorsal horns to investigate their effects on the pressor response to static contraction induced by stimulation of the peripheral end of L4/L5 ventral roots in decerebrate sham-operated (sham) and CHF rats. Microinjection of glutamate (10 mM, 100 nl) into the L4 or L5 dorsal horn caused a greater pressor response in CHF rats compared with sham rats. Furthermore, microinjection of either the broad-spectrum glutamate receptor antagonist kynurenate (10 mM, 100 nl) or the N-methyl-d-aspartate (NMDA) receptor antagonist dl-2-amino-5-phosphonovalerate (50 mM, 100 nl) or the non-NMDA-sensitive receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione (5 mM, 100 nl) into L4/5 dorsal horns decreased the pressor response to static contraction in CHF rats to a greater extent than in sham rats. Molecular evidence showed that the protein expression of glutamate receptors (both non-NMDA and NMDA) was elevated in the dorsal horn of the lumbar spinal cord in CHF rats. In addition, data from microdialysis experiments demonstrated that although basal glutamate release at the dorsal horn at rest was similar between sham and CHF rats (225 ± 50 vs. 260 ± 63 nM in sham vs. CHF rats, n = 4, P > 0.05), CHF rats exhibit greater glutamate release into the dorsal horn during muscle contraction compared with sham rats (549 ± 60 vs. 980 ± 65 nM in sham vs. CHF rats, n = 4, P < 0.01). These data indicate that the spinal glutamate system contributes to the exaggerated EPR in the CHF state.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Rebecca Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Edgar B Cahoon
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska
| | - Hong Zheng
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Kaushik P Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| | - Irving H Zucker
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, Nebraska; and
| |
Collapse
|
36
|
Amann M, Sidhu SK, Weavil JC, Mangum TS, Venturelli M. Autonomic responses to exercise: group III/IV muscle afferents and fatigue. Auton Neurosci 2014; 188:19-23. [PMID: 25458423 DOI: 10.1016/j.autneu.2014.10.018] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/17/2014] [Accepted: 10/13/2014] [Indexed: 01/07/2023]
Abstract
Group III and IV muscle afferents originating in exercising limb muscle play a significant role in the development of fatigue during exercise in humans. Feedback from these sensory neurons to the central nervous system (CNS) reflexively increases ventilation and central (cardiac output) and peripheral (limb blood flow) hemodynamic responses during exercise and thereby assures adequate muscle blood flow and O2 delivery. This response depicts a key factor in minimizing the rate of development of peripheral fatigue and in optimizing aerobic exercise capacity. On the other hand, the central projection of group III/IV muscle afferents impairs performance and limits the exercising human via its diminishing effect on the output from spinal motoneurons which decreases voluntary muscle activation (i.e. facilitates central fatigue). Accumulating evidence from recent animal studies suggests the existence of two subtypes of group III/IV muscle afferents. While one subtype only responds to physiological and innocuous levels of endogenous intramuscular metabolites (lactate, ATP, protons) associated with 'normal', predominantly aerobic exercise, the other subtype only responds to higher and concurrently noxious levels of metabolites present in muscle during ischemic contractions or following, for example, hypertonic saline infusions. This review discusses the mechanisms through which group III/IV muscle afferent feedback mediates both central and peripheral fatigue in exercising humans. We also briefly summarize the accumulating evidence from recent animal and human studies documenting the existence of two subtypes of group III/IV muscle afferents and the relevance of this discovery to the interpretation of previous work and the design of future studies.
Collapse
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Exercise & Sport Science, University of Utah, Salt Lake City, UT, USA.
| | | | - Joshua C Weavil
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Tyler S Mangum
- Department of Exercise & Sport Science, University of Utah, Salt Lake City, UT, USA
| | - Massimo Venturelli
- Department of Biomedical Sciences for Health, University of Milan, Italy
| |
Collapse
|
37
|
Rodrigues F, Feriani DJ, Barboza CA, Abssamra MEV, Rocha LY, Carrozi NM, Mostarda C, Figueroa D, Souza GIH, De Angelis K, Irigoyen MC, Rodrigues B. Cardioprotection afforded by exercise training prior to myocardial infarction is associated with autonomic function improvement. BMC Cardiovasc Disord 2014; 14:84. [PMID: 25022361 PMCID: PMC4105517 DOI: 10.1186/1471-2261-14-84] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/07/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND It has been suggested that exercise training (ET) protects against the pathological remodeling and ventricular dysfunction induced by myocardial infarction (MI). However, it remains unclear whether the positive adjustments on baroreflex and cardiac autonomic modulations promoted by ET may afford a cardioprotective mechanism. The aim of this study was to evaluate the effects of aerobic ET, prior to MI, on cardiac remodeling and function, as well as on baroreflex sensitivity and autonomic modulation in rats. METHODS Male Wistar rats were divided into 4 groups: sedentary rats submitted to Sham surgery (C); trained rats submitted to Sham surgery (TC); sedentary rats submitted to MI (I), trained rats submitted to MI (TI). Sham and MI were performed after ET period. After surgeries, echocardiographic, hemodynamic and autonomic (baroreflex sensitivity, cardiovascular autonomic modulation) evaluations were conducted. RESULTS Prior ET prevented an additional decline in exercise capacity in TI group in comparison with I. MI area was not modified by previous ET. ET was able to increase the survival and prevent additional left ventricle dysfunction in TI rats. Although changes in hemodynamic evaluations were not observed, ET prevented the decrease of baroreflex sensitivity, and autonomic dysfunction in TI animals when compared with I animals. Importantly, cardiac improvement was associated with the prevention of cardiac autonomic impairment in studied groups. CONCLUSIONS Prior ET was effective in changing aerobic capacity, left ventricular morphology and function in rats undergoing MI. Furthermore, these cardioprotective effects were associated with attenuated cardiac autonomic dysfunction observed in trained rats. Although these cause-effect relationships can only be inferred, rather than confirmed, our study suggests that positive adaptations of autonomic function by ET can play a vital role in preventing changes associated with cardiovascular disease, particularly in relation to MI.
Collapse
Affiliation(s)
- Fernando Rodrigues
- Human Movement Laboratory, Sao Judas Tadeu University (USJT), São Paulo, SP, Brazil
| | | | | | | | - Leandro Yanase Rocha
- Human Movement Laboratory, Sao Judas Tadeu University (USJT), São Paulo, SP, Brazil
| | | | | | - Diego Figueroa
- Hypertension Unit, Heart Institute (InCor), Medical School of University of Sao Paulo, São Paulo, SP, Brazil
| | | | - Kátia De Angelis
- Translational Physiology Laboratory, Universidade Nove de Julho (UNINOVE), São Paulo, SP, Brazil
| | - Maria Cláudia Irigoyen
- Hypertension Unit, Heart Institute (InCor), Medical School of University of Sao Paulo, São Paulo, SP, Brazil
| | - Bruno Rodrigues
- Human Movement Laboratory, Sao Judas Tadeu University (USJT), São Paulo, SP, Brazil
| |
Collapse
|
38
|
Chronic oral administration of Ang-(1-7) improves skeletal muscle, autonomic and locomotor phenotypes in muscular dystrophy. Clin Sci (Lond) 2014; 127:101-9. [PMID: 24502705 DOI: 10.1042/cs20130602] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Muscular dystrophies are a group of heterogeneous genetic disorders that cause progressive muscle weakness and wasting, dilated cardiomyopathy and early mortality. There are different types of muscular dystrophies with varying aetiologies but they all have a common hallmark of myofibre degeneration, atrophy and decreased mobility. Mutation in Sgcd (sarcoglycan-δ), a subunit of dystrophin glycoprotein complex, causes LGMD2F (limb girdle muscular dystrophy 2F). Previously, we have reported that Sgcd-deficient (Sgcd-/-) mice exhibit AngII (angiotensin II)-induced autonomic and skeletal muscle dysfunction at a young age, which contributes to onset of dilated cardiomyopathy and mortality at older ages. Two counter-regulatory RAS (renin-angiotensin system) pathways have been identified: deleterious actions of AngII acting on the AT1R (AngII type 1 receptor) compared with the protective actions of Ang-(1-7) [angiotensin-(1-7)] acting on the receptor Mas. We propose that the balance between the AngII/AT1R and Ang-(1-7)/Mas axes is disturbed in Sgcd-/- mice. Control C57BL/6J and Sgcd-/- mice were treated with Ang-(1-7) included in hydroxypropyl β-cyclodextrin (in drinking water) for 8-9 weeks beginning at 3 weeks of age. Ang-(1-7) treatment restored the AngII/AT1R compared with Ang-(1-7)/Mas balance, decreased oxidative stress and fibrosis in skeletal muscle, increased locomotor activity, and prevented autonomic dysfunction without lowering blood pressure in Sgcd-/- mice. Our results suggest that correcting the early autonomic dysregulation by administering Ang-(1-7) or enhancing its endogenous production may provide a novel therapeutic approach in muscular dystrophy.
Collapse
|
39
|
Amann M, Venturelli M, Ives SJ, Morgan DE, Gmelch B, Witman MAH, Jonathan Groot H, Walter Wray D, Stehlik J, Richardson RS. Group III/IV muscle afferents impair limb blood in patients with chronic heart failure. Int J Cardiol 2014; 174:368-75. [PMID: 24794967 DOI: 10.1016/j.ijcard.2014.04.157] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Accepted: 04/13/2014] [Indexed: 01/25/2023]
Abstract
OBJECTIVE To better understand the hemodynamic and autonomic reflex abnormalities in heart-failure patients (HF), we investigated the influence of group III/IV muscle afferents on their cardiovascular response to rhythmic exercise. METHODS Nine HF-patients (NYHA class-II, mean left ventricular ejection-fraction: 27 ± 3%) performed single leg knee-extensor exercise (25/50/80% peak-workload) under control conditions and with lumbar intrathecal fentanyl impairing μ-opioid receptor-sensitive muscle afferents. RESULTS Cardiac-output (Q) and femoral blood-flow (QL) were determined, and arterial/venous blood samples collected at each workload. Exercise-induced fatigue was estimated via pre/post-exercise changes in quadriceps strength. There were no hemodynamic differences between conditions at rest. During exercise, Q was 8-13% lower with Fentanyl-blockade, secondary to significant reductions in stroke volume and heart rate. Lower norepinephrine spillover during exercise with Fentanyl revealed an attenuated sympathetic outflow that likely contributed to the 25% increase in leg vascular conductance (p<0.05). Despite a concomitant 4% reduction in blood pressure, QL was 10-14% higher and end-exercise fatigue attenuated by 30% with Fentanyl-blockade (p<0.05). CONCLUSION/PRACTICE/IMPLICATIONS Although group III/IV muscle afferents play a critical role for central hemodynamics in HF-patients, it also appears that these sensory neurons cause excessive sympatho-excitation impairing QL which likely contributes to the exercise intolerance in this population.
Collapse
Affiliation(s)
- Markus Amann
- Department of Medicine, University of Utah, Salt Lake City, UT, USA; Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA.
| | | | - Stephen J Ives
- Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA
| | - David E Morgan
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Benjamin Gmelch
- Department of Anesthesiology, University of Utah, Salt Lake City, UT, USA
| | - Melissa A H Witman
- Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA
| | - H Jonathan Groot
- Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA
| | - D Walter Wray
- Department of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA
| | - Josef Stehlik
- Department of Medicine, University of Utah, Salt Lake City, UT, USA
| | - Russell S Richardson
- Department of Medicine, University of Utah, Salt Lake City, UT, USA; Geriatric Research, Education, and Clinical Center, VAMC Salt Lake City, UT, USA
| |
Collapse
|
40
|
Nobrega ACL, O'Leary D, Silva BM, Marongiu E, Piepoli MF, Crisafulli A. Neural regulation of cardiovascular response to exercise: role of central command and peripheral afferents. BIOMED RESEARCH INTERNATIONAL 2014; 2014:478965. [PMID: 24818143 PMCID: PMC4000959 DOI: 10.1155/2014/478965] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 02/04/2014] [Indexed: 12/12/2022]
Abstract
During dynamic exercise, mechanisms controlling the cardiovascular apparatus operate to provide adequate oxygen to fulfill metabolic demand of exercising muscles and to guarantee metabolic end-products washout. Moreover, arterial blood pressure is regulated to maintain adequate perfusion of the vital organs without excessive pressure variations. The autonomic nervous system adjustments are characterized by a parasympathetic withdrawal and a sympathetic activation. In this review, we briefly summarize neural reflexes operating during dynamic exercise. The main focus of the present review will be on the central command, the arterial baroreflex and chemoreflex, and the exercise pressure reflex. The regulation and integration of these reflexes operating during dynamic exercise and their possible role in the pathophysiology of some cardiovascular diseases are also discussed.
Collapse
Affiliation(s)
- Antonio C. L. Nobrega
- Department of Physiology and Pharmacology, Fluminense Federal University, Niterói, RJ, Brazil
| | - Donal O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bruno Moreira Silva
- Section of Exercise Physiology, Department of Physiology, Federal University of São Paulo, SP, Brazil
| | - Elisabetta Marongiu
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| | - Massimo F. Piepoli
- Heart Failure Unit, Cardiac Department, Guglielmo da Saliceto Polichirurgico Hospital, Piacenza, Italy
| | - Antonio Crisafulli
- Sports Physiology laboratory Lab., Department of Medical Sciences, University of Cagliari, Italy
| |
Collapse
|
41
|
Influence of the metaboreflex on arterial blood pressure in heart failure patients. Am Heart J 2014; 167:521-8. [PMID: 24655701 DOI: 10.1016/j.ahj.2013.12.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 12/08/2013] [Indexed: 11/20/2022]
Abstract
BACKGROUND Feedback from active locomotor muscles contributes to the exercise pressor response in healthy humans, and is thought to be more prominent in heart failure (HF). The purpose of this study was to examine the influence of metaboreflex stimulation on arterial pressure in HF. METHODS Eleven HF patients (51 ± 5 years, New York Heart Association Class I/II, left ventricular ejection fraction 32 ± 3%) and 11 controls (42 ± 3 years) were recruited. Participants completed two exercise sessions on separate days: (1) symptom limited graded exercise test; and (2) constant work rate cycling (60% peak oxygen consumption,V˙O2) for 4 minutes with 2 minutes passive recovery. Recovery was randomized to normal or locomotor muscle regional circulatory occlusion (RCO). Mean arterial pressure (MAP), systolic pressure (SBP), diastolic pressure, heart rate (HR) and V˙O2 were measured at rest, end-exercise and recovery. O2 pulse (V˙O2/HR) and the rate pressure product (RPP = HR × SBP) were calculated. RESULTS In response to RCO, mean arterial pressure and SBP increased in HF compared with CTLs (6.8 ± 5.8% vs -3.0 ± 7.8%, P < .01 and 3.4 ± 6.4% vs -12.7 ± 10.4%, P < .01, respectively), with no difference in diastolic pressure (P = .61). HF patients had a smaller reduction in HR and RPP, but also displayed a larger decrease in O2 pulse consequent to locomotor metaboreflex stimulation (P < .05, for all). CONCLUSION RCO resulted in a markedly increased pressor response in HF relative to controls, due primarily to an increase of SBP and attenuated cardiac recovery as noted by the persistent elevation in HR.
Collapse
|
42
|
Piepoli MF, Crisafulli A. Pathophysiology of human heart failure: importance of skeletal muscle myopathy and reflexes. Exp Physiol 2013; 99:609-15. [PMID: 24293507 DOI: 10.1113/expphysiol.2013.074310] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In the last 20 years there has been mounting evidence that chronic heart failure (CHF) has a complex pathophysiology, which begins with an abnormality of the heart as a 'primum movens', but involves adaptive changes in many body parts, including the cardiovascular, musculoskeletal, renal, neuroendocrine, haemostatic, immune and inflammatory systems. Alterations in skeletal muscle are also of importance in limiting functional capacity in patients with CHF, because reduced physical activity plays some part in the muscle alterations in CHF. On the whole, these abnormalities resemble those induced by physical deconditioning. Moreover, the overactivation of signals originating from skeletal muscle receptors (mechano-metaboreceptors) is an intriguing hypothesis proposed to explain the origin of symptoms and the beneficial effect of exercise training in the CHF syndrome. These reflexes may contribute to sympathetic overactivation, to exercise intolerance and to the progression of CHF syndrome. The so-called metaboreflex has been reported to be hyperactive in CHF and to be responsible for a paradoxical increase in systemic vascular resistance and decrease in cardiac output whenever activated in these patients. This report is a brief summary of the latest news in this area of research.
Collapse
Affiliation(s)
- Massimo F Piepoli
- * Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Via Porcell 4, 09124 Cagliari, Italy.
| | | |
Collapse
|
43
|
Marongiu E, Piepoli M, Milia R, Angius L, Pinna M, Bassareo P, Roberto S, Tocco F, Concu A, Crisafulli A. Effects of acute vasodilation on the hemodynamic response to muscle metaboreflex. Am J Physiol Heart Circ Physiol 2013; 305:H1387-96. [PMID: 23997095 DOI: 10.1152/ajpheart.00397.2013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The aim of the present study was to test the contribution of stroke volume (SV) in hemodynamic response to muscle metaboreflex activation in healthy individuals. We hypothesized that an acute decrease in cardiac afterload and preload due to the administration of a vasodilating agent could reduce postexercise muscle ischemia (PEMI)-induced SV response. Ten healthy males (age 33.6 ± 1.3 yr) were enrolled and randomly assigned to the following study protocol: 1) PEMI session, 2) control exercise recovery (CER) session, 3) PEMI after sublingual administration of 5 mg of isosorbide dinitrate (ISDN), and 4) CER after ISDN. Central hemodynamics were evaluated by means of impedance cardiography. The main findings were a blunted SV response during metaboreflex following acute arterial and venous vasodilation, associated with a reduction in cardiac diastolic time and filling, and a decrement of systemic vascular resistance. These hemodynamic changes restrain blood pressure response during metaboreflex activation. Our results indicate that hemodynamic response to metaboreflex activation is a highly integrated phenomenon encompassing complex interplay between heart rate, cardiac performance, preload, and afterload and that impairment of one or more of these parameters leads to altered hemodynamic response to metaboreflex.
Collapse
Affiliation(s)
- Elisabetta Marongiu
- Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Dipla K, Zafeiridis A, Papadopoulos S, Koskolou M, Geladas N, Vrabas IS. Reduced metaboreflex control of blood pressure during exercise in individuals with intellectual disability: a possible contributor to exercise intolerance. RESEARCH IN DEVELOPMENTAL DISABILITIES 2013; 34:335-343. [PMID: 23000635 DOI: 10.1016/j.ridd.2012.08.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/22/2012] [Accepted: 08/23/2012] [Indexed: 06/01/2023]
Abstract
The aim was to investigate the hemodynamic responses to isometric handgrip exercise (HG) and examine the role of the muscle metaboreflex in the exercise pressor response in individuals with intellectual disability (IID) and non-disabled control subjects. Eleven males with mild-moderate intellectual disabilities and eleven non-disabled males performed a testing protocol involving 3-min periods of baseline, HG exercise (at 30% MVC), circulatory occlusion, and recovery. The same protocol was repeated without occlusion. At baseline, no differences were detected between groups in beat-to-beat mean arterial pressure (MAP), heart rate (HR), stroke volume, and peripheral resistance. IID were able to sustain an exercise MAP response at comparable levels to the control group exerting similar peripheral resistance; however, IID exhibited a blunted chronotropic response to HG and a diminished exercise vagal withdrawal compared to controls. During occlusion, IID exhibited a lower pressor response than their control peers, associated with a lower increase in peripheral resistance during this task. In conclusion, although intellectual disabilities can be the consequence of many different genes, IID share common deficits in the chronotropic response to exercise and a blunted metaboreflex-induced pressor response.
Collapse
Affiliation(s)
- K Dipla
- Laboratory of Exercise Physiology and Biochemistry, Department of Physical Education and Sports Science at Serres, Aristotle University of Thessaloniki, Agios Ioannis, Serres 62110, Greece.
| | | | | | | | | | | |
Collapse
|
45
|
Crisafulli A, Tocco F, Milia R, Angius L, Pinna M, Olla S, Roberto S, Marongiu E, Porcu M, Concu A. Progressive improvement in hemodynamic response to muscle metaboreflex in heart transplant recipients. J Appl Physiol (1985) 2012. [PMID: 23195627 DOI: 10.1152/japplphysiol.01099.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exercise capacity remains lower in heart transplant recipients (HTRs) following transplant compared with normal subjects, despite improved cardiac function. Moreover, metaboreceptor activity in the muscle has been reported to increase. The aim of the present investigation was to assess exercise capacity together with metaboreflex activity in HTR patients for 1 yr following heart transplant, to test the hypothesis that recovery in exercise capacity was paralleled by improvements in response to metaboreflex. A cardiopulmonary test for exercise capacity and Vo(2max) and hemodynamic response to metaboreflex activation obtained by postexercise ischemia were gathered in six HTRs and nine healthy controls (CTL) four times: at the beginning of the study (T0, 42 ± 6 days after transplant), at the 3rd, 6th, and 12th month after TO (T1, T2, and T3). The main results were: 1) exercise capacity and Vo(2max) were seen to progressively increase in HTRs; 2) at T0 and T1, HTRs achieved a higher blood pressure response in response to metaboreflex compared with CTL, and this difference disappeared at T2 and T3; and 3) this exaggerated blood pressure response was the result of a systemic vascular resistance increment. This study demonstrates that exercise capacity progressively improves in HTRs after transplant and that this phenomenon is accompanied by a progressive reduction of the metaboreflex-induced increase in blood pressure and systemic vascular resistance. These facts indicate that, despite improved cardiac function, resetting of cardiovascular regulation in HTRs requires months.
Collapse
Affiliation(s)
- Antonio Crisafulli
- Department of Medical Sciences, Sport Physiology Lab., University of Cagliari, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Wang HJ, Zucker IH, Wang W. Muscle reflex in heart failure: the role of exercise training. Front Physiol 2012; 3:398. [PMID: 23060821 PMCID: PMC3464681 DOI: 10.3389/fphys.2012.00398] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 09/20/2012] [Indexed: 12/25/2022] Open
Abstract
Exercise evokes sympathetic activation and increases blood pressure and heart rate (HR). Two neural mechanisms that cause the exercise-induced increase in sympathetic discharge are central command and the exercise pressor reflex (EPR). The former suggests that a volitional signal emanating from central motor areas leads to increased sympathetic activation during exercise. The latter is a reflex originating in skeletal muscle which contributes significantly to the regulation of the cardiovascular and respiratory systems during exercise. The afferent arm of this reflex is composed of metabolically sensitive (predominantly group IV, C-fibers) and mechanically sensitive (predominately group III, A-delta fibers) afferent fibers. Activation of these receptors and their associated afferent fibers reflexively adjusts sympathetic and parasympathetic nerve activity during exercise. In heart failure, the sympathetic activation during exercise is exaggerated, which potentially increases cardiovascular risk and contributes to exercise intolerance during physical activity in chronic heart failure (CHF) patients. A therapeutic strategy for preventing or slowing the progression of the exaggerated EPR may be of benefit in CHF patients. Long-term exercise training (ExT), as a non-pharmacological treatment for CHF increases exercise capacity, reduces sympatho-excitation and improves cardiovascular function in CHF animals and patients. In this review, we will discuss the effects of ExT and the mechanisms that contribute to the exaggerated EPR in the CHF state.
Collapse
Affiliation(s)
- Han-Jun Wang
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center Omaha, NE, USA
| | | | | |
Collapse
|
47
|
Determinants of muscle metaboreflex and involvement of baroreflex in boys and young men. Eur J Appl Physiol 2012; 113:827-38. [PMID: 22983569 DOI: 10.1007/s00421-012-2493-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 09/03/2012] [Indexed: 10/27/2022]
Abstract
This study aimed to assess the arterial pressure (AP) determinants during the muscle metaboreflex in boys and men and to investigate the contribution of baroreflex and sympathovagal function to the metaboreflex-induced responses. Fourteen pre-adolescent boys and 13 men performed a protocol involving: baseline, isometric handgrip exercise, circulatory occlusion, and recovery. The same protocol was repeated without occlusion. During baseline, boys had lower beat-to-beat AP, higher heart rate (HR), and lower low/high frequency HR variability. During exercise, a parasympathetic withdrawal was evident in both groups. In adults, HR was the key contributor to the pressure response, with no changes in stroke volume, whereas in boys, the lower HR increase was counterbalanced by an increase in stroke volume, resulting in similar relative increases in AP in both groups. In recovery, boys exhibited a faster rate of HR-decay, rapid vagal reactivation, and greater decrease in TPR than men. An overshoot in baroreceptor sensitivity was observed in men. The isolated metaboreflex resulted in a similar AP elevation in both age groups (by ~15 mmHg), and attenuated spontaneous baroreceptor sensitivity. However, during the metaboreflex, pre-adolescent males exhibited a lower increase in peripheral resistance and a greater bradycardic response than adults, and a fast restoration of vagal activity to non-occlusion levels. During metaboreflex, boys were capable of eliciting a pressure response similar to the one elicited by men; however, the interplay of the mechanisms underlying the rise in AP differed between the two groups with the vagal contribution being greater in the younger participants.
Collapse
|
48
|
Roberto S, Marongiu E, Pinna M, Angius L, Olla S, Bassareo P, Tocco F, Concu A, Milia R, Crisafulli A. Altered hemodynamics during muscle metaboreflex in young type 1 diabetes patients. J Appl Physiol (1985) 2012; 113:1323-31. [PMID: 22700802 DOI: 10.1152/japplphysiol.00280.2012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A reduction in catecholamine levels during exercise has been described in young subjects with type 1 diabetes mellitus (DM1). It has been suggested that type 1 diabetes per se is associated with the loss of sympathetic response before any clinical evidence. Considering that an increase in sympathetic drive is required for normal cardiovascular response to muscle metaboreflex, the aim of this study was to assess the hemodynamics during metaboreflex in DM1 patients. Impedance cardiography was used to measure hemodynamics during metaboreflex activation, obtained through postexercise ischemia in 14 DM1 patients and in 11 healthy controls (CTL). Principal results were: 1) blunted blood pressure response during metaboreflex was observed in DM1 patients compared with the CTL; 2) reduced capacity to increase systemic vascular resistance was also witnessed in DM1 subjects; 3) DM1 subjects reported higher stroke volumes as a consequence of reduced cardiac afterload compared with the CTL, which led to a more evident cardiac output response, which partially compensated for the lack of vasoconstriction. These facts suggest that cardiovascular regulation was altered in DM1 patients and that there was a reduced capacity to increase sympathetic tone, even in the absence of any overt clinical sign. The metaboreflex test appears to be a valid tool to detect early signs of this cardiovascular dysregulation.
Collapse
Affiliation(s)
- Silvana Roberto
- Department of Medical Sciences, Sports Physiology Laboratory, University of Cagliari, Via Porcell 4, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fu TC, Wang CH, Lin PS, Hsu CC, Cherng WJ, Huang SC, Liu MH, Chiang CL, Wang JS. Aerobic interval training improves oxygen uptake efficiency by enhancing cerebral and muscular hemodynamics in patients with heart failure. Int J Cardiol 2011; 167:41-50. [PMID: 22197120 DOI: 10.1016/j.ijcard.2011.11.086] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Revised: 10/10/2011] [Accepted: 11/27/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Abnormal ventilatory/hemodynamic responses to exercise contribute to functional impairment in patients with heart failure (HF). This study investigates how interval and continuous exercise regimens influence functional capacity by modulating ventilatory efficiency and hemodynamic function in HF patients. METHODS Forty-five HF patients were randomized to perform either aerobic interval training (AIT; 3-minute intervals at 40% and 80% VO(2peak)) or moderate continuous training (MCT; sustained 60% VO()for 30 min/day, 3 days/week for 12 weeks, or to a control group that received general healthcare (GHC). A noninvasive bio-reactance device was adopted to measure cardiac hemodynamics, whereas a near-infrared spectroscopy was employed to assess perfusion/O2 extraction in frontal cerebral lobe (∆[THb]FC/∆[HHb]FC) and vastus lateralis (∆[THb]VL/∆[HHb]VL), respectively. RESULTS Following the 12-week intervention, the AIT group exhibited higher oxygen uptake efficiency slope (OUES) and lower VE-VCO2 slope than the MCT and GHC groups. Furthermore, AIT, but not MCT, boosted cardiac output (CO) and increased ∆[THb]FC, ∆[THb]VL, and ∆[HHb]VL during exercise. In multivariate analyses, CO was the dominant predictor of VO(2peak). ∆[THb]FC and ∆[THb]VL, which modulated the correlation between CO and OUES, were significantly correlated with OUES. Simultaneously, ∆[THb]VL was the only factor significantly associated with VE-VCO2 slope. Additionally, AIT reduced plasma brain natriuretic peptide, myeloperoxidase, and interleukin-6 levels and increased the Short Form-36 physical/mental component scores and decreased the Minnesota Living with Heart Failure questionnaire score. CONCLUSIONS AIT effectively improves oxygen uptake efficiency by enhancing cerebral/muscular hemodynamics and suppresses oxidative stress/inflammation associated with cardiac dysfunction, and also promotes generic/disease-specific qualities of life in patients with HF.
Collapse
Affiliation(s)
- Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Sherman MF, Road JD, McKenzie DC, Sheel AW. Preserved muscle metaboreflex in chronic obstructive pulmonary disease. Appl Physiol Nutr Metab 2011; 36:821-30. [DOI: 10.1139/h11-106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objective of this study was to measure the magnitude of the muscle metaboreflex in people with chronic obstructive pulmonary disease (COPD) compared with healthy controls and to assess the relationships between disease severity, exercise capacity, and the magnitude of the muscle metaboreflex. Nine people with mild-to-severe COPD and 11 age- and gender-matched healthy controls performed isometric handgrip exercise (IHG), followed by postexercise circulatory occlusion (PECO) while hemodynamic changes were measured. Continuous measures of heart rate, arterial pressure, leg blood flow, leg vascular resistance, and total peripheral resistance were obtained. Participants then performed a cycle test to exhaustion. Heart rate, blood pressure, and blood flow responses during IHG and PECO were similar between the COPD group and healthy controls (p > 0.05). There was no association between disease severity or exercise capacity and the magnitude of the muscle metaboreflex. We observed a preserved muscle metaboreflex in mild-to-severe COPD, suggesting the metaboreflex is not a contributing factor to the development of exercise intolerance in this population.
Collapse
Affiliation(s)
- Megan F.B. Sherman
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Jeremy D. Road
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Donald C. McKenzie
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
- Faculty of Medicine, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - A. William Sheel
- School of Kinesiology, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|