1
|
Panduga S, Vasishta S, Subramani R, Vincent S, Mutalik S, Joshi MB. Epidrugs in the clinical management of atherosclerosis: Mechanisms, challenges and promises. Eur J Pharmacol 2024; 980:176827. [PMID: 39038635 DOI: 10.1016/j.ejphar.2024.176827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Atherosclerosis is a complex and multigenic pathology associated with significant epigenetic reprogramming. Traditional factors (age, sex, obesity, hyperglycaemia, dyslipidaemia, hypertension) and non-traditional factors (foetal indices, microbiome alteration, clonal hematopoiesis, air pollution, sleep disorders) induce endothelial dysfunction, resulting in reduced vascular tone and increased vascular permeability, inflammation and shear stress. These factors induce paracrine and autocrine interactions between several cell types, including vascular smooth muscle cells, endothelial cells, monocytes/macrophages, dendritic cells and T cells. Such cellular interactions lead to tissue-specific epigenetic reprogramming regulated by DNA methylation, histone modifications and microRNAs, which manifests in atherosclerosis. Our review outlines epigenetic signatures during atherosclerosis, which are viewed as potential clinical biomarkers that may be adopted as new therapeutic targets. Additionally, we emphasize epigenetic modifiers referred to as 'epidrugs' as potential therapeutic molecules to correct gene expression patterns and restore vascular homeostasis during atherosclerosis. Further, we suggest nanomedicine-based strategies involving the use of epidrugs, which may selectively target cells in the atherosclerotic microenvironment and reduce off-target effects.
Collapse
Affiliation(s)
- Sushma Panduga
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India; PhD Program, Manipal Academy of Higher Education (MAHE), Manipal, India
| | - Sampara Vasishta
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Ramamoorthy Subramani
- Department of Biochemistry, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Sthevaan Vincent
- Department of Pathology, Palamur Biosciences Private Limited, Hyderabad, 500026, Telangana, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Manjunath B Joshi
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
| |
Collapse
|
2
|
Tuerxun Z, He Y, Niu Y, Bao Z, Liu X, Yang Y, He P. Analysis of Differentially Expressed Murine miRNAs in Acute Myocardial Infarction and Target Genes Related to Heart Rate. Cell Biochem Biophys 2024:10.1007/s12013-024-01528-x. [PMID: 39325365 DOI: 10.1007/s12013-024-01528-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVE This study aims to investigate the expression profile of miRNAs significantly dysregulated after acute myocardial infarction (AMI) and their potential targets. METHODS After the establishment of a mouse model of AMI, RNA was extracted from mouse infarcted myocardium. Paired-end sequencing was then performed using the Illumina NovaSeq 6000 system to explore the expression profile of miRNAs. Target genes of downregulated differentially expressed miRNAs (DEmiRNAs) were predicted with miRanda (version 3.3a) and TargetScan (version 6.0). Cytoscape was used to construct a DEmiRNA-mRNA regulatory network to show the regulatory relationship. RT-qPCR was performed to measure miR-142a-3p expression in H2O2-treated rat cardiomyocyte H9c2 cells and heart tissues of MI rats. Cell counting kit-8 and TUNEL assays were conducted to detect H9c2 cell viability and apoptosis. RESULTS There were 33 differentially expressed miRNAs, of which 3 were significantly upregulated and the rest 30 were significantly downregulated. Target genes of these miRNAs were identified, and their functional enrichment was analyzed using gene ontology (GO) analysis. Importantly, target genes that can regulate heart rate and their paired upstream miRNAs attracted attention. Significant expression correlation between heart rate-related targets (Epas1, Bves, Hcn4, Cacna1e, Ank2, Slc8a1, Pde4d) and paired miRNAs (miR-142a-5p, miR-7b-5p, miR-144-3p, miR-34c-5p, miR-223-3p, miR-18a-5p) in mouse myocardial tissues was identified. MiR-142a-3p was downregulated in H9c2 cells and rat infarct tissues, and overexpressing miR-142a-3p restrains H2O2-induced H9c2 cell apoptosis. CONCLUSION Cardioprotective miRNAs, such as miR-142a-3p, were identified in mouse myocardial tissues, and some specific miRNA-target pairs are associated with heart rate regulation.
Collapse
Affiliation(s)
- Zulikaier Tuerxun
- Heart center of the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuxin He
- University of Edinburgh, Edinburgh, UK
| | - Yunxia Niu
- Department of Cardiovascular Diseases, Gansu Province Hospital of Traditional Chinese Medicine, Lanzhou, 730000, China
| | - Zhen Bao
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Xuemei Liu
- Department of Respiratory Medicine, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Yuchun Yang
- Department of Cardiovascular Diseases, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China
| | - Pengyi He
- Heart center of the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| |
Collapse
|
3
|
Wang K, Li K, Li Z, Yan X. Circulating miRNA-21 as early potential diagnostic biomarker for acute myocardial infarction: a meta-analysis. Front Cardiovasc Med 2024; 11:1330884. [PMID: 39238499 PMCID: PMC11374624 DOI: 10.3389/fcvm.2024.1330884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 08/07/2024] [Indexed: 09/07/2024] Open
Abstract
Introduction There exists a knowledge gap concerning the clinical significance of miRNA-21; therefore, in the present study, we aimed to estimate the diagnostic and prognostic accuracy and sensitivity of miRNA-21 in acute myocardial infarction (AMI) by performing an evidence-based meta-analysis of previous AMI-related clinical studies. Methods Chinese and English literature published before April 2024 were searched, and data were reviewed and extracted. After quality appraisal, the STATA 16.0 software was used for the effect size analysis of the various treatments described in the literature. Results A total of 14 valid documents were retrieved from 562 studies. The results of the systematic review revealed that for the patients with AMI vs. those without non-AMI, the aggregated odds ratio reached 5.37 (95% confidence interval 3.70-7.04). The general sensitivity and specificity for the circulating miRNA-21 levels in diagnosing AMI were 0.83 and 0.81, respectively. Discussion Thus, the meta-analysis of 14 AMI-related clinical trials highlighted that miRNA-21 may serve as a promising biomarker for diagnosing AMI.
Collapse
Affiliation(s)
- Ke Wang
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
- Department of the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shannxi, China
| | - Kai Li
- Department of Emergency, Hanjiang Hospital Affiliated to Xi'an Medical University, Hanzhong, Shannxi, China
| | - Zhuoyuan Li
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
- Department of the Project of Prevention and Treatment of Respiratory Diseases, Xi'an Medical University, Xi'an, Shannxi, China
| | - Xizhang Yan
- Department of Clinical Medicine, Xi'an Medical University, Xi'an, Shannxi, China
| |
Collapse
|
4
|
Huang X, Bai S, Luo Y. Advances in research on biomarkers associated with acute myocardial infarction: A review. Medicine (Baltimore) 2024; 103:e37793. [PMID: 38608048 PMCID: PMC11018244 DOI: 10.1097/md.0000000000037793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/14/2024] [Indexed: 04/14/2024] Open
Abstract
Acute myocardial infarction (AMI), the most severe cardiovascular event in clinical settings, imposes a significant burden with its annual increase in morbidity and mortality rates. However, it is noteworthy that mortality due to AMI in developed countries has experienced a decline, largely attributable to the advancements in medical interventions such as percutaneous coronary intervention. This trend highlights the importance of accurate diagnosis and effective treatment to preserve the myocardium at risk and improve patient outcomes. Conventional biomarkers such as myoglobin, creatine kinase isoenzymes, and troponin have been instrumental in the diagnosis of AMI. However, recent years have witnessed the emergence of new biomarkers demonstrating the potential to further enhance the accuracy of AMI diagnosis. This literature review focuses on the recent advancements in biomarker research in the context of AMI diagnosis.
Collapse
Affiliation(s)
| | - Suwen Bai
- Central Laboratory, The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| | - Yumei Luo
- Guangdong Medical University, Zhanjiang, China
- Cardiology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen, China
| |
Collapse
|
5
|
Liu R, Hu L, Zhou Y, Cao Y. Serum circPRDM5 as a novel diagnostic biomarker for acute myocardial infarction. Gene 2024; 899:148142. [PMID: 38184020 DOI: 10.1016/j.gene.2024.148142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/17/2023] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
BACKGROUND Circular RNA (CircRNA) is known to play an important role in cardiovascular diseases, but its use as a biomarker of acute myocardial infarction (AMI) has not been studied. This study explores the feasibility of circPRDM5 as a novel biomarker of AMI. METHODS CircPRDM5 was screened by bioinformatics, the correct circPRDM5 primers were tested by agarose gel electrophoresis (AGE) and Sanger sequencing, and the expression level of serum circPRDM5 was detected by Quantitative Reverse Transcription-Polymerase Chain Reaction. (qRT-PCR), and the diagnostic value of circPRDM5 was analyzed by the receiver operating characteristic (ROC) curve. RESULTS The expression of circPRDM5 in serum of AMI patients was significantly decreased compared with that of healthy control group and angina group (P < 0.001). The area under ROC curve of serum circPRDM5 was 0.862 [95 % CI, 0.814-0.909]. The combined diagnosis of serum circPRDM5, cardiac troponin T (cTnT) and creatine kinase-MB (CK-MB) could improve the sensitivity of diagnosing AMI. The expression level of serum circPRDM5 increased after percutaneous coronary intervention (PCI). CONCLUSIONS CircPRDM5 can be used as a novel biomarker for AMI, and its combination with cTnT and CK-MB can improve diagnostic value.
Collapse
Affiliation(s)
- Ruoyu Liu
- Department of Clinical Laboratory, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lijuan Hu
- Department of Clinical Laboratory, China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yun Zhou
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| | - Yongtong Cao
- Department of Clinical Laboratory, China-Japan Friendship Hospital, Beijing, China.
| |
Collapse
|
6
|
Elahimanesh M, Shokri N, Mahdinia E, Mohammadi P, Parvaz N, Najafi M. Differential gene expression patterns in ST-elevation Myocardial Infarction and Non-ST-elevation Myocardial Infarction. Sci Rep 2024; 14:3424. [PMID: 38341440 PMCID: PMC10858964 DOI: 10.1038/s41598-024-54086-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/08/2024] [Indexed: 02/12/2024] Open
Abstract
The ST-elevation Myocardial Infarction (STEMI) and Non-ST-elevation Myocardial Infarction (NSTEMI) might occur because of coronary artery stenosis. The gene biomarkers apply to the clinical diagnosis and therapeutic decisions in Myocardial Infarction. The aim of this study was to introduce, enrich and estimate timely the blood gene profiles based on the high-throughput data for the molecular distinction of STEMI and NSTEMI. The text mining data (50 genes) annotated with DisGeNET data (144 genes) were merged with the GEO gene expression data (5 datasets) using R software. Then, the STEMI and NSTEMI networks were primarily created using the STRING server, and improved using the Cytoscape software. The high-score genes were enriched using the KEGG signaling pathways and Gene Ontology (GO). Furthermore, the genes were categorized to determine the NSTEMI and STEMI gene profiles. The time cut-off points were identified statistically by monitoring the gene profiles up to 30 days after Myocardial Infarction (MI). The gene heatmaps were clearly created for the STEMI (high-fold genes 69, low-fold genes 45) and NSTEMI (high-fold genes 68, low-fold genes 36). The STEMI and NSTEMI networks suggested the high-score gene profiles. Furthermore, the gene enrichment suggested the different biological conditions for STEMI and NSTEMI. The time cut-off points for the NSTEMI (4 genes) and STEMI (13 genes) gene profiles were established up to three days after Myocardial Infarction. The study showed the different pathophysiologic conditions for STEMI and NSTEMI. Furthermore, the high-score gene profiles are suggested to measure up to 3 days after MI to distinguish the STEMI and NSTEMI.
Collapse
Affiliation(s)
- Mohammad Elahimanesh
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Nafiseh Shokri
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Elmira Mahdinia
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Payam Mohammadi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Najmeh Parvaz
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Najafi
- Clinical Biochemistry Department, Faculty of Medical Sciences, Iran University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
7
|
Uzair M, Haq TU, Ali S, Hussain M, Jalil F, Ali Y, Shah AA. The miRNA variants MIR196A2 (rs11614913) and MIR423 (rs6505162) contribute to an increase in the risk of myocardial infarction. Mol Genet Genomic Med 2024; 12:e2323. [PMID: 38013659 PMCID: PMC10767615 DOI: 10.1002/mgg3.2323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 11/10/2023] [Indexed: 11/29/2023] Open
Abstract
INTRODUCTION MicroRNAs (miRNAs) are small, single-stranded RNA molecules that negatively regulate gene expression and play a key role in the pathogenesis of human diseases. Recent studies have suggested that miRNAs contribute to cardiovascular diseases (CVDs). However, the association between single-nucleotide polymorphisms (SNPs) in miRNAs and myocardial infarction (MI) remains in infancy. AIM The current study was designed to find out the association of SNPs in MIR196A2 and MIR423 (rs11614913 and rs6505162, respectively). METHODS Using Tetra-Primer Amplification Refractory Mutation System-Polymerase Chain Reaction (T-ARMS PCR) in 400 cases (MI patients) and 336 healthy controls. Using different inheritance models (co-dominant, homozygous dominant, homozygous recessive, and additive models), the association of these SNPs was genotyped with MI risk. RESULTS For variant rs11614913, significant distribution of the genotypes among the cases and controls was determined by co-dominant [χ2 = 29.19, 2; p value < 0.0001], dominant (C/C vs. C/T + T/T) [OR = 0.45 (0.34 to 0.61); p < 0.0001], recessive (T/T vs. C/T + C/C) [OR = 1.009 (0.63 to 1.63); p-value p value > 0.999], and additive models [OR = 0.65 (0.52 to 0.80); p value = 0.0001]. Similarly, a significant association of rs6505162 was determined by co-dominant [χ2 = 24.29, 2; p value < 0.0001], dominant (C/C vs. A/C+ A/A) [OR = 0.44 (0.32 to 0.61); p value < 0.0001], recessive (A/A vs. A/C + C/C) [OR = 1.29 (0.85 to 1.98); p value = 0.28], and additive models [OR = 0.65 (0.52 to 0.81); p value = 0.0001]. CONCLUSION Therefore, the current study showed that both variants rs11614913 and rs6505162 are significantly associated with MI in the Pakistani population.
Collapse
Affiliation(s)
- Muhammad Uzair
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Taqweem Ul Haq
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Sajjad Ali
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Manzar Hussain
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| | - Fazal Jalil
- Department of BiotechnologyAbdul Wali Khan University Mardan (AWKUM)MardanPakistan
| | - Yasir Ali
- School of Biomedical SciencesThe Chinese University of Hong KongHong KongHong Kong
| | - Aftab Ali Shah
- Department of Biotechnology, Faculty of Biological SciencesUniversity of MalakandChakdaraPakistan
| |
Collapse
|
8
|
Zhao Q, Yang W, Li X, Yuan H, Guo J, Wang Y, Shan Z. MicroRNA-499-5p inhibits transforming growth factor-β1-induced Smad2 signaling pathway and suppresses fibroblast proliferation and collagen synthesis in rat by targeting TGFβ-R1. Mol Biol Rep 2023; 50:9757-9767. [PMID: 37676431 PMCID: PMC10676300 DOI: 10.1007/s11033-023-08755-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/10/2023] [Indexed: 09/08/2023]
Abstract
BACKGROUND Artial fibrosis has been recognized as a typical pathological change in atrial fibrillation. Although present evidence suggests that microRNA-499-5p (miR-499-5p) plays an important role in the development of atrial fibrosis, the specific mechanism is not fully understood. Therefore, this study attempted to assess the influence of miR-499-5p on atrial fibroblasts and explore the potential molecular mechanism. METHODS Atrial fibroblasts from sprague dawley rat were respectively transfected with miR-499-5p mimic, miR-499-5p negative control and miR-499-5p inhibitor, atrial fibroblasts without any treatment were also established. Cell counting kit-8 assay and transwell assay were used to detect the proliferation and migration of atrial fibroblasts in each group. Expressions of miR-499-5p, TGF-β1, smad2, α-SMA, collagen-I and TGFβ-R1 in mRNA and protein level were subsequently detected via quantitative real-time polymerase chain reaction and western blot. Furthermore, the prediction of the binding sites of miR-499-5p and TGFβ-R1 was performed via the bioinformatics online software TargetScan and verified by dual luciferase reporter. RESULTS By utilizing miR-499-5p-transfected atrial fibroblasts model, expression of miR-499-5p in the miR-499-5p mimic group was upregulated, while it was downregulated in the miR-499-5p inhibitors group. Upregulated miR-499-5p expression led to to a significant decrease in the proliferative and migratory ability of cultured atrial fibroblasts, while downregulated miR-499-5p expression led to a significant increase in the proliferative and migratory ability of cultured atrial fibroblasts. Additionally, upregulated miR-499-5p expression made a significant rise in TGF-β1-induced mRNA and protein expression of TGF-β1, TGFβ-R1, smad2, α-SMA and collagen-I in atrial fibroblasts. Furthermore, results from the dual luciferase reporter conformed that miR-499-5p may repress TGFβ-R1 by binding the 3'UTR of TGFβ-R1 directly. CONCLUSIONS miR-499-5p is able to inhibit the activation of transforming growth factor β-induced Smad2 signaling and eventually suppressed the proliferation, migration and invasion of atrial fibroblasts and collagen synthesis by targeting TGFβ-R1.
Collapse
Affiliation(s)
- Qing Zhao
- Chinese PLA Medical Academy, Beijing, China
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wentao Yang
- Department of Cardiology, Beijing Jishuitan Hospital, The Fourth Clinical Medical College of Peking University, Beijing, China
| | | | - Hongtao Yuan
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China
| | | | - Yutang Wang
- Department of Geriatric Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Zhaoliang Shan
- Chinese PLA Medical Academy, Beijing, China.
- Department of Cardiovascular Medicine, The Sixth Medical Center, Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
9
|
Asjad E, Dobrzynski H. MicroRNAs: Midfielders of Cardiac Health, Disease and Treatment. Int J Mol Sci 2023; 24:16207. [PMID: 38003397 PMCID: PMC10671258 DOI: 10.3390/ijms242216207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a role in post-transcriptional gene regulation. It is generally accepted that their main mechanism of action is the negative regulation of gene expression, through binding to specific regions in messenger RNA (mRNA) and repressing protein translation. By interrupting protein synthesis, miRNAs can effectively turn genes off and influence many basic processes in the body, such as developmental and apoptotic behaviours of cells and cardiac organogenesis. Their importance is highlighted by inhibiting or overexpressing certain miRNAs, which will be discussed in the context of coronary artery disease, atrial fibrillation, bradycardia, and heart failure. Dysregulated levels of miRNAs in the body can exacerbate or alleviate existing disease, and their omnipresence in the body makes them reliable as quantifiable markers of disease. This review aims to provide a summary of miRNAs as biomarkers and their interactions with targets that affect cardiac health, and intersperse it with current therapeutic knowledge. It intends to succinctly inform on these topics and guide readers toward more comprehensive works if they wish to explore further through a wide-ranging citation list.
Collapse
Affiliation(s)
- Emman Asjad
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
| | - Halina Dobrzynski
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK;
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland
| |
Collapse
|
10
|
Bergonzini M, Loreni F, Lio A, Russo M, Saitto G, Cammardella A, Irace F, Tramontin C, Chello M, Lusini M, Nenna A, Ferrisi C, Ranocchi F, Musumeci F. Panoramic on Epigenetics in Coronary Artery Disease and the Approach of Personalized Medicine. Biomedicines 2023; 11:2864. [PMID: 37893238 PMCID: PMC10604795 DOI: 10.3390/biomedicines11102864] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/02/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Epigenetic modifications play a fundamental role in the progression of coronary artery disease (CAD). This panoramic review aims to provide an overview of the current understanding of the epigenetic mechanisms involved in CAD pathogenesis and highlights the potential implications for personalized medicine approaches. Epigenetics is the study of heritable changes that do not influence alterations in the DNA sequence of the genome. It has been shown that epigenetic processes, including DNA/histone methylation, acetylation, and phosphorylation, play an important role. Additionally, miRNAs, lncRNAs, and circRNAs are also involved in epigenetics, regulating gene expression patterns in response to various environmental factors and lifestyle choices. In the context of CAD, epigenetic alterations contribute to the dysregulation of genes involved in inflammation, oxidative stress, lipid metabolism, and vascular function. These epigenetic changes can occur during early developmental stages and persist throughout life, predisposing individuals to an increased risk of CAD. Furthermore, in recent years, the concept of personalized medicine has gained significant attention. Personalized medicine aims to tailor medical interventions based on an individual's unique genetic, epigenetic, environmental, and lifestyle factors. In the context of CAD, understanding the interplay between genetic variants and epigenetic modifications holds promise for the development of more precise diagnostic tools, risk stratification models, and targeted therapies. This review summarizes the current knowledge of epigenetic mechanisms in CAD and discusses the fundamental principles of personalized medicine.
Collapse
Affiliation(s)
- Marcello Bergonzini
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Loreni
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Lio
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Marco Russo
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Guglielmo Saitto
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Antonio Cammardella
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Irace
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Corrado Tramontin
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Massimo Chello
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Mario Lusini
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Antonio Nenna
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Chiara Ferrisi
- Cardiac Surgery, Università Campus Bio-Medico di Roma, 00128 Rome, Italy
| | - Federico Ranocchi
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| | - Francesco Musumeci
- Department of Cardiac Surgery and Heart Transplantation, San Camillo Forlanini Hospital, 00152 Rome, Italy
| |
Collapse
|
11
|
Sharma AK, Bisht P, Gupta B, Sayeed Akhtar MD, Shaik Alavudeen S, Afzal O, Sa Altamimi A. Investigating miRNA subfamilies: Can they assist in the early diagnosis of acute myocardial infarction? Drug Discov Today 2023; 28:103695. [PMID: 37406730 DOI: 10.1016/j.drudis.2023.103695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/28/2023] [Indexed: 07/07/2023]
Abstract
This report focuses on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. Current investigations focus on small non-coding RNA molecules (miRNAs), which have emerged as potential biomarkers with variable diagnostic values and false-positives in different conditions that limit their clinical preference. We thoroughly scrutinize the leading pathology of myocardial infarction and contemporary alterations in miRNAs for their specificity, stability and significant prognostic value at the early stage of acute myocardial infarction (AMI). Based on secondary data analysis, we explore common biomarkers and further investigate included miRNA biomarkers for their specificity, stability and area under the curve (AUC) values. We conclude that a group of novel biomarkers, including miRNA-1, miRNA-208a/b and miRNA-499, could help predict the emergence of AMI at an early stage.
Collapse
Affiliation(s)
- Arun K Sharma
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India.
| | - Priyanka Bisht
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - Bishal Gupta
- Department of Cardiovascular Pharmacology, Amity Institute of Pharmacy, Amity University, Gurugram, Haryana 122413, India
| | - M D Sayeed Akhtar
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia.
| | - Sirajudeen Shaik Alavudeen
- Department of Clinical Pharmacy, College of Pharmacy, King Khalid University, AlFara, Abha 62223, Saudi Arabia
| | - Obaid Afzal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Abdulmalik Sa Altamimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| |
Collapse
|
12
|
Wang G, Luo Y, Gao X, Liang Y, Yang F, Wu J, Fang D, Luo M. MicroRNA regulation of phenotypic transformations in vascular smooth muscle: relevance to vascular remodeling. Cell Mol Life Sci 2023; 80:144. [PMID: 37165163 PMCID: PMC11071847 DOI: 10.1007/s00018-023-04793-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/10/2023] [Accepted: 04/27/2023] [Indexed: 05/12/2023]
Abstract
Alterations in the vascular smooth muscle cells (VSMC) phenotype play a critical role in the pathogenesis of several cardiovascular diseases, including hypertension, atherosclerosis, and restenosis after angioplasty. MicroRNAs (miRNAs) are a class of endogenous noncoding RNAs (approximately 19-25 nucleotides in length) that function as regulators in various physiological and pathophysiological events. Recent studies have suggested that aberrant miRNAs' expression might underlie VSMC phenotypic transformation, appearing to regulate the phenotypic transformations of VSMCs by targeting specific genes that either participate in the maintenance of the contractile phenotype or contribute to the transformation to alternate phenotypes, and affecting atherosclerosis, hypertension, and coronary artery disease by altering VSMC proliferation, migration, differentiation, inflammation, calcification, oxidative stress, and apoptosis, suggesting an important regulatory role in vascular remodeling for maintaining vascular homeostasis. This review outlines recent progress in the discovery of miRNAs and elucidation of their mechanisms of action and functions in VSMC phenotypic regulation. Importantly, as the literature supports roles for miRNAs in modulating vascular remodeling and for maintaining vascular homeostasis, this area of research will likely provide new insights into clinical diagnosis and prognosis and ultimately facilitate the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Gang Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Yulin Luo
- GCP Center, Affiliated Hospital (Traditional Chinese Medicine) of Southwest Medical University, Luzhou, China
| | - Xiaojun Gao
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu Liang
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Feifei Yang
- School of Pharmacy, Chongqing Medical University, Chongqing, China
| | - Jianbo Wu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Longmatan District, No. 1, Section 1, Xianglin Road, Luzhou, Sichuan, China.
- Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
- Integrated Traditional Chinese and Western Medicine, Affiliated Hospital of Traditional Chinese Medicine, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
13
|
Ao X, Ding W, Li X, Xu Q, Chen X, Zhou X, Wang J, Liu Y. Non-coding RNAs regulating mitochondrial function in cardiovascular diseases. J Mol Med (Berl) 2023; 101:501-526. [PMID: 37014377 DOI: 10.1007/s00109-023-02305-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 04/05/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of disease-related death worldwide and a significant obstacle to improving patients' health and lives. Mitochondria are core organelles for the maintenance of myocardial tissue homeostasis, and their impairment and dysfunction are considered major contributors to the pathogenesis of various CVDs, such as hypertension, myocardial infarction, and heart failure. However, the exact roles of mitochondrial dysfunction involved in CVD pathogenesis remain not fully understood. Non-coding RNAs (ncRNAs), particularly microRNAs, long non-coding RNAs, and circular RNAs, have been shown to be crucial regulators in the initiation and development of CVDs. They can participate in CVD progression by impacting mitochondria and regulating mitochondrial function-related genes and signaling pathways. Some ncRNAs also exhibit great potential as diagnostic and/or prognostic biomarkers as well as therapeutic targets for CVD patients. In this review, we mainly focus on the underlying mechanisms of ncRNAs involved in the regulation of mitochondrial functions and their role in CVD progression. We also highlight their clinical implications as biomarkers for diagnosis and prognosis in CVD treatment. The information reviewed herein could be extremely beneficial to the development of ncRNA-based therapeutic strategies for CVD patients.
Collapse
Affiliation(s)
- Xiang Ao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Wei Ding
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266021, China
| | - Xiaoge Li
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Qingling Xu
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xinhui Chen
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Xuehao Zhou
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao Medical College, Qingdao University, Qingdao, 266071, China
| | - Ying Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao, 266021, China.
| |
Collapse
|
14
|
Jiang Y, Zhao Y, Li ZY, Chen S, Fang F, Cai JH. Potential roles of microRNAs and long noncoding RNAs as diagnostic, prognostic and therapeutic biomarkers in coronary artery disease. Int J Cardiol 2023:S0167-5273(23)00478-3. [PMID: 37019219 DOI: 10.1016/j.ijcard.2023.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/27/2023] [Accepted: 03/31/2023] [Indexed: 04/07/2023]
Abstract
Coronary artery disease (CAD), which is mainly caused by atherosclerotic processes in coronary arteries, became a significant health issue. MicroRNAs (miRNAs), and long noncoding RNAs (lncRNAs), have been shown to be stable in plasma and could thereby be adopted as biomarkers for CAD diagnosis and treatment. MiRNAs can regulate CAD development through different pathways and mechanisms, including modulation of vascular smooth muscle cell (VSMC) activity, inflammatory responses, myocardial injury, angiogenesis, and leukocyte adhesion. Similarly, previously studies have indicated that the causal effects of lncRNAs in CAD pathogenesis and their utility in CAD diagnosis and treatment, has been found to lead to cell cycle transition, proliferation dysregulation, and migration in favour of CAD development. Differential expression of miRNAs and lncRNAs in CAD patients has been identified and served as diagnostic, prognostic and therapeutic biomarkers for the assessment of CAD patients. Thus, in the current review, we summarize the functions of miRNAs and lncRNAs, which aimed to identify novel targets for the CAD diagnosis, prognosis, and treatment.
Collapse
Affiliation(s)
- Yong Jiang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Ying Zhao
- Department of Cardiology, Jilin Central Hospital, Jilin 132011, China
| | - Zheng-Yi Li
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Shuang Chen
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China
| | - Fang Fang
- Department of Laboratory Medicine, Jilin Medical University, No. 5 Jilin Street, Jilin 132013, China.
| | - Jian-Hui Cai
- Department of Clinical Medicine, Jilin Medical University, Jilin 132013, China; Jilin Collaborative Innovation Center for Antibody Engineering, Jilin Medical University, Jilin 132013, China.
| |
Collapse
|
15
|
Camoni L, Tosti ME, Pezzullo AM, Marchetti M, Cadeddu C. Clinical and organizational impact of the use of different cardiac troponin assays for the diagnosis of myocardial infarction without persistent elevation of the ST segment at presentation (NSTEMI) in 12 Italian emergency departments (EDs): the TROCAR study. Intern Emerg Med 2023; 18:733-741. [PMID: 36729269 PMCID: PMC9894517 DOI: 10.1007/s11739-022-03169-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/30/2022] [Indexed: 02/03/2023]
Abstract
The management of acute chest pain is one of the challenges for emergency departments (EDs) worldwide. This study aims to provide insights into clinical and organizational aspects related to the use of different cardiac troponin tests for the diagnosis of NSTEMI. A prospective observational study was conducted among 12 Italian EDs. Eligible participants had chest pain of suspected cardiac origin and accessed EDs from January 2017 to March 2019. A 30-day follow-up was performed to gather information about the main cardiac outcomes. Tests validity and performance were assessed by computing sensitivity, specificity, positive and negative predictive values and area under the ROC curve. The independent association between adverse event end point at 30 days and type of troponin was evaluated by multiple logistic regression models, using odds ratio and 95% confidence interval. 2913 patients were included. Almost 72% were affected by comorbidities and most of them stayed in the EDs for more than 3 h, with significant differences among the different troponin assays. The results of follow-up at 30 days for the outcomes considered for the patients who were ruled out in 3 h or less did not differ significantly compared to those ruled out after 3 h or more. After adjustment for confounders, patients admitted to an ED that used a high-sensitivity troponin were at a lower risk of having a MACE (OR = 0.53, 95%CI 0.35-0.90) and a non-significant lower risk of myocardial infarction (OR = 0.68, 95% CI 0.41-1.13, p = 0.1314) at 30 days compared to patients admitted to an ED that used a standard troponin. Appropriate troponin testing is extremely important for differential diagnosis and for addressing proper treatment and safe procedures for patients who are not admitted to the hospital.
Collapse
Affiliation(s)
- Laura Camoni
- grid.416651.10000 0000 9120 6856Centre for Behavioral Sciences and Mental Health, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy
| | - Maria Elena Tosti
- grid.416651.10000 0000 9120 6856National Centre for Global Health, Istituto Superiore di Sanità, Rome, Italy
| | - Angelo Maria Pezzullo
- grid.8142.f0000 0001 0941 3192Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marco Marchetti
- grid.416651.10000 0000 9120 6856National Centre for Health Technology Assessment, Istituto Superiore di Sanità, Rome, Italy
| | - Chiara Cadeddu
- grid.8142.f0000 0001 0941 3192Section of Hygiene, Department of Life Sciences and Public Health, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
16
|
Sheng Y, Yang Z, Feng Z, Wang Y, Ji N. MicroRNA-499-5p promotes vascular smooth muscle cell proliferation and migration via inhibiting SOX6. Physiol Genomics 2023; 55:67-74. [PMID: 36250561 DOI: 10.1152/physiolgenomics.00165.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Atherosclerosis (AS) is the primary etiology of cardiovascular disease, which is considered the leading cause of death all over the world. MicroRNA miR-499-5p was involved in the functional regulation of myocardial and skeletal muscle, whereas its role in atherosclerosis, especially in vascular smooth muscle cells (VSMCs), remains unclear. Our study aims to investigate the effects of miR-499-5p in the proliferation and migration of VSMCs and potential mechanisms. We used mouse aortic vascular smooth muscle cells (MOVAS) and ApoE-/- mice to establish the models of AS in vitro and in vivo, respectively. RT-PCR was performed to detect the expression level of miR-499-5p. Subsequently, Cell Counting Kit-8 (CCK-8) assays, Transwell assays, and wound-healing assays were used to evaluate cell proliferation and migration. Dual-luciferase reporter assay was performed to validate the interaction between miR-499-5p and SOX6. miR-499-5p significantly increased in aorta tissues of mice in AS tissues and vascular smooth muscle cells treated with ox-LDL. miR-499-5p overexpression could promote the proliferation and migration of MOVAS. Bioinformatics analysis predicted and further experiments verified that miR-499-5p could directly bind to the 3'-untranslated region (UTR) region of SOX6. Further, miR-499-5p induced an increased expression of smooth muscle proliferation and migration-related genes, PCNA, cyclin D1, and matrix metalloproteinase (MMP2), as well as the decreased expression of proliferation inhibiting factor p21, which was significantly reversed by SOX6 overexpression. miR-499-5p boosts the proliferation and migration of smooth muscle cells by binding and inhibiting SOX6 expression. The miR-499-5p/SOX6 axis may present a promising therapeutic implication for the prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Yao Sheng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Zewen Yang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ziming Feng
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Yu Wang
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| | - Ningning Ji
- Department of Cardiology, Yiwu Central Hospital, Yiwu, People's Republic of China
| |
Collapse
|
17
|
Epigenetics and Gut Microbiota Crosstalk: A potential Factor in Pathogenesis of Cardiovascular Disorders. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120798. [PMID: 36551003 PMCID: PMC9774431 DOI: 10.3390/bioengineering9120798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Cardiovascular diseases (CVD) are the leading cause of mortality, morbidity, and "sudden death" globally. Environmental and lifestyle factors play important roles in CVD susceptibility, but the link between environmental factors and genetics is not fully established. Epigenetic influence during CVDs is becoming more evident as its direct involvement has been reported. The discovery of epigenetic mechanisms, such as DNA methylation and histone modification, suggested that external factors could alter gene expression to modulate human health. These external factors also influence our gut microbiota (GM), which participates in multiple metabolic processes in our body. Evidence suggests a high association of GM with CVDs. Although the exact mechanism remains unclear, the influence of GM over the epigenetic mechanisms could be one potential pathway in CVD etiology. Both epigenetics and GM are dynamic processes and vary with age and environment. Changes in the composition of GM have been found to underlie the pathogenesis of metabolic diseases via modulating epigenetic changes in the form of DNA methylation, histone modifications, and regulation of non-coding RNAs. Several metabolites produced by the GM, including short-chain fatty acids, folates, biotin, and trimethylamine-N-oxide, have the potential to regulate epigenetics, apart from playing a vital role in normal physiological processes. The role of GM and epigenetics in CVDs are promising areas of research, and important insights in the field of early diagnosis and therapeutic approaches might appear soon.
Collapse
|
18
|
Sigutova R, Evin L, Stejskal D, Ploticova V, Svagera Z. Specific microRNAs and heart failure: time for the next step toward application? Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2022; 166:359-368. [PMID: 35726831 DOI: 10.5507/bp.2022.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 06/09/2022] [Indexed: 12/15/2022] Open
Abstract
A number of microRNAs are involved in the pathophysiological events associated with heart disease. In this review, we discuss miR-21, miR-1, miR-23a, miR-142-5p, miR-126, miR-29, miR-195, and miR-499 because they are most often mentioned as important specific indicators of myocardial hypertrophy and fibrosis leading to heart failure. The clinical use of microRNAs as biomarkers and for therapeutic interventions in cardiovascular diseases appears highly promising. However, there remain many unresolved details regarding their specific actions in distinct pathological phenomena. The introduction of microRNAs into routine practice, as part of the cardiovascular examination panel, will require additional clinically relevant and reliable data. Thus, there remains a need for additional research in this area, as well as the optimization and standardization of laboratory procedures which could significantly shorten the determination time, and make microRNA analysis simpler and more affordable. In this review, we aim to summarize the current knowledge about selected microRNAs related to heart failure, including their potential use in diagnosis, prognosis, and treatment, and options for their laboratory determination.
Collapse
Affiliation(s)
- Radka Sigutova
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic.,Department of Epidemiology and Public Health, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Lukas Evin
- Department of Internal Medicine and Cardiology, Department of Cardiovascular, University Hospital Ostrava, Ostrava, Czech Republic
| | - David Stejskal
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Vera Ploticova
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Zdenek Svagera
- Institute of Laboratory Medicine, Department of Clinical Biochemistry, University Hospital Ostrava and Department of Biomedical Sciences, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
19
|
Parvan R, Hosseinpour M, Moradi Y, Devaux Y, Cataliotti A, da Silva GJJ. Diagnostic performance of microRNAs in the detection of heart failure with reduced or preserved ejection fraction: a systematic review and meta-analysis. Eur J Heart Fail 2022; 24:2212-2225. [PMID: 36161443 PMCID: PMC10092442 DOI: 10.1002/ejhf.2700] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 01/18/2023] Open
Abstract
AIM Chronic heart failure (CHF) can be classified as heart failure with preserved ejection fraction (HFpEF) or with reduced ejection fraction (HFrEF). Currently, there is an unmet need for a minimally invasive diagnostic tool for different forms of CHF. We aimed to investigate the diagnostic potential of circulating microRNAs (miRNAs) for the detection of different CHF forms via a systematic review and meta-analysis approach. METHODS AND RESULTS Comprehensive search on Medline, Web of Science, Scopus, and EMBASE identified 45 relevant studies which were used for qualitative assessment. Out of these, 29 studies were used for qualitative and quantitative assessment and allowed to identify a miRNA panel able to detect HFrEF and HFpEF with areas under the curve (AUC) of 0.86 and 0.79, respectively. A panel of eight miRNAs (hsa-miR-18b-3p, hsa-miR-21-5p, hsa-miR-22-3p, hsa-miR-92b-3p, hsa-miR-129-5p, hsa-miR-320a-5p, hsa-miR-423-5p, and hsa-miR-675-5p) detected HFrEF cases with a sensitivity of 0.85, specificity of 0.88 and AUC of 0.91. A panel of seven miRNAs (hsa-miR-19b-3p, hsa-miR-30c-5p, hsa-miR-206, hsa-miR-221-3p, hsa-miR-328-5p, hsa-miR-375-3p, and hsa-miR-424-5p) identified HFpEF cases with a sensitivity of 0.82 and a specificity of 0.61. CONCLUSIONS Although conventional biomarkers (N-terminal pro-B-type natriuretic peptide and B-type natriuretic peptide) presented a better performance in detecting CHF patients, the results presented here pointed towards specific miRNA panels with potential additive values to circulating natriuretic peptides in the diagnosis of different classes of CHF. Equally important, miRNAs alone showed a reasonable capacity for 'ruling out' patients with HFrEF or HFpEF. Additional studies with large populations are required to confirm the diagnostic potential of miRNAs for sub-classes of CHF.
Collapse
Affiliation(s)
- Reza Parvan
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Milad Hosseinpour
- Department of Medical Genetics and Molecular Biology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yousef Moradi
- Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Yvan Devaux
- Cardiovascular Research Unit, Department of Population Health, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Alessandro Cataliotti
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Gustavo J J da Silva
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway
| |
Collapse
|
20
|
Venugopal P, George M, Kandadai SD, Balakrishnan K, Uppugunduri CRS. Prioritization of microRNA biomarkers for a prospective evaluation in a cohort of myocardial infarction patients based on their mechanistic role using public datasets. Front Cardiovasc Med 2022; 9:981335. [PMID: 36407428 PMCID: PMC9668885 DOI: 10.3389/fcvm.2022.981335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 10/11/2022] [Indexed: 11/06/2022] Open
Abstract
Background MicroRNAs (miR) have proven to be promising biomarkers for several diseases due to their diverse functions, stability and tissue/organ-specific nature. Identification of new markers with high sensitivity and specificity will help in risk reduction in acute myocardial infarction (AMI) patients with chest pain and also prevent future adverse outcomes. Hence the aim of this study was to perform a detailed in silico analysis for identifying the mechanistic role of miRs involved in the pathogenesis/prognosis of AMI for prospective evaluation in AMI patients. Methods miR profiling data was extracted from GSE148153 and GSE24591 datasets using the GEO2R gene expression omnibus repository and analyzed using limma algorithm. Differentially expressed miRs were obtained by comparing MI patients with corresponding controls after multiple testing corrections. Data mining for identifying candidate miRs from published literature was also performed. Target prediction and gene enrichment was done using standard bioinformatics tools. Disease specific analysis was performed to identify target genes specific for AMI using open targets platform. Protein-protein interaction and pathway analysis was done using STRING database and Cytoscape platform. Results and conclusion The analysis revealed significant miRs like let-7b-5p, let-7c-5p, miR-4505, and miR-342-3p in important functions/pathways including phosphatidylinositol-3-kinase/AKT and the mammalian target of rapamycin, advanced glycation end products and its receptor and renin–angiotensin–aldosterone system by directly targeting angiotensin II receptor type 1, forkhead box protein O1, etc. With this approach we were able to prioritize the miR candidates for a prospective clinical association study in AMI patients of south Indian origin.
Collapse
Affiliation(s)
| | - Melvin George
- Clinical Research Department, Hindu Mission Hospital, Chennai, India
| | | | | | - Chakradhara Rao S. Uppugunduri
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, Geneva, Switzerland
- *Correspondence: Chakradhara Rao S. Uppugunduri,
| |
Collapse
|
21
|
Brown C, Mantzaris M, Nicolaou E, Karanasiou G, Papageorgiou E, Curigliano G, Cardinale D, Filippatos G, Memos N, Naka KK, Papakostantinou A, Vogazianos P, Ioulianou E, Shammas C, Constantinidou A, Tozzi F, Fotiadis DI, Antoniades A. A systematic review of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity in breast cancer patients reveals potentially clinically informative panels as well as key challenges in miRNA research. CARDIO-ONCOLOGY 2022; 8:16. [PMID: 36071532 PMCID: PMC9450324 DOI: 10.1186/s40959-022-00142-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/02/2022] [Indexed: 12/01/2022]
Abstract
Breast cancer patients are at a particularly high risk of cardiotoxicity from chemotherapy having a detrimental effect on quality-of-life parameters and increasing the risk of mortality. Prognostic biomarkers would allow the management of therapies to mitigate the risks of cardiotoxicity in vulnerable patients and a key potential candidate for such biomarkers are microRNAs (miRNA). miRNAs are post-transcriptional regulators of gene expression which can also be released into the circulatory system and have been associated with the progression of many chronic diseases including many types of cancer. In this review, the evidence for the potential application of miRNAs as biomarkers for chemotherapy-induced cardiotoxicity (CIC) in breast cancer patientsis evaluated and a simple meta-analysis is performed to confirm the replication status of each reported miRNA. Further selection of miRNAs is performed by reviewing the reported associations of each miRNA with other cardiovascular conditions. Based on this research, the most representative panels targeting specific chemotherapy agents and treatment regimens are suggested, that contain several informative miRNAs, including both general markers of cardiac damage as well as those for the specific cancer treatments.
Collapse
|
22
|
Studying Epigenetics of Cardiovascular Diseases on Chip Guide. CARDIOGENETICS 2022. [DOI: 10.3390/cardiogenetics12030021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Epigenetics is defined as the study of inheritable changes in the gene expressions and phenotypes that occurs without altering the normal DNA sequence. These changes are mainly due to an alteration in chromatin or its packaging, which changes the DNA accessibility. DNA methylation, histone modification, and noncoding or microRNAs can best explain the mechanism of epigenetics. There are various DNA methylated enzymes, histone-modifying enzymes, and microRNAs involved in the cause of various CVDs (cardiovascular diseases) such as cardiac hypertrophy, heart failure, and hypertension. Moreover, various CVD risk factors such as diabetes mellitus, hypoxia, aging, dyslipidemia, and their epigenetics are also discussed together with CVDs such as CHD (coronary heart disease) and PAH (pulmonary arterial hypertension). Furthermore, different techniques involved in epigenetic chromatin mapping are explained. Among these techniques, the ChIP-on-chip guide is explained with regard to its role in cardiac hypertrophy, a final form of heart failure. This review focuses on different epigenetic factors that are involved in causing cardiovascular diseases.
Collapse
|
23
|
Shen NN, Wang JL, Fu YP. The microRNA Expression Profiling in Heart Failure: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:856358. [PMID: 35783849 PMCID: PMC9240229 DOI: 10.3389/fcvm.2022.856358] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is a main consequence of cardiovascular diseases worldwide. Abnormal expression levels of microRNAs (miRNAs) in HF are observed in current studies. Novel biomarkers miRNAs may play an important role in the development of HF. Nevertheless, the inconsistency of miRNA expression limits the clinical application. We thus perform this systematic review of the miRNAs expression profiling to identify potential HF biomarkers. Methods The electronic databases of Embase, Medline, and Cochrane Library were systematically searched to identify the miRNA expression profiles between HF subjects and non-HF controls before May 26th, 2021. The pooled results were shown as log10 odds ratios (logORs) with 95% confidence intervals (CI) using random-effect models. Subgroup analyses were conducted according to species, region, and sample source. The quality assessment of included studies was independently conducted based on Diagnostic Accuracy Study 2 (QUADAS-2). The sensitivity analysis was conducted based on sample size. Results A total of 55 miRNA expression articles reporting 276 miRNAs of HF were included. 47 consistently up-regulated and 10 down-regulated miRNAs were identified in the overall analysis, with the most up-regulated miR-21 (logOR 8.02; 95% CI: 6.76–9.27, P < 0.001) and the most down-regulated miR-30c (logOR 6.62; 95% CI: 3.04–10.20, P < 0.001). The subgroup analysis of sample source identified 35 up-regulated and 10 down-regulated miRNAs in blood sample, the most up-regulated and down-regulated miRNAs were miR-210-3p and miR-30c, respectively. In the region sub-groups, let-7i-5p and miR-129 were most up-regulated and down-regulated in Asian countries, while in non-Asian countries, let-7e-5p and miR-30c were the most dysregulated. It’s worth noting that miR-622 was consistently up-regulated in both Asian and non-Asian countries. Sensitivity analysis showed that 46 out of 58 (79.31%) miRNAs were dysregulated. Conclusion A total of 57 consistently dysregulated miRNAs related to HF were confirmed in this study. Seven dysregulated miRNAs (miR-21, miR-30c, miR-210-3p, let-7i-5p, miR-129, let-7e-5p, and miR-622) may be considered as potential non-invasive biomarkers for HF. However, further validation in larger-scale studies are needed to verify our conclusions.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
- *Correspondence: Jia-Liang Wang,
| | - Yong-ping Fu
- Department of Cardiology, Affiliated Hospital of Shaoxing University, Shaoxing, China
- Yong-ping Fu,
| |
Collapse
|
24
|
Mompeón A, Pérez-Cremades D, Paes AB, Sanchis J, Ortega-Paz L, Andrea R, Brugaletta S, Sabate M, Novella S, Dantas AP, Hermenegildo C. Circulating miRNA Fingerprint and Endothelial Function in Myocardial Infarction: Comparison at Acute Event and One-Year Follow-Up. Cells 2022; 11:cells11111823. [PMID: 35681518 PMCID: PMC9180782 DOI: 10.3390/cells11111823] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/01/2022] [Indexed: 02/05/2023] Open
Abstract
MicroRNAs (miRNA) are major regulators of intercellular communication and key players in the pathophysiology of cardiovascular disease. This study aimed to determine the miRNA fingerprint in a cohort of 53 patients with acute myocardial infarction (AMI) with non-ST-segment elevation (NSTEMI) relative to miRNA expression in healthy controls (n = 51). miRNA expression was initially profiled by miRNA array in the serum of patients undergoing cardiac catheterization during NSTEMI (n = 8) and 1 year past the event (follow-up, n = 8) and validated in the entire cohort. In total, 58 miRNAs were differentially expressed during AMI (p < 0.05), while 36 were modified at follow-up (Fisher’s exact test: p = 0.0138). Enrichment analyses revealed differential regulation of biological processes by miRNA at each specific time point (AMI vs. follow-up). During AMI, the miRNA profile was associated mainly with processes involved in vascular development. However, 1 year after AMI, changes in miRNA expression were partially related to the regulation of cardiac tissue morphogenesis. Linear correlation analysis of miRNA with serum levels of cytokines and chemokines revealed that let-7g-5p, let-7e-5p, and miR-26a-5p expression was inversely associated with serum levels of pro-inflammatory cytokines TNF-α, and the chemokines MCP-3 and MDC. Transient transfection of human endothelial cells (HUVEC) with let-7e-5p inhibitor or mimic demonstrated a key role for this miRNA in endothelial function regulation in terms of cell adhesion and angiogenesis capacity. HUVEC transfected with let-7e-5p mimic showed a 20% increase in adhesion capacity, whereas transfection with let-7e-5p inhibitor increased the number of tube-like structures. This study pinpoints circulating miRNA expression fingerprint in NSTEMI patients, specific to the acute event and changes at 1-year follow-up. Additionally, given its involvement in modulating endothelial cell function and vascularization, altered let-7e-5p expression may constitute a therapeutic biomarker and target for ischemic heart disease.
Collapse
Affiliation(s)
- Ana Mompeón
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, INCLIVA Biomedical Research Institute, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (A.M.); (D.P.-C.); (A.B.P.); (C.H.)
| | - Daniel Pérez-Cremades
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, INCLIVA Biomedical Research Institute, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (A.M.); (D.P.-C.); (A.B.P.); (C.H.)
| | - Ana Belén Paes
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, INCLIVA Biomedical Research Institute, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (A.M.); (D.P.-C.); (A.B.P.); (C.H.)
| | - Juan Sanchis
- Cardiology Division, Hospital Clínico Universitario de Valencia (HCUV), INCLIVA Biomedical Research Institute, University of Valencia, Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Avda. Blasco Ibáñez, 17, 46010 Valencia, Spain;
| | - Luis Ortega-Paz
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain; (L.O.-P.); (R.A.); (S.B.); (M.S.)
- Institut Clinic Cardiovascular (ICCV), Hospital Clinic de Barcelona (HCB), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Rut Andrea
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain; (L.O.-P.); (R.A.); (S.B.); (M.S.)
- Institut Clinic Cardiovascular (ICCV), Hospital Clinic de Barcelona (HCB), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Salvatore Brugaletta
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain; (L.O.-P.); (R.A.); (S.B.); (M.S.)
- Institut Clinic Cardiovascular (ICCV), Hospital Clinic de Barcelona (HCB), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Manel Sabate
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain; (L.O.-P.); (R.A.); (S.B.); (M.S.)
- Institut Clinic Cardiovascular (ICCV), Hospital Clinic de Barcelona (HCB), Carrer de Villarroel, 170, 08036 Barcelona, Spain
| | - Susana Novella
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, INCLIVA Biomedical Research Institute, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (A.M.); (D.P.-C.); (A.B.P.); (C.H.)
- Correspondence: (S.N.); (A.P.D.)
| | - Ana Paula Dantas
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036 Barcelona, Spain; (L.O.-P.); (R.A.); (S.B.); (M.S.)
- Institut Clinic Cardiovascular (ICCV), Hospital Clinic de Barcelona (HCB), Carrer de Villarroel, 170, 08036 Barcelona, Spain
- Correspondence: (S.N.); (A.P.D.)
| | - Carlos Hermenegildo
- Department of Physiology, Faculty of Medicine and Dentistry, University of Valencia, INCLIVA Biomedical Research Institute, Avda. Blasco Ibáñez, 15, 46010 Valencia, Spain; (A.M.); (D.P.-C.); (A.B.P.); (C.H.)
| |
Collapse
|
25
|
Giuliani A, Montesanto A, Matacchione G, Graciotti L, Ramini D, Protic O, Galeazzi R, Antonicelli R, Tortato E, Bonfigli AR, Sabbatinelli J, Olivieri F. The Association between Single Nucleotide Polymorphisms, including miR-499a Genetic Variants, and Dyslipidemia in Subjects Treated with Pharmacological or Phytochemical Lipid-Lowering Agents. Int J Mol Sci 2022; 23:ijms23105617. [PMID: 35628426 PMCID: PMC9145435 DOI: 10.3390/ijms23105617] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/13/2022] [Accepted: 05/15/2022] [Indexed: 12/04/2022] Open
Abstract
Disorders of lipoprotein metabolism are among the major risk factors for cardiovascular disease (CVD) development. Single nucleotide polymorphisms (SNPs) have been associated with the individual variability in blood lipid profile and response to lipid-lowering treatments. Here, we genotyped 34 selected SNPs located in coding genes related to lipid metabolism, inflammation, coagulation, and a polymorphism in the MIR499 gene—a microRNA previously linked to CVD—to evaluate the association with lipid trait in subjects with moderate dyslipidemia not on lipid-lowering treatment (Treatment-naïve (TN) cohort, n = 125) and in patients treated with statins (STAT cohort, n = 302). We also explored the association between SNPs and the effect of a novel phytochemical lipid-lowering treatment in the TN cohort. We found that 6 SNPs (in the MIR499, TNFA, CETP, SOD2, and VEGFA genes) were associated with lipid traits in the TN cohort, while no association was found with the response to twelve-week phytochemical treatment. In the STAT cohort, nine SNPs (in the MIR499, CETP, CYP2C9, IL6, ABCC2, PON1, IL10, and VEGFA genes) were associated with lipid traits, three of which were in common with the TN cohort. Interestingly, in both cohorts, the presence of the rs3746444 MIR499 SNP was associated with a more favorable blood lipid profile. Our findings could add information to better understand the individual genetic variability in maintaining a low atherogenic lipid profile and the response to different lipid-lowering therapies.
Collapse
Affiliation(s)
- Angelica Giuliani
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (G.M.); (F.O.)
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences, University of Calabria, 87036 Rende, Italy;
| | - Giulia Matacchione
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (G.M.); (F.O.)
| | - Laura Graciotti
- Department of Excellence SBSP-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy;
| | - Deborah Ramini
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy;
| | - Olga Protic
- Cardiology Unit, IRCCS INRCA, 60127 Ancona, Italy; (O.P.); (R.A.)
| | - Roberta Galeazzi
- Clinical Laboratory and Molecular Diagnostic, IRCCS INRCA, 60127 Ancona, Italy;
| | | | - Elena Tortato
- Metabolic Diseases and Diabetology Department, IRCCS INRCA, 60127 Ancona, Italy;
| | | | - Jacopo Sabbatinelli
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (G.M.); (F.O.)
- Laboratory Medicine Unit, Azienda Ospedaliero Universitaria Ospedali Riuniti, 60126 Ancona, Italy
- Correspondence: ; Tel.: +39-0712206144
| | - Fabiola Olivieri
- Department of Clinical and Molecular Sciences, DISCLIMO, Università Politecnica delle Marche, 60126 Ancona, Italy; (A.G.); (G.M.); (F.O.)
- Center of Clinical Pathology and Innovative Therapy, IRCCS INRCA, 60121 Ancona, Italy;
| |
Collapse
|
26
|
Chen X, Luo Q. Potential clinical applications of exosomes in the diagnosis, treatment, and prognosis of cardiovascular diseases: a narrative review. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:372. [PMID: 35433929 PMCID: PMC9011294 DOI: 10.21037/atm-22-619] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/07/2022] [Indexed: 12/17/2022]
Abstract
Background and Objective Cardiovascular diseases (CVDs) have been one of the most common threats to human health in recent decades. At present, despite many diagnostic, prognostic and therapeutic methods being applied in the clinic, the prevalence of CVDs continues to rise. Therefore, new discovery is needed and exosomes have received extensive attention. Exosomes are extracellular vesicles that enable communication between cells. They are widely distributed in biofluids, suggesting that they may be useful in CVD diagnosis and prognosis. Furthermore, exosomes are ideal drug transporters with relatively high transport efficiency and the capability to target different kinds of tissues. However, the present research concentrates, for the most part, on mechanistic studies with less attention to clinical applications. Methods More than 150 relevant scientific articles from databases like PubMed, Web of Science were screened and analysed for this narrative review. Data of clinical trials are collected from clinicaltrials.gov. Key Content and Findings In this review, we concentrate on different exosomes and CVDs, and we summarize the physiological and pathological roles of CVD-related exosomes. We focused on the role exosomes may have as biomarkers of CVDs, therapeutic opportunities, and possible hurdles to the clinical application of exosomes, aiming to provide a useful reference for its translational use in the CVD field. Conclusions Specific changes in exosome cargos (mainly miRNAs and proteins) are in accordance with the occurrence and development of CVDs including acute myocardial infarction (AMI), arrhythmia, coronary artery disease (CAD), heart failure (HF) and cardiomyopathy, therefore meaningful for diagnosis and prognosis of CVDs. For exosome related therapeutic methods, potential ways consist of direct administration of exosomes, targeting on exosome synthesis, processing and release, and working as adjuvants. All in all, exosomes are expected to serve as meaningful tools in the diagnosis, treatment and prognosis of CVDs.
Collapse
Affiliation(s)
- Xuyang Chen
- Joint Program of Nanchang University and Queen Mary University of London, Queen Mary School, Medical Department, Nanchang University, Nanchang, China.,Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| | - Qi Luo
- Department of Histology and Embryology, Nanchang University School of Basic Medical Sciences, Nanchang, China
| |
Collapse
|
27
|
Vavassori C, Cipriani E, Colombo GI. Circulating MicroRNAs as Novel Biomarkers in Risk Assessment and Prognosis of Coronary Artery Disease. Eur Cardiol 2022; 17:e06. [PMID: 35321524 PMCID: PMC8924954 DOI: 10.15420/ecr.2021.47] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/05/2022] [Indexed: 12/14/2022] Open
Abstract
Coronary artery disease is among the leading causes of death worldwide. Nevertheless, available cardiovascular risk prediction algorithms still miss a significant portion of individuals at-risk. Thus, the search for novel non-invasive biomarkers to refine cardiovascular risk assessment is both an urgent need and an attractive topic, which may lead to a more accurate risk stratification and/or prognostic score definition for coronary artery disease. A new class of such non-invasive biomarkers is represented by extracellular microRNAs (miRNAs) circulating in the blood. MiRNAs are non-coding RNA of 22–25 nucleotides in length that play a significant role in both cardiovascular physiology and pathophysiology. Given their high stability and conservation, resistance to degradative enzymes, and detectability in body fluids, circulating miRNAs are promising emerging biomarkers, and specific expression patterns have already been associated with a wide range of cardiovascular conditions. In this review, an overview of the role of blood miRNAs in risk assessment and prognosis of coronary artery disease is given.
Collapse
Affiliation(s)
- Chiara Vavassori
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy; Cardiovascular Section, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Eleonora Cipriani
- Unit of Immunology and Functional Genomics, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | | |
Collapse
|
28
|
Gaber MA, Omar OHM, El-Deek SEM, Hassan AKM, Mahmoud MS, Meki ARMA. Copeptin, miRNA-208, and miRNA-499 as New Biomarkers for Early Detection of Acute Coronary Syndrome. Appl Biochem Biotechnol 2022; 194:1193-1205. [PMID: 34637111 DOI: 10.1007/s12010-021-03695-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/04/2021] [Indexed: 01/03/2023]
Abstract
cTn and CK-MB are gold standard biomarkers for acute coronary syndrome (ACS) but are less sensitive in the first 3 h after onset of symptoms. A need thus exists for novel biomarkers for early detection of ACS. We evaluated circulating copeptin, miRNA-208, and miRNA-499 as possible biomarkers for early detection of unstable angina (UA) and non-ST-segment elevation myocardial infarction (NSTEMI). Sixty-five patients with probable ACS that presented within 4 h of the onset of chest pain (23 UA and 42 NSTEMI) and 25 apparently healthy individuals were studied. Two sets of blood samples collected in the first 3 h and at 6 h after onset were analyzed for copeptin levels via ELISA and miRNA-208 and miRNA-499 expression via real-time PCR. Copeptin, miRNA-208, and miRNA-499 expression levels were significantly increased in UA and NSTEMI patients compared with controls (p < 0.001) and in NSTEMT compared with UA patients (p < 0.001). Levels were also significantly elevated in UA and NSTEMI patients with negative cardiac troponin in the first 3 h (p < 0.001). ROC curves displayed AUC for prediction of ACS of 0.96 for copeptin, 0.97 for miRNA-208, and 0.97 for miRNA-499. Their combination improved AUC to 0.98. Copeptin and miRNA-208 and miRNA-499 expression are promising biomarkers for UA and NSTEMI that present in the first 3 h of pain onset. A combination of these markers with cTn may increase the accuracy of diagnosis by avoiding the gray zone of cTn as a biomarker.
Collapse
Affiliation(s)
- Marwa A Gaber
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt.
| | - Omnia H M Omar
- Assiut International Center of Nanomedicine, El-rajhy liver Hospital, Assiut University, Assiut, Egypt
| | - Sahar E M El-Deek
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ayman K M Hassan
- Cardiology Department, Faculty of Medicine,, Assiut University, Assiut, Egypt
| | - Marwan S Mahmoud
- Cardiology Department, Faculty of Medicine,, Assiut University, Assiut, Egypt
| | - Abdel-Raheim M A Meki
- Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
- iochemistry Department, Faculty of Pharmacy, Sphinx University, New Assiut, Egypt Corresponding author: Assistant Professor Marwa A Gaber, Medical Biochemistry Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
29
|
Błażejowska E, Urbanowicz T, Gąsecka A, Olasińska-Wiśniewska A, Jaguszewski MJ, Targoński R, Szarpak Ł, Filipiak KJ, Perek B, Jemielity M. Diagnostic and Prognostic Value of miRNAs after Coronary Artery Bypass Grafting: A Review. BIOLOGY 2021; 10:1350. [PMID: 34943265 PMCID: PMC8698870 DOI: 10.3390/biology10121350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/09/2021] [Accepted: 12/16/2021] [Indexed: 12/23/2022]
Abstract
MiRNAs are noncoding, 21-24 nucleotide-long RNA particles that control over 60% of genes. MiRNAs affect gene expression through binding to the 3'-untranslated region of messenger RNA (mRNA), thus inhibiting mRNA translation or inducing mRNA degradation. MiRNAs have been associated with various cardiovascular diseases, including heart failure, hypertension, left ventricular hypertrophy, or ischemic heart disease. In addition, miRNA expression alters during coronary artery bypass grafting (CABG) surgery, which could be used to predict perioperative outcomes. CABG is an operation in which complex coronary arteries stenosis is treated by bypassing atherosclerotic lesions with venous or arterial grafts. Despite a very low perioperative mortality rate and excellent long-term survival, CABG is associated with postoperative complications, including reperfusion injury, graft failure, atrial fibrillation and perioperative myocardial infarction. So far, no reliable diagnostic and prognostic tools to predict prognosis after CABG have been developed. Changes in the perioperative miRNA expression levels could improve the diagnosis of post-CABG myocardial infarction and atrial fibrillation and could be used to stratify risk after CABG. Herein, we describe the expression changes of different subtypes of miRNAs during CABG and review the diagnostic and prognostic utility of miRNAs in patients undergoing CABG.
Collapse
Affiliation(s)
- Ewelina Błażejowska
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Aleksandra Gąsecka
- 1st Chair and Department of Cardiology, Medical University of Warsaw, 02-091 Warsaw, Poland;
| | - Anna Olasińska-Wiśniewska
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Miłosz J. Jaguszewski
- 1st Department of Cardiology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.J.J.); (R.T.)
| | - Radosław Targoński
- 1st Department of Cardiology, Medical University of Gdansk, 80-211 Gdansk, Poland; (M.J.J.); (R.T.)
| | - Łukasz Szarpak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland; (Ł.S.); (K.J.F.)
| | - Krzysztof J. Filipiak
- Department of Clinical Sciences, Maria Sklodowska-Curie Medical Academy, 03-411 Warsaw, Poland; (Ł.S.); (K.J.F.)
| | - Bartłomiej Perek
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| | - Marek Jemielity
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-701 Poznan, Poland; (T.U.); (A.O.-W.); (B.P.); (M.J.)
| |
Collapse
|
30
|
Ferulic Acid Alleviates Oxidative Stress-Induced Cardiomyocyte Injury by the Regulation of miR-499-5p/ p21 Signal Cascade. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1921457. [PMID: 34917156 PMCID: PMC8670946 DOI: 10.1155/2021/1921457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022]
Abstract
Objective To investigate the protective effects and regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. Methods We established a cardiomyocyte oxidative stress cell model by H2O2 treatment and a mouse heart injury model by isoprenaline infusion of male C57BL/6 mice. Ferulic acid was applied to treat oxidative stress-induced cardiomyocyte injury. DHE staining was used to detect ROS production. DNA fragmentation, TUNEL assay, and cleaved caspase-3 were used to analyze cell apoptosis. Real-time PCR and Western blotting were used to analyze miRNA and protein levels to investigate the regulatory mechanisms of ferulic acid on oxidative stress-induced cardiomyocyte injury. Results Ferulic acid pretreatment significantly inhibited H2O2- and isoprenaline-induced oxidative stress and cell apoptosis by promoting miR-499-5p expression and inhibiting p21 expression. MiR-499-5p inhibition reversed the protective effects of ferulic acid. Further study found that ferulic acid could also attenuate isoprenaline-induced mouse heart fibrosis and cell apoptosis by reducing oxidative stress, inflammation, and apoptosis in vivo. Conclusions We proved that ferulic acid protects cardiomyocytes from oxidative stress-induced injury by regulating the miR-499-5p/p21signaling pathway, which provides insight into the clinical application of ferulic acid in the treatment of cardiovascular diseases.
Collapse
|
31
|
Mansouri F, Seyed Mohammadzad MH. Up-Regulation of Cell-Free MicroRNA-1 and MicroRNA-221-3p Levels in Patients with Myocardial Infarction Undergoing Coronary Angiography. Adv Pharm Bull 2021; 11:719-727. [PMID: 34888219 PMCID: PMC8642802 DOI: 10.34172/apb.2021.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 04/29/2020] [Accepted: 07/26/2020] [Indexed: 12/29/2022] Open
Abstract
Purpose: Myocardial infarction (MI), known as a multifactorial disease, remains the predominant cause of mortality and sudden deaths annually. The current study aimed to measure the expression of microRNA-1 and microRNA-221-3p in MI patients. Methods: In the current study, 100 healthy controls (with no history of heart disease) and 200 patients with MI were selected. Patients were divided into two groups based on angiography results: normal (no significant artery stenosis) and primary percutaneous coronary intervention (primary PCI, significant artery stenosis). The levels of microRNA-1 and microRNA-221-3p were quantified using real-time quantitative polymerase chain reaction. The correlation between levels of microRNAs and the common cardiac markers were analyzed statistically. Results: In comparison to fold change, microRNA-1 elevations were 8.5-fold in normal patients and 60-fold in patients with primary PCI; while microRNA-221-3p levels were 210- fold higher in primary PCI and 31.31-fold higher in normal cases compared with the healthy controls. Receiver operating characteristic analysis showed that the area under the curve (AUC) for circulating microRNA-1 and microRNA-221 were 0.903 and 0.958 in normal patients and 0.927 and 0.985 in primary PCI patients (p < 0.0001), respectively. Pearson correlation (ρ) analysis showed that circulation of microRNA-1 correlated with serum levels of cardiac troponin I (CTnI) (ρ =0.24), creatinine (ρ =0.34), creatinine kinase-myocardial band (CK-MB) (ρ =0.31), and microRNA-221-3p was significantly correlated with serum levels of CTnI (ρ =0.6), creatinine (ρ =0.41), and CK-MB (ρ =0.37), (P < 0.0001). Conclusion: The study underscored the potential of microRNA-1 and microRNA-221-3p as informative biomarkers and positively correlated with artery stenosis in MI.
Collapse
Affiliation(s)
- Fatemeh Mansouri
- Department of Genetics and Immunology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran.,Cellular and Molecular Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | | |
Collapse
|
32
|
Roles of Exosomes in Cardiac Fibroblast Activation and Fibrosis. Cells 2021; 10:cells10112933. [PMID: 34831158 PMCID: PMC8616203 DOI: 10.3390/cells10112933] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 12/23/2022] Open
Abstract
Alterations in the accumulation and composition of the extracellular matrix are part of the normal tissue repair process. During fibrosis, this process becomes dysregulated and excessive extracellular matrix alters the biomechanical properties and function of tissues involved. Historically fibrosis was thought to be progressive and irreversible; however, studies suggest that fibrosis is a dynamic process whose progression can be stopped and even reversed. This realization has led to an enhanced pursuit of therapeutic agents targeting fibrosis and extracellular matrix-producing cells. In many organs, fibroblasts are the primary cells that produce the extracellular matrix. In response to diverse mechanical and biochemical stimuli, these cells are activated or transdifferentiate into specialized cells termed myofibroblasts that have an enhanced capacity to produce extracellular matrix. It is clear that interactions between diverse cells of the heart are able to modulate fibroblast activation and fibrosis. Exosomes are a form of extracellular vesicle that play an important role in intercellular communication via the cargo that they deliver to target cells. While relatively recently discovered, exosomes have been demonstrated to play important positive and negative roles in the regulation of fibroblast activation and tissue fibrosis. These roles as well as efforts to engineer exosomes as therapeutic tools will be discussed.
Collapse
|
33
|
Ren X, Ellis BW, Ronan G, Blood SR, DeShetler C, Senapati S, March KL, Handberg E, Anderson D, Pepine C, Chang HC, Zorlutuna P. A multiplexed ion-exchange membrane-based miRNA (MIX·miR) detection platform for rapid diagnosis of myocardial infarction. LAB ON A CHIP 2021; 21:3876-3887. [PMID: 34546237 PMCID: PMC9115728 DOI: 10.1039/d1lc00685a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Micro RNAs (miRNAs) have shown great potential as rapid and discriminating biomarkers for acute myocardial infarction (AMI) diagnosis. We have developed a multiplexed ion-exchange membrane-based miRNA (MIX·miR) preconcentration/sensing amplification-free platform for quantifying in parallel a panel of miRNAs, including miR-1, miR-208b, and miR-499, from the same plasma samples from: 1) reference subjects with no evident coronary artery disease (NCAD); 2) subjects with stable coronary artery disease (CAD); and 3) subjects experiencing ST-elevation myocardial infarction (STEMI) prior to (STEMI-pre) and following (STEMI-PCI) percutaneous coronary intervention. The picomolar limit of detection from raw plasma and 3-decade dynamic range of MIX·miR permits detection of the miRNA panel in untreated samples from disease patients and its precise standard curve, provided by large 0.1 to 1 V signals and eliminates individual sensor calibration. The use of molecular concentration feature reduces the assay time to less than 30 minutes and increases the detection sensitivity by bringing all targets close to the sensors. miR-1 was low for NCAD patients but more than one order of magnitude above the normal value for all samples from three categories (CAD, STEMI-pre, and STEMI-PCI) of patients with CAD. In fact, miR-1 expression levels of stable CAD, STEMI-pre and STEMI-PCI are each more than 10-fold higher than the previous class, in that order, well above the 95% confidence level of MIX·miR. Its overexpression estimate is significantly higher than the PCR benchmark. This suggests that, in contrast to protein biomarkers of myocardial injury, miR-1 appears to differentiate ischemia from both reperfusion injury and non-AMI CAD patients. The battery-operated MIX·miR can be a portable and low-cost AMI diagnostic device, particularly useful in settings where cardiac catheterization is not readily available to determine the status of coronary reperfusion.
Collapse
Affiliation(s)
- Xiang Ren
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Bradley W Ellis
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - George Ronan
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Stuart Ryan Blood
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Cameron DeShetler
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keith L March
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Eileen Handberg
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - David Anderson
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Carl Pepine
- Division of Cardiology, Department of Medicine in the College of Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Hsueh-Chia Chang
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Pinar Zorlutuna
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
34
|
Copur S, Rossing P, Afsar B, Sag AA, Siriopol D, Kuwabara M, Ortiz A, Kanbay M. A primer on metabolic memory: why existing diabesity treatments fail. Clin Kidney J 2021; 14:756-767. [PMID: 34512957 PMCID: PMC8422888 DOI: 10.1093/ckj/sfaa143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 11/28/2022] Open
Abstract
Despite massive government and private sector investments into prevention of cardiovascular disease, diabetes mellitus and obesity, efforts have largely failed, and the burden of cost remains in the treatment of downstream morbidity and mortality, with overall stagnating outcomes. A new paradigm shift in the approach to these patients may explain why existing treatment strategies fail, and offer new treatment targets. This review aims to provide a clinician-centred primer on metabolic memory, defined as the sum of irreversible genetic, epigenetic, cellular and tissue-level alterations that occur with long-time exposure to metabolic derangements.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Peter Rossing
- Steno Diabetes Center Copenhagen, University of Copenhagen, Copenhagen, Denmark
| | - Baris Afsar
- Department of Internal Medicine, Division of Nephrology, Suleyman Demirel University School of Medicine, Isparta, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, NC, USA
| | - Dimitrie Siriopol
- Nephrology Clinic, Dialysis and Renal Transplant Center, 'C.I. PARHON' University Hospital, 'Grigore T. Popa' University of Medicine, Iasi, Romania
| | | | - Alberto Ortiz
- School of Medicine, Dialysis Unit, IIS-Fundacion Jimenez Diaz, Universidad Autónoma de Madrid, Madrid, Spain
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
35
|
Olivieri F, Prattichizzo F, Giuliani A, Matacchione G, Rippo MR, Sabbatinelli J, Bonafè M. miR-21 and miR-146a: The microRNAs of inflammaging and age-related diseases. Ageing Res Rev 2021; 70:101374. [PMID: 34082077 DOI: 10.1016/j.arr.2021.101374] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023]
Abstract
The first paper on "inflammaging" published in 2001 paved the way for a unifying theory on how and why aging turns out to be the main risk factor for the development of the most common age-related diseases (ARDs). The most exciting challenge on this topic was explaining how systemic inflammation steeps up with age and why it shows different rates among individuals of the same chronological age. The "epigenetic revolution" in the past twenty years conveyed that the assessment of the individual genetic make-up is not enough to depict the trajectories of age-related inflammation. Accordingly, others and we have been focusing on the role of non-coding RNA, i.e. microRNAs (miRNAs), in inflammaging. The results obtained in the latest 10 years underpinned the key role of a miRNA subset that we have called inflammamiRs, owing to their ability to master (NF-κB)-driven inflammatory pathways. In this review, we will focus on two inflammamiRs, i.e. miR-21-5p and miR-146a-5p, which target a variety of molecules belonging to the NF-κB/NLRP3 pathways. The interplay between miR-146a-5p and IL-6 in the context of aging and ARDs will also be highlighted. We will also provide the most relevant evidence suggesting that circulating inflammamiRs, along with IL-6, can measure the degree of inflammaging.
Collapse
|
36
|
Lee GK, Hsieh YP, Hsu SW, Lan SJ. Exploring diagnostic and prognostic predictive values of microRNAs for acute myocardial infarction: A PRISMA-compliant systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e26627. [PMID: 34398018 PMCID: PMC8294880 DOI: 10.1097/md.0000000000026627] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 11/10/2020] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
OBJECTIVE Previous investigations yielded inconsistent results for diagnostic and prognostic predictive values of MicroRNAs (miRNAs) for acute myocardial infarction (AMI). METHODS AND RESULTS We systematically searched on PubMed and Web of Science for articles explored association of miRNAs and AMI published from January 1989 to March 2019. For diagnostic studies, a summary of sensitivity, specificity, positive likelihood ratios (PLR), negative likelihood ratios (NLR), and diagnostic odds ratio (DOR), which indicated the accuracy of microRNAs in the differentiation of AMI and no AMI, were calculated from the true positive (TP), true negative (TN), false positive (FP), and false negative (FN) of each study. In addition, the summary receive-operating characteristics (SROC) curve was constructed to summarize the TP and FP rates. For follow-up study, we computed hazard ratios (HRs) and 95% confidence intervals (CIs) for individual clinical outcomes. The meta-analysis showed a sensitivity [0.72 (95% CI: 0.61--0.81)] and specificity [0.88 (95% CI: 0.79--0.94)] of miR-1 for AMI. In addition, miR-133 showed a sensitivity [0.73 (95% CI: 0.55--0.85)] and specificity [0.88 (95% CI: 0.74--0.95)] for AMI. Moreover, the present study showed a sensitivity [0.83 (95% CI: 0.74--0.89)] and specificity [0.96 (95% CI: 0.82--0.99)] of miR-208 for AMI. A significant association was found between miR-208 and mortality after AMI (HR 1.09, 95% CI 1.01--1.18). It also indicated a sensitivity [0.84 (95% CI: 0.70--0.92)] and specificity [0.97 (95% CI: 0.87--0.99)] of miR-499 for AMI. CONCLUSIONS Circulating miR-1, miR-133, miR-208, and miR-499 showed diagnostic values in AMI.
Collapse
Affiliation(s)
- Gien-Kuo Lee
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- BenQ medical center, Emergency Department, Nanjing, China
- Wei Gong Memorial Hospital, Emergency Department, Miaoli, Taiwan
| | - Yen-Ping Hsieh
- Department of Long Term Care, National Quemoy University, Taiwan
| | - Shang-Wei Hsu
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
| | - Shou-Jen Lan
- Department of Healthcare Administration, Asia University, Taichung, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
37
|
Slouka D, Windrichova J, Rezackova H, Houfkova K, Kucera R, Cerna V, Kostlivy T, Topolcan O, Pesta M. The potential of miR-499 plasmatic level as a biomarker of obstructive sleep apnea syndrome. Biomark Med 2021; 15:1011-1019. [PMID: 34289701 DOI: 10.2217/bmm-2020-0826] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: Obstructive sleep apnea syndrome (OSAS) is one of the most common sleep-related breathing disorders. The aim of this study was to improve diagnostics in OSAS using blood circulating biomarkers. We consider the potential of cardiac-specific miRNAs in the diagnosis and risk assessment of cardiovascular complications. Materials & methods: Plasmatic levels of miR-1-3p, miR-133a-3p and miR-499a-5p were measured by reverse transcription-PCR and compared with the clinical status of OSAS patients and controls. Results: The level of miR-499 was higher (p = 0.0343) in OSAS patients (mean expression: 0.00561) compared with the controls (mean expression: 0.00003), using the multivariate logistic regression. Conclusion: The role of miR-499 in gene expression regulation during hypoxia and our findings indicate that miR-499 could be a new diagnostic biomarker for OSAS.
Collapse
Affiliation(s)
- David Slouka
- Department of Otorhinolaryngology, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Jindra Windrichova
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Hana Rezackova
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Katerina Houfkova
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Radek Kucera
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Vaclava Cerna
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| | - Tomas Kostlivy
- Department of Otorhinolaryngology, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Ondrej Topolcan
- Department of Immunochemistry Diagnostics, University Hospital in Pilsen & Charles University, Faculty of Medicine in Pilsen, Edvarda Benese 13, 30599, Pilsen, Czech Republic
| | - Martin Pesta
- Department of Biology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 32300, Pilsen, Czech Republic
| |
Collapse
|
38
|
Sharma AR, Shashikiran U, Uk AR, Shetty R, Satyamoorthy K, Rai PS. Aberrant DNA methylation and miRNAs in coronary artery diseases and stroke: a systematic review. Brief Funct Genomics 2021; 19:259-285. [PMID: 31950130 DOI: 10.1093/bfgp/elz043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/31/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Coronary artery disease (CAD) and ischemic stroke are the two most predominant forms of cardiovascular diseases (CVDs) caused by genetic, epigenetic and environmental risk factors. Although studies on the impact of 'epigenetics' in CVDs is not new, its effects are increasingly being realized as a key regulatory determinant that may drive predisposition, pathophysiology and therapeutic outcome. The most widely studied epigenetic risk factors are regulated by DNA methylation and miRNA expression. To keep pace with growing developments and discoveries, a comprehensive review was performed using Pubmed, Science Direct and Scopus databases to highlight the role of DNA methylation and miRNAs in CAD and stroke subjects. Network analysis was performed using ClueGO software and miRTargetLink database. We identified 32 studies of DNA methylation on CAD and stroke, of which, 6 studies showed differences in global DNA methylation, 10 studies reported the genome-wide difference in DNA methylation and 16 studies demonstrated altered DNA methylation at 14 candidate loci. The network analysis showed positive regulation of nitric oxide biosynthetic process, homocysteine metabolic process and negative regulation of lipid storage. About, 155 miRNAs were associated with CAD, stroke and related phenotypes in 83 studies. Interestingly, mir-223 hypomethylation and altered expression were associated with cerebral infarction and stroke. The target prediction for 18 common miRNAs between CAD and stroke showed strong interaction with SP3 and SP1 genes. This systematic review addresses the present knowledge on DNA methylation and miRNAs in CAD and stroke, whose abnormal regulation has been implicated in etiology or progression of the diseases.
Collapse
|
39
|
Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021; 22:2955. [PMID: 33799487 PMCID: PMC7998409 DOI: 10.3390/ijms22062955] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022] Open
Abstract
For patients with hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy (DCM) or arrhythmogenic cardiomyopathy (ACM), screening for pathogenic variants has become standard clinical practice. Genetic cascade screening also allows the identification of relatives that carry the same mutation as the proband, but disease onset and severity in mutation carriers often remains uncertain. Early detection of disease onset may allow timely treatment before irreversible changes are present. Although plasma biomarkers may aid in the prediction of disease onset, monitoring relies predominantly on identifying early clinical symptoms, on imaging techniques like echocardiography (Echo) and cardiac magnetic resonance imaging (CMR), and on (ambulatory) electrocardiography (electrocardiograms (ECGs)). In contrast to most other cardiac diseases, which are explained by a combination of risk factors and comorbidities, genetic cardiomyopathies have a clear primary genetically defined cardiac background. Cardiomyopathy cohorts could therefore have excellent value in biomarker studies and in distinguishing biomarkers related to the primary cardiac disease from those related to extracardiac, secondary organ dysfunction. Despite this advantage, biomarker investigations in cardiomyopathies are still limited, most likely due to the limited number of carriers in the past. Here, we discuss not only the potential use of established plasma biomarkers, including natriuretic peptides and troponins, but also the use of novel biomarkers, such as cardiac autoantibodies in genetic cardiomyopathy, and discuss how we can gauge biomarker studies in cardiomyopathy cohorts for heart failure at large.
Collapse
Affiliation(s)
| | | | | | - Herman H. W. Silljé
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, AB43, 9713 GZ Groningen, The Netherlands; (N.M.S.); (R.A.d.B.); (M.P.v.d.B.)
| |
Collapse
|
40
|
Jenike AE, Halushka MK. miR-21: a non-specific biomarker of all maladies. Biomark Res 2021; 9:18. [PMID: 33712063 PMCID: PMC7953557 DOI: 10.1186/s40364-021-00272-1] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
miRNA-21 is among the most abundant and highly conserved microRNAs (miRNAs) recognized. It is expressed in essentially all cells where it performs vital regulatory roles in health and disease. It is also frequently claimed to be a biomarker of diseases such as cancer and heart disease in bodily-fluid based miRNA studies. Here we dissociate its contributions to cellular physiology and pathology from its potential as a biomarker. We show how it has been claimed as a specific predictive or prognostic biomarker by at least 29 diseases. Thus, it has no specificity to any one disease. As a result, it should not be considered a viable candidate to be a biomarker, despite its continued evaluation as such. This theme of multiple assignments of a miRNA as a biomarker is shared with other common, ubiquitous miRNAs and should be concerning for them as well.
Collapse
Affiliation(s)
- Ana E Jenike
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, MD, 21205, Baltimore, USA
| | - Marc K Halushka
- Department of Pathology, Johns Hopkins University School of Medicine, Ross Bldg. Rm 632B, 720 Rutland Avenue, MD, 21205, Baltimore, USA.
| |
Collapse
|
41
|
Kaur A, Mackin ST, Schlosser K, Wong FL, Elharram M, Delles C, Stewart DJ, Dayan N, Landry T, Pilote L. Systematic review of microRNA biomarkers in acute coronary syndrome and stable coronary artery disease. Cardiovasc Res 2021; 116:1113-1124. [PMID: 31782762 DOI: 10.1093/cvr/cvz302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 10/24/2019] [Accepted: 11/26/2019] [Indexed: 01/03/2023] Open
Abstract
The aim of this systematic review was to assess dysregulated miRNA biomarkers in coronary artery disease (CAD). Dysregulated microRNA (miRNAs) have been shown to be linked to cardiovascular pathologies including CAD and may have utility as diagnostic and prognostic biomarkers. We compared miRNAs identified in acute coronary syndrome (ACS) compared with stable CAD and control populations. We conducted a systematic search of controlled vocabulary and free text terms related to ACS, stable CAD and miRNA in Biosis Previews (OvidSP), The Cochrane Library (Wiley), Embase (OvidSP), Global Health (OvidSP), Medline (PubMed and OvidSP), Web of Science (Clarivate Analytics), and ClinicalTrials.gov which yielded 7370 articles. Of these, 140 original articles were appropriate for data extraction. The most frequently reported miRNAs in any CAD (miR-1, miR-133a, miR-208a/b, and miR-499) are expressed abundantly in the heart and play crucial roles in cardiac physiology. In studies comparing ACS cases with stable CAD patients, miR-21, miR-208a/b, miR-133a/b, miR-30 family, miR-19, and miR-20 were most frequently reported to be dysregulated in ACS. While a number of miRNAs feature consistently across studies in their expression in both ACS and stable CAD, when compared with controls, certain miRNAs were reported as biomarkers specifically in ACS (miR-499, miR-1, miR-133a/b, and miR-208a/b) and stable CAD (miR-215, miR-487a, and miR-502). Thus, miR-21, miR-133, and miR-499 appear to have the most potential as biomarkers to differentiate the diagnosis of ACS from stable CAD, especially miR-499 which showed a correlation between the level of their concentration gradient and myocardial damage. Although these miRNAs are potential diagnostic biomarkers, these findings should be interpreted with caution as the majority of studies conducted predefined candidate-driven assessments of a limited number of miRNAs (PROSPERO registration: CRD42017079744).
Collapse
Affiliation(s)
- Amanpreet Kaur
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada
| | - Sharon T Mackin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Kenny Schlosser
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Fui Lin Wong
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Malik Elharram
- Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Christian Delles
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, UK
| | - Duncan J Stewart
- Ottawa Hospital Research Institute and Faculty of Medicine, University of Ottawa, Ottawa, Canada
| | - Natalie Dayan
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| | - Tara Landry
- Medical Library, Montreal General Hospital, McGill University Health Centre, Montreal, Canada
| | - Louise Pilote
- Centre for Outcomes Research and Evaluation, Research Institute, McGill University Health Centre, 5252 de Maisonneuve West, 2B.39, Montreal QC H4A 3S5, Canada.,Department of Medicine, McGill University Health Centre, Montreal, Canada
| |
Collapse
|
42
|
Sumi MP, Mahajan B, Sattar RSA, Nimisha, Apurva, Kumar A, Sharma AK, Ahmad E, Ali A, Saluja SS. Elucidation of Epigenetic Landscape in Coronary Artery Disease: A Review on Basic Concept to Personalized Medicine. Epigenet Insights 2021; 14:2516865720988567. [PMID: 33598635 PMCID: PMC7863167 DOI: 10.1177/2516865720988567] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/26/2020] [Indexed: 12/11/2022] Open
Abstract
Despite extensive clinical research and management protocols applied in the field of coronary artery diseases (CAD), it still holds the number 1 position in mortality worldwide. This indicates that we need to work on precision medicine to discover the diagnostic, therapeutic, and prognostic targets to improve the outcome of CAD. In precision medicine, epigenetic changes play a vital role in disease onset and progression. Epigenetics is the study of heritable changes that do not affect the alterations of DNA sequence in the genome. It comprises various covalent modifications that occur in DNA or histone proteins affecting the spatial arrangement of the DNA and histones. These multiple modifications include DNA/histone methylation, acetylation, phosphorylation, and SUMOylation. Besides these covalent modifications, non-coding RNAs-viz. miRNA, lncRNA, and circRNA are also involved in epigenetics. Smoking, alcohol, diet, environmental pollutants, obesity, and lifestyle are some of the prime factors affecting epigenetic alterations. Novel molecular techniques such as next-generation sequencing, chromatin immunoprecipitation, and mass spectrometry have been developed to identify important cross points in the epigenetic web in relation to various diseases. The studies regarding exploration of epigenetics, have led researchers to identify multiple diagnostic markers and therapeutic targets that are being used in different disease diagnosis and management. Here in this review, we will discuss various ground-breaking contributions of past and recent studies in the epigenetic field in concert with coronary artery diseases. Future prospects of epigenetics and its implication in CAD personalized medicine will also be discussed in brief.
Collapse
Affiliation(s)
- Mamta P Sumi
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Bhawna Mahajan
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
- Department of Biochemistry, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Real Sumayya Abdul Sattar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Nimisha
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Apurva
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Arun Kumar
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Abhay Kumar Sharma
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Ejaz Ahmad
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| | - Asgar Ali
- Department of Biochemistry, All India Institute of Medical Science, Patna, Bihar, India
| | - Sundeep Singh Saluja
- Central Molecular Laboratory, Govind Ballabh Pant Institute of Post Graduate Medical Education and Research (GIPMER), University of Delhi, New Delhi, India
| |
Collapse
|
43
|
Yang F, Yan J, Lu Y, Wang D, Liu L, Wang Z. MicroRNA-499-5p targets SIRT1 to aggravate lipopolysaccharide-induced acute lung injury. Free Radic Res 2020; 55:71-82. [PMID: 33307898 DOI: 10.1080/10715762.2020.1863393] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Acute lung injury (ALI) is a life-threatening disease without effective and specific therapeutic strategies except the life-supporting treatments. Inflammation and oxidative stress are essential for the progression of ALI. MicroRNA-499-5p (miR-499-5p) has multiple pathophysiological actions; however, its function and mechanisms in ALI remain elusive. Mice were intravenously injected with miR-499-5p agomir, antagomir or the negative controls for 3 consecutive days and then received a single intratracheal injection of lipopolysaccharide (LPS, 5 mg/kg) to generate ALI model. Twenty four hours prior to LPS injection, EX-527 (1 mg/kg) was applied to inhibit SIRT1 activity. We identified a significant upregulation of miR-499-5p in LPS-treated lung tissues. miR-499-5p antagomir prevented, while miR-499-5p agomir promoted inflammation, oxidative stress and ALI in LPS-treated mice. Further studies indicated that miR-499-5p directly bound to the 3'-untranslated region of Sirtuin 1 (Sirt1) and decreased its protein level. SIRT1 inhibition blocked miR-499-5p antagomir-mediated pulmonary protection against LPS injury. miR-499-5p targets SIRT1 to aggravate LPS-induced ALI and it is a promising therapeutic target for the treatment of ALI.
Collapse
Affiliation(s)
- Fan Yang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Jie Yan
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Yuan Lu
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Dengyun Wang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Li Liu
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| | - Zhengjun Wang
- Department of Thoracic and Cardiovascular Surgery, Huangshi Central Hospital (Affiliated Hospital of Hubei Polytechnic University), Edong Healthcare Group, Huangshi, Hubei, China
| |
Collapse
|
44
|
Differential Role of Circulating microRNAs to Track Progression and Pre-Symptomatic Stage of Chronic Heart Failure: A Pilot Study. Biomedicines 2020; 8:biomedicines8120597. [PMID: 33322648 PMCID: PMC7764340 DOI: 10.3390/biomedicines8120597] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/07/2020] [Accepted: 12/08/2020] [Indexed: 12/11/2022] Open
Abstract
(1)Background: Chronic heart failure (CHF) contributes to the overall burden of cardiovascular disease. Early identification of at-risk individuals may facilitate the targeting of precision therapies. Plasma microRNAs are promising circulating biomarkers for their implications with cardiac pathologies. In this pilot study, we investigate the possible exploitability of circulating micro-RNAs (miRNAs) to track chronic heart failure (CHF) occurrence, and progression from NYHA class I to IV. (2)Methods: We screened 367 microRNAs using TaqMan microRNA Arrays in plasma samples from healthy controls (HC) and CHF NYHA-class I-to-IV patients (5/group). Validation was performed by singleplex assays on 10 HC and 61 CHF subjects. Differences in the expression of validated microRNAs were evaluated through analysis of covariance (ANCOVA). Associations between N-terminal pro-BNP (NT-proBNP), left ventricular end-diastolic volume (LVEDV) or peak oxygen uptake (VO2 peak) and plasma microRNA were assessed by multivariable linear regression analysis. (3)Results: Twelve microRNAs showed higher expression in CHF patients vs. HC. Seven microRNAs were associated with NT-proBNP concentration; of these, miR-423-5p was also an independent predictor of LVEDV. Moreover, miR-499-5p was a predictor of the VO2 peak. Finally, a cluster of 5 miRNAs discriminated New York Heart Association (NYHA) class-I from HC subjects. (4)Conclusions: Our data suggest that circulating miRNAs have the potential to serve as pathophysiology-based markers of HF status and progression, and as indicators of pre-symptomatic individuals.
Collapse
|
45
|
Pereira JD, Tosatti JAG, Simões R, Luizon MR, Gomes KB, Alves MT. microRNAs associated to anthracycline-induced cardiotoxicity in women with breast cancer: A systematic review and pathway analysis. Biomed Pharmacother 2020; 131:110709. [DOI: 10.1016/j.biopha.2020.110709] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 02/06/2023] Open
|
46
|
Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: Biogenesis and Clinical Significance in Acute Myocardial Infarction. Front Physiol 2020; 11:1088. [PMID: 33013463 PMCID: PMC7494963 DOI: 10.3389/fphys.2020.01088] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Acute myocardial infarction (AMI) causes many deaths around the world. Early diagnosis can prevent the development of AMI and provide theoretical support for the subsequent treatment. miRNAs participate in the AMI pathological processes. We aim to determine the early diagnostic and the prognostic roles of circulating miRNAs in AMI in the existing studies and summarize all the data to provide a greater understanding of their utility for clinical application. We reviewed current knowledge focused on the AMI development and circulating miRNA formation. Meanwhile, we collected and analyzed the potential roles of circulating miRNAs in AMI diagnosis, prognosis and therapeutic strategies. Additionally, we elaborated on the challenges and clinical perspectives of the application of circulating miRNAs in AMI diagnosis. Circulating miRNAs are stable in the circulation and have earlier increases of circulating levels than diagnostic golden criteria. In addition, they are tissue and disease-specific. All these characteristics indicate that circulating miRNAs are promising biomarkers for the early diagnosis of AMI. Although there are several limitations to be resolved before clinical use, the application of circulating miRNAs shows great potential in the early diagnosis and the prognosis of AMI.
Collapse
Affiliation(s)
- Lei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Han Ding
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yuan Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Yin Wang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Wenjie Zhu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| | - Peifeng Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
| |
Collapse
|
47
|
Zhai C, Li R, Hou K, Chen J, Alzogool M, Hu Y, Zhang J, Zhang Y, Wang L, Zhang R, Cong H. Value of Blood-Based microRNAs in the Diagnosis of Acute Myocardial Infarction: A Systematic Review and Meta-Analysis. Front Physiol 2020; 11:691. [PMID: 32922300 PMCID: PMC7456928 DOI: 10.3389/fphys.2020.00691] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/27/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Recent studies have shown that blood-based miRNAs are dysregulated in patients with acute myocardial infarction (AMI) and are therefore a potential tool for the diagnosis of AMI. Therefore, this study summarized and evaluated studies focused on microRNAs as novel biomarkers for the diagnosis of AMI from the last ten years. Methods: MEDLINE, the Cochrane Central database, and EMBASE were searched between January 2010 and December 2019. Studies that assessed the diagnostic accuracy of circulating microRNAs in AMI were chosen. The pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, diagnostic odds ratio, and area under the curve (AUC) were used to assess the test performance of miRNAs. Results: A total of 58 studies that included 8,206 participants assessed the diagnostic accuracy of circulating miRNAs in AMI. The main results of the meta-analyses are as follows: (1) Total miRNAs: the overall pooled sensitivity and specificity were 0.82 (95% CI: 0.79-0.85) and 0.87 (95% CI: 0.84-0.90), respectively. The AUC value was 0.91 (95% CI: 0.88-0.93) in the overall summary receiver operator characteristic (SROC) curve. (2) The panel of two miRNAs: sensitivity: 0.88 (95% CI: 0.77-0.94), specificity: 0.84 (95% CI: 0.72-0.91), AUC: 0.92 (95% CI: 0.90-0.94). (3) The panel of three miRNAs: sensitivity: 0.91 (95% CI: 0.85-0.94), specificity: 0.87 (95% CI: 0.77-0.92), AUC: 0.92 (95% CI: 0.89-0.94). (4) Results by types of miRNAs: miRNA-1: sensitivity: 0.78 (95% CI: 0.71-0.84), specificity: 0.86 (95% CI: 0.77-0.91), AUC: 0.88 (95% CI: 0.85-0.90); miRNA-133a: sensitivity: 0.85 (95% CI: 0.69-0.94), specificity: 0.92 (95% CI: 0.61-0.99), AUC: 0.93 (95% CI: 0.91-0.95); miRNA-208b: sensitivity: 0.80 (95% CI: 0.69-0.88), specificity: 0.96 (95% CI: 0.77-0.99), AUC: 0.91 (95% CI: 0.88-0.93); miRNA-499: sensitivity: 0.85 (95% CI: 0.77-0.91), specificity: 0.95 (95% CI: 0.89-0.98), AUC: 0.96 (95% CI: 0.94-0.97). Conclusion: miRNAs may be used as potential biomarkers for the detection of AMI. For single, stand-alone miRNAs, miRNA-499 may have better diagnostic accuracy compared to other miRNAs. We propose that a panel of multiple miRNAs with high sensitivity and specificity should be tested.
Collapse
Affiliation(s)
- ChuanNan Zhai
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Li
- Tianjin GongAn Hospital, Tianjin, China
| | - Kai Hou
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingYi Chen
- School of Medicine, NanKai University, Tianjin, China
| | | | - YueCheng Hu
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - JingXia Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - YingYi Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Le Wang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - Rui Zhang
- Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| | - HongLiang Cong
- School of Medicine, NanKai University, Tianjin, China.,Department of Cardiology, Tianjin Chest Hospital, Tianjin, China
| |
Collapse
|
48
|
An Overview of Non-coding RNAs and Cardiovascular System. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1229:3-45. [PMID: 32285403 DOI: 10.1007/978-981-15-1671-9_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease management and timely diagnosis remain a major dilemma. Delineating molecular mechanisms of cardiovascular diseases is opening horizon in the field of molecular medicines and in the development of early diagnostic markers. Non-coding RNAs are the highly functional and vibrant nucleic acids and are known to be involved in the regulation of endothelial cells, vascular and smooth muscles cells, cardiac metabolism, ischemia, inflammation and many processes in cardiovascular system. This chapter is comprehensively focusing on the overview of the non-coding RNAs including their discovery, generation, classification and functional regulation. In addition, overview regarding different non-coding RNAs as long non-coding, siRNAs and miRNAs involvement in the cardiovascular diseases is also addressed. Detailed functional analysis of this vast group of highly regulatory molecules will be promising for shaping future drug discoveries.
Collapse
|
49
|
Henning RJ. Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. J Cardiovasc Transl Res 2020; 14:195-212. [PMID: 32588374 DOI: 10.1007/s12265-020-10040-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 05/26/2020] [Indexed: 12/16/2022]
Abstract
Cardiac exosomes mediate cell-to-cell communication, stimulate or inhibit the activities of target cells, and affect myocardial hypertrophy, injury and infarction, ventricular remodeling, angiogenesis, and atherosclerosis. The exosomes that are released in the heart from cardiomyocytes, vascular cells, fibroblasts, and resident stem cells are hypoimmunogenic, are physiologically more stable than cardiac cells, can circulate in the body, and are able to cross the blood-brain barrier. Exosomes utilize three mechanisms for cellular communication: (1) internalization by cells, (2) direct fusion to the cell membrane, and (3) receptor-ligand interactions. Cardiac exosomes transmit proteins, mRNA, and microRNAs to other cells during both physiological and pathological process. Cardiac-specific exosome miRNAs can regulate the expression of sarcomeric genes, ion channel genes, autophagy, anti-apoptotic and anti-fibrotic activity, and angiogenesis. This review discusses the role of exosomes and microRNAs in normal myocardium, myocardial injury and infarction, atherosclerosis, and the importance of circulating microRNAs as biomarkers of cardiac disease. Graphical Abstract.
Collapse
Affiliation(s)
- Robert J Henning
- University of South Florida, 13201 Bruce B. Downs Blvd., Tampa, FL, 33612-3805, USA.
| |
Collapse
|
50
|
Sadat-Ebrahimi SR, Aslanabadi N. Role of MicroRNAs in Diagnosis, Prognosis, and Treatment of Acute Heart Failure: Ambassadors from Intracellular Zone. Galen Med J 2020; 9:e1818. [PMID: 34466598 PMCID: PMC8343948 DOI: 10.31661/gmj.v9i0.1818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/24/2020] [Accepted: 02/06/2020] [Indexed: 12/12/2022] Open
Abstract
Acute heart failure (AHF) is one of the burdensome diseases affecting a considerable proportion of the population. Recently, it has been demonstrated that micro-ribonucleic acids (miRNAs) can exert diagnostic, prognostic, and therapeutic roles in a variety of conditions including AHF. These molecules play essential roles in HF-related pathophysiology, particularly, cardiac fibrosis, and hypertrophy. Some miRNAs namely miRNA-423-5p are reported to have both diagnostic and prognostic capabilities. However, some studies suggest that combination of biomarkers is a much better way to achieve the highest accuracy such as the combination of miRNAs and N-terminal pro b-type Natriuretic Peptide (NT pro-BNP). Therefore, this review discusses different views towards various roles of miRNAs in AHF.
Collapse
Affiliation(s)
- Seyyed-Reza Sadat-Ebrahimi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Naser Aslanabadi
- Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Correspondence to: Naser Aslanabadi, Professor of Cardiology, Cardiovascular Research Center, Madani Heart Center, Tabriz University of Medical Sciences, Tabriz, Iran Telephone Number: +989143110844 Email Address:
| |
Collapse
|