1
|
Galyfos G, Chamzin A, Saliaris K, Theodorou P, Konstantinou K, Sigala F, Filis K. The effect of cilostazol on late outcomes after endovascular treatment for occlusive femoropopliteal disease. J Vasc Surg 2024; 80:279-287. [PMID: 38215952 DOI: 10.1016/j.jvs.2024.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
OBJECTIVE Restenosis and late occlusion remain a significant problem for endovascular treatment of peripheral artery disease. This meta-analysis aims to evaluate the effect of cilostazol on late outcomes after endovascular repair of occlusive femoropopliteal disease. METHODS A systematic literature review was conducted conforming to established criteria to identify articles published up to September 2023 evaluating late outcomes after endovascular treatment for atherosclerotic femoropopliteal disease. Eligible studies should compare outcomes between patients treated with cilostazol and patients not treated with cilostazol. Both prospective and retrospective studies were eligible. Late outcomes included primary patency (PP), restenosis, target lesion revascularization (TLR), and major amputation during follow-up. RESULTS Overall, 10 clinical studies were identified for analysis including 4721 patients (1831 with cilostazol vs 2890 without cilostazol) that were treated for 5703 lesions (2235 with cilostazol vs 3468 without cilostazol). All studies were performed in Japan. Mean follow-up was 24.1 ± 12.5 months. Cilostazol was associated with a lower risk for restenosis (pooled odds ratio [OR], 0.503; 95% confidence interval [CI], 0.383-0.660; P < .0001). However, no association was found between cilostazol and TLR (pooled OR, 0.918; 95% CI, 0.300-2.812; P = .881) as well as major amputation (pooled OR, 1.512; 95% CI, 0.734-3.116; P = .263). Regarding primary patency, cilostazol was associated with a higher 12-month PP (OR, 3.047; 95% CI, 1.168-7.946; P = .023), and a higher 36-month PP (OR, 1.616; 95% CI, 1.412-1.850; P < .0001). No association was found between cilostazol and mortality during follow-up (pooled OR, .755; 95% CI, 0.293-1.946; P = .561). CONCLUSIONS Cilostazol seems to have a positive effect on 1- to 3-year PP and restenosis rates among patients treated endovascularly for atherosclerotic femoropopliteal disease. A positive effect on TLR and amputation risk was not verified in this review.
Collapse
Affiliation(s)
- George Galyfos
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece.
| | - Alexandros Chamzin
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Konstantinos Saliaris
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Panagiotis Theodorou
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Kyriaki Konstantinou
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Frangiska Sigala
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| | - Konstantinos Filis
- Vascular Surgery Unit, First Department of Propedeutic Surgery, National and Kapodistrian University of Athens, Hippocration Hospital, Athens, Greece
| |
Collapse
|
2
|
Alameddine D, Damara FA, Pinto Rodriguez P, Huttler J, Slade MD, Arhuidese I, Aboian E, Ochoa Chaar CI. The Use and Impact of Cilostazol on Patients Undergoing Endovascular Peripheral Interventions. Ann Vasc Surg 2024:S0890-5096(24)00057-8. [PMID: 38387798 DOI: 10.1016/j.avsg.2023.12.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 02/24/2024]
Abstract
OBJECTIVES Cilostazol is used for the treatment of intermittent claudication. The impact of cilostazol on the outcomes of peripheral vascular interventions (PVI) remains controversial. This study assesses the use and impact of cilostazol on patients undergoing PVI for peripheral arterial disease (PAD). METHODS The Vascular Quality Initiative (VQI) database files for PVI were reviewed. Patients with PAD who underwent PVI for CLTI or claudication were included and divided based on the use of cilostazol preoperatively. After propensity matching for patient demographics and comorbidities, the short-term and long-term outcomes of the two groups (preoperative cilostazol use versus no pre-operative cilostazol use) were compared. The Kaplan-Meier method was used to determine outcomes. RESULTS A total of 245,309 patients underwent PVI procedures and 6.6% (N=16,366) were on cilostazol prior to intervention. Patients that received cilostazol were more likely to be male (62% vs 60%; P < .001), White (77% vs 75%; P < .001), and smokers (83% vs 77%; P < .001). They were less likely to have diabetes mellitus (50% vs 56%; P < .001) and congestive heart failure (14% vs 23%; P < .001). Patient on cilostazol were more likely to be treated for claudication (63% vs 40%, P < .001), undergo prior lower extremity revascularization (55% vs 51%, P<.001) and less likely to have undergone prior minor and major amputation (10% vs 19%; P < .001) compared to patients who did not receive cilostazol. After 3:1 propensity matching, there were 50,265 patients included in the analysis with no differences in baseline characteristics. Patients on cilostazol were less likely to develop renal complications and more likely to be discharged home. Patients on cilostazol had significantly lower rates of long-term mortality (11.5% vs 13.4%, P <.001 and major amputation (4.0% vs 4.7%, P=0.022). However, there were no significant differences in rates of reintervention, major adverse limb events, or patency after PVI. Amputation-free survival rates were significantly higher for patients on cilostazol, after four years of follow-up (89% vs 87%, P=0.03). CONCLUSION Cilostazol is underutilized in the VQI database and seems to be associated with improved amputation-free survival. Cilostazol therapy should be considered in all patients with PAD who can tolerate it prior to PVI.
Collapse
Affiliation(s)
- Dana Alameddine
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT.
| | - Fachreza Aryo Damara
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Paula Pinto Rodriguez
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | | | - Martin D Slade
- Department of Internal Medicine, Section of Occupational and Environmental Medicine, Yale New Haven Hospital, Yale University School of Medicine, New Haven, CT
| | - Isibor Arhuidese
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Edouard Aboian
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| | - Cassius Iyad Ochoa Chaar
- Division of Vascular Surgery and Endovascular Therapy, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
3
|
Poledniczek M, Neumayer C, Kopp CW, Schlager O, Gremmel T, Jozkowicz A, Gschwandtner ME, Koppensteiner R, Wadowski PP. Micro- and Macrovascular Effects of Inflammation in Peripheral Artery Disease-Pathophysiology and Translational Therapeutic Approaches. Biomedicines 2023; 11:2284. [PMID: 37626780 PMCID: PMC10452462 DOI: 10.3390/biomedicines11082284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/10/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Inflammation has a critical role in the development and progression of atherosclerosis. On the molecular level, inflammatory pathways negatively impact endothelial barrier properties and thus, tissue homeostasis. Conformational changes and destruction of the glycocalyx further promote pro-inflammatory pathways also contributing to pro-coagulability and a prothrombotic state. In addition, changes in the extracellular matrix composition lead to (peri-)vascular remodelling and alterations of the vessel wall, e.g., aneurysm formation. Moreover, progressive fibrosis leads to reduced tissue perfusion due to loss of functional capillaries. The present review aims at discussing the molecular and clinical effects of inflammatory processes on the micro- and macrovasculature with a focus on peripheral artery disease.
Collapse
Affiliation(s)
- Michael Poledniczek
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria
| | - Christoph Neumayer
- Division of Vascular Surgery, Department of General Surgery, Medical University of Vienna, 1090 Vienna, Austria;
| | - Christoph W. Kopp
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Oliver Schlager
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Thomas Gremmel
- Department of Internal Medicine I, Cardiology and Intensive Care Medicine, Landesklinikum Mistelbach-Gänserndorf, 2130 Mistelbach, Austria;
- Institute of Cardiovascular Pharmacotherapy and Interventional Cardiology, Karl Landsteiner Society, 3100 St. Pölten, Austria
| | - Alicja Jozkowicz
- Department of Medical Biotechnology, Faculty of Biophysics, Biochemistry and Biotechnology, Jagiellonian University, 31-007 Krakow, Poland;
| | - Michael E. Gschwandtner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Renate Koppensteiner
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| | - Patricia P. Wadowski
- Division of Angiology, Department of Internal Medicine II, Medical University of Vienna, 1090 Vienna, Austria; (M.P.); (C.W.K.); (O.S.); (M.E.G.); (R.K.)
| |
Collapse
|
4
|
Chen PW, Tseng SY, Chang HY, Lee CH, Chao TH. Diverse Effects of Cilostazol on Proprotein Convertase Subtilisin/Kexin Type 9 between Obesity and Non-Obesity. Int J Mol Sci 2022; 23:ijms23179768. [PMID: 36077166 PMCID: PMC9456424 DOI: 10.3390/ijms23179768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Proprotein convertase subtilisin/kexin type 9 (PCSK9) plays a key role in cholesterol homeostasis. Cilostazol exerts favorable cellular and metabolic effects; however, the effect of cilostazol on the expression of PCSK9 has not been previously reported. Our study aimed to investigate the potential mechanisms of action of cilostazol on the expression of PCSK9 and lipid homeostasis. We evaluated the effects of cilostazol on the expression of PCSK9 in HepG2 cells and evaluated potential molecular mechanisms by measuring signaling molecules in the liver and serum lipid profiles in high-fat diet-induced obese mice and normal chow-fed mice. Cilostazol treatment significantly induced the messenger RNA and protein expression of PCSK9 in HepG2 cells and enhanced PCSK9 promoter activity. Chromatin immunoprecipitation assays confirmed that cilostazol treatment enhanced PCSK9 transcription by binding to peroxisome proliferator-activated receptor-γ (PPARγ) via the PPARγ DNA response element. PPARγ knockdown attenuated the stimulatory effect of cilostazol on PCSK9. In vitro, cilostazol treatment increased PCSK9 expression in vehicle-treated HepG2 cells but decreased PCSK9 expression in palmitic acid-treated HepG2 cells. In vivo, cilostazol treatment increased the serum levels of PCSK9 in normal mice but significantly reduced PCSK9 levels in obese mice. The expressions of PCSK9-relevant microRNAs also showed similar results. Clinical data showed that cilostazol treatment significantly reduced serum PCSK9 levels in patients with obesity. The obesity-dependent effects of cilostazol on PCSK9 expression observed from bench to bedside demonstrates the therapeutic potential of cilostazol in clinical settings.
Collapse
Affiliation(s)
- Po-Wei Chen
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Shih-Ya Tseng
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Hsien-Yuan Chang
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Cheng-Han Lee
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
| | - Ting-Hsing Chao
- Division of Cardiology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 704, Taiwan
- Health Management Center, National Cheng Kung University Hospital, Tainan 704, Taiwan
- Correspondence: ; Tel.: +886-6-23523535 (ext. 2392); Fax: +886-6-2753834
| |
Collapse
|
5
|
A Randomized Controlled Trial Evaluating Outcome Impact of Cilostazol in Patients with Coronary Artery Disease or at a High Risk of Cardiovascular Disease. J Pers Med 2022; 12:jpm12060938. [PMID: 35743723 PMCID: PMC9225272 DOI: 10.3390/jpm12060938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/25/2022] Open
Abstract
Previous studies found that cilostazol has a favorable effect on glucose and lipid homeostasis, endothelial function, atherosclerosis, and vasculo-angiogenesis. However, it is poorly understood whether these effects can translate into better clinical outcomes. This study investigated the outcome effect of cilostazol in patients with coronary artery disease (CAD) or at a high risk of cardiovascular (CV) disease. We conducted a randomized, double-blind, placebo-controlled trial involving 266 patients who received cilostazol, 200 mg/day (n = 134) or placebo (n = 132). Pre-specified clinical endpoints including composite major adverse cardiovascular events (MACE) (CV death, non-fatal myocardial infarct, non-fatal stroke, hospitalization for heart failure, or unplanned coronary revascularization), the composite major coronary event (MCE) and major adverse CV and cerebrovascular event (MACCE), were prospectively assessed. The mean duration of follow-up was 2.9 years. Relative to placebo, cilostazol treatment had a borderline effect on risk reduction of MACE (hazard ratio [HR], 0.67; 95% confidence interval (CI), 0.34–1.33), whereas the beneficial effect in favor of cilostazol was significant in patients with diabetes mellitus or a history of percutaneous coronary intervention (p for interaction, 0.02 and 0.06, respectively). Use of cilostazol, significantly reduced the risk of MCE (HR, 0.38; 95% CI, 0.17–0.86) and MACCE (HR, 0.47; 95% CI, 0.23–0.96). A significantly lower risk of angina pectoris (HR, 0.38; 95% CI, 0.17–0.86) was also observed in the cilostazol group. After multi-variable adjustment, cilostazol treatment independently predicted a lower risk of MCE. In conclusion, these results suggest cilostazol may have beneficial effects in patients with CAD or at a high risk of CV disease.
Collapse
|
6
|
Ke X, Liao Z, Luo X, Chen JQ, Deng M, Huang Y, Wang Z, Wei M. Endothelial colony-forming cell-derived exosomal miR-21-5p regulates autophagic flux to promote vascular endothelial repair by inhibiting SIPL1A2 in atherosclerosis. Cell Commun Signal 2022; 20:30. [PMID: 35279183 PMCID: PMC8917727 DOI: 10.1186/s12964-022-00828-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/07/2022] [Indexed: 12/12/2022] Open
Abstract
Abstract
Background
Percutaneous transluminal coronary angioplasty (PTCA) represents an efficient therapeutic method for atherosclerosis but conveys a risk of causing restenosis. Endothelial colony-forming cell-derived exosomes (ECFC-exosomes) are important mediators during vascular repair. This study aimed to investigate the therapeutic effects of ECFC-exosomes in a rat model of atherosclerosis and to explore the molecular mechanisms underlying the ECFC-exosome-mediated effects on ox-LDL-induced endothelial injury.
Methods
The effect of ECFC-exosome-mediated autophagy on ox-LDL-induced human microvascular endothelial cell (HMEC) injury was examined by cell counting kit-8 assay, scratch wound assay, tube formation assay, western blot and the Ad-mCherry-GFP-LC3B system. RNA-sequencing assays, bioinformatic analysis and dual-luciferase reporter assays were performed to confirm the interaction between the miR-21-5p abundance of ECFC-exosomes and SIPA1L2 in HMECs. The role and underlying mechanism of ECFC-exosomes in endothelial repair were explored using a high-fat diet combined with balloon injury to establish an atherosclerotic rat model of vascular injury. Evans blue staining, haematoxylin and eosin staining and western blotting were used to evaluate vascular injury.
Results
ECFC-exosomes were incorporated into HMECs and promoted HMEC proliferation, migration and tube formation by repairing autophagic flux and enhancing autophagic activity. Subsequently, we demonstrated that miR-21-5p, which is abundant in ECFC-exosomes, binds to the 3’ untranslated region of SIPA1L2 to inhibit its expression, and knockout of miR-21-5p in ECFC-exosomes reversed ECFC-exosome-decreased SIPA1L2 expression in ox-LDL-induced HMEC injury. Knockdown of SIPA1L2 repaired autophagic flux and enhanced autophagic activity to promote cell proliferation in ox-LDL-treated HMECs. ECFC-exosome treatment attenuated vascular endothelial injury, regulated lipid balance and activated autophagy in an atherogenic rat model of vascular injury, whereas these effects were eliminated with ECFC-exosomes with knockdown of miR-21-5p.
Conclusions
Our study demonstrated that ECFC-exosomes protect against atherosclerosis- or PTCA-induced vascular injury by rescuing autophagic flux and inhibiting SIAP1L2 expression through delivery of miR-21-5p.
Collapse
|
7
|
Brown T, Forster RB, Cleanthis M, Mikhailidis DP, Stansby G, Stewart M. Cilostazol for intermittent claudication. Cochrane Database Syst Rev 2021; 6:CD003748. [PMID: 34192807 PMCID: PMC8245159 DOI: 10.1002/14651858.cd003748.pub5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Peripheral arterial disease (PAD) affects between 4% and 12% of people aged 55 to 70 years, and 20% of people over 70 years. A common complaint is intermittent claudication (exercise-induced lower limb pain relieved by rest). These patients have a three- to six-fold increase in cardiovascular mortality. Cilostazol is a drug licensed for the use of improving claudication distance and, if shown to reduce cardiovascular risk, could offer additional clinical benefits. This is an update of the review first published in 2007. OBJECTIVES To determine the effect of cilostazol on initial and absolute claudication distances, mortality and vascular events in patients with stable intermittent claudication. SEARCH METHODS The Cochrane Vascular Information Specialist searched the Cochrane Vascular Specialised Register, CENTRAL, MEDLINE, Embase, CINAHL, and AMED databases, and the World Health Organization International Clinical Trials Registry Platform and ClinicalTrials.gov trials registries, on 9 November 2020. SELECTION CRITERIA We considered double-blind, randomised controlled trials (RCTs) of cilostazol versus placebo, or versus other drugs used to improve claudication distance in patients with stable intermittent claudication. DATA COLLECTION AND ANALYSIS Two authors independently assessed trials for selection and independently extracted data. Disagreements were resolved by discussion. We assessed the risk of bias with the Cochrane risk of bias tool. Certainty of the evidence was evaluated using GRADE. For dichotomous outcomes, we used odds ratios (ORs) with corresponding 95% confidence intervals (CIs) and for continuous outcomes we used mean differences (MDs) and 95% CIs. We pooled data using a fixed-effect model, or a random-effects model when heterogeneity was identified. Primary outcomes were initial claudication distance (ICD) and quality of life (QoL). Secondary outcomes were absolute claudication distance (ACD), revascularisation, amputation, adverse events and cardiovascular events. MAIN RESULTS We included 16 double-blind, RCTs (3972 participants) comparing cilostazol with placebo, of which five studies also compared cilostazol with pentoxifylline. Treatment duration ranged from six to 26 weeks. All participants had intermittent claudication secondary to PAD. Cilostazol dose ranged from 100 mg to 300 mg; pentoxifylline dose ranged from 800 mg to 1200 mg. The certainty of the evidence was downgraded by one level for all studies because publication bias was strongly suspected. Other reasons for downgrading were imprecision, inconsistency and selective reporting. Cilostazol versus placebo Participants taking cilostazol had a higher ICD compared with those taking placebo (MD 26.49 metres; 95% CI 18.93 to 34.05; 1722 participants; six studies; low-certainty evidence). We reported QoL measures descriptively due to insufficient statistical detail within the studies to combine the results; there was a possible indication in improvement of QoL in the cilostazol treatment groups (low-certainty evidence). Participants taking cilostazol had a higher ACD compared with those taking placebo (39.57 metres; 95% CI 21.80 to 57.33; 2360 participants; eight studies; very-low certainty evidence). The most commonly reported adverse events were headache, diarrhoea, abnormal stools, dizziness, pain and palpitations. Participants taking cilostazol had an increased odds of experiencing headache compared to participants taking placebo (OR 2.83; 95% CI 2.26 to 3.55; 2584 participants; eight studies; moderate-certainty evidence).Very few studies reported on other outcomes so conclusions on revascularisation, amputation, or cardiovascular events could not be made. Cilostazol versus pentoxifylline There was no difference detected between cilostazol and pentoxifylline for improving walking distance, both in terms of ICD (MD 20.0 metres, 95% CI -2.57 to 42.57; 417 participants; one study; low-certainty evidence); and ACD (MD 13.4 metres, 95% CI -43.50 to 70.36; 866 participants; two studies; very low-certainty evidence). One study reported on QoL; the study authors reported no difference in QoL between the treatment groups (very low-certainty evidence). No study reported on revascularisation, amputation or cardiovascular events. Cilostazol participants had an increased odds of experiencing headache compared with participants taking pentoxifylline at 24 weeks (OR 2.20, 95% CI 1.16 to 4.17; 982 participants; two studies; low-certainty evidence). AUTHORS' CONCLUSIONS Cilostazol has been shown to improve walking distance in people with intermittent claudication. However, participants taking cilostazol had higher odds of experiencing headache. There is insufficient evidence about the effectiveness of cilostazol for serious events such as amputation, revascularisation, and cardiovascular events. Despite the importance of QoL to patients, meta-analysis could not be undertaken because of differences in measures used and reporting. Very limited data indicated no difference between cilostazol and pentoxifylline for improving walking distance and data were too limited for any conclusions on other outcomes.
Collapse
Affiliation(s)
- Tamara Brown
- Cochrane Vascular, University of Edinburgh, Edinburgh, UK
| | - Rachel B Forster
- Department of Health Registry Research and Development, Norwegian Institute of Public Health, Bergen, Norway
| | | | - Dimitri P Mikhailidis
- Department of Clinical Biochemistry, Royal Free Hospital Campus, University College London Medical School, London, UK
| | - Gerard Stansby
- Northern Vascular Centre, Freeman Hospital, Newcastle, UK
| | - Marlene Stewart
- Cochrane Vascular, University of Edinburgh, Edinburgh, UK
- Usher Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
8
|
Fazeli B, Keramat S, Assadi L, Taheri H. Angiogenesis induction in Buerger's disease: a disease management double-edged sword? Orphanet J Rare Dis 2019; 14:189. [PMID: 31383033 PMCID: PMC6683384 DOI: 10.1186/s13023-019-1166-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 01/31/2023] Open
Abstract
Due to unknown aetiology of Thromboangiitis obliterans (TAO), its effectively treating is challenging. However, angiogenesis induction is one of the acceptable treatments for TAO patients. Recently, we have noticed that TAO patients who were under long-term treatment with angiogenesis-inducing medication showed considerable improvement in terms of healing chronic ulcers over the course of one to 2 years of treatment. However, some of them developed dermal gangrene despite the warming of their feet, with or without palpable pulses in the extremities, and with hair growth on the affected skin. Unfortunately, following the progression of dermal gangrene, some of these patients had to undergo amputation and limb loss. During histopathological evaluation, we detected some changes in the amputee TAO patients under long-term angiogenic medical treatment that were not present in amputee TAO patients who had not received any treatment for many years. The greatest pathological changes were observed in the microvascular of the skin, appearing as a proliferation of endothelial cells, NETosis and thrombus formation inside the vessels with proliferation of endothelial cells. The immunohistochemistry for CD31 and Ki67 as markers of vascular endothelium differentiation and cell mitosis confirmed the proliferation of endothelial cells. However, in the patients who had not received any treatment for years the typical pathology view of BD, including preserved vascular architecture with infiltration of inflammatory cells and inflammatory cells inside the thrombus, organised thrombus with recanalisation and intimal thickening was observed. Further longitudinal cohort studies regarding long-term treatment with angiogenic medications for TAO in different geographic areas are highly recommended.
Collapse
Affiliation(s)
- Bahare Fazeli
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran. .,Vascular Independent Research and Education, European Foundation, Milan, Italy.
| | - Shayan Keramat
- Hematology Department, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ladan Assadi
- Pathology department, 17Shahrivar Hospital, Mashhad, Iran
| | | |
Collapse
|
9
|
A Scalable and Efficient Bioprocess for Manufacturing Human Pluripotent Stem Cell-Derived Endothelial Cells. Stem Cell Reports 2018; 11:454-469. [PMID: 30078557 PMCID: PMC6092882 DOI: 10.1016/j.stemcr.2018.07.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 07/05/2018] [Accepted: 07/09/2018] [Indexed: 02/08/2023] Open
Abstract
Endothelial cells (ECs) are of great value for cell therapy, tissue engineering, and drug discovery. Obtaining high-quantity and -quality ECs remains very challenging. Here, we report a method for the scalable manufacturing of ECs from human pluripotent stem cells (hPSCs). hPSCs are expanded and differentiated into ECs in a 3D thermoreversible PNIPAAm-PEG hydrogel. The hydrogel protects cells from hydrodynamic stresses in the culture vessel and prevents cells from excessive agglomeration, leading to high-culture efficiency including high-viability (>90%), high-purity (>80%), and high-volumetric yield (2.0 × 107 cells/mL). These ECs (i.e., 3D-ECs) had similar properties as ECs made using 2D culture systems (i.e., 2D-ECs). Genome-wide gene expression analysis showed that 3D-ECs had higher expression of genes related to vasculature development, extracellular matrix, and glycolysis, while 2D-ECs had higher expression of genes related to cell proliferation. hPSCs can be differentiated into endothelial cells in 3D thermoreversible hydrogels The differentiation efficiency is similar to this in 2D cultures The global gene expression and phenotypes are similar to ECs made in 2D cultures
Collapse
|
10
|
Filis K, Tsioufis C, Sianou A, Triantafillou K, Sigala F, Galyfos G. Critical evaluation on proper antithrombotic treatment in different groups of patients undergoing vascular surgery. Hellenic J Cardiol 2018; 59:313-316. [PMID: 29723662 DOI: 10.1016/j.hjc.2018.04.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/21/2018] [Accepted: 04/24/2018] [Indexed: 12/14/2022] Open
Abstract
Antithrombotic treatment including anticoagulants and antiplatelets has evolved during the last decades, and several recommendations have been included in the latest guidelines regarding the proper management of patients undergoing vascular surgery. However, there are significant differences compared to older recommendations, and indications vary among patients with peripheral artery disease, carotid disease, and abdominal aortic aneurysm. In this mini review, we critically evaluate all these data to produce useful conclusions for everyday clinical practice.
Collapse
Affiliation(s)
- Konstantinos Filis
- First Department of Propedeutic Surgery, Hippocration Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - Costas Tsioufis
- First Cardiology Clinic, Medical School, National and Kapodistrian University of Athens, Hippokration Hospital, Athens, Greece
| | - Argyri Sianou
- Department of Microbiology, Areteion Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | | | - Fragiska Sigala
- First Department of Propedeutic Surgery, Hippocration Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece
| | - George Galyfos
- First Department of Propedeutic Surgery, Hippocration Hospital, National and Kapodistrian University of Athens, School of Medicine, Athens, Greece.
| |
Collapse
|
11
|
Rychter M, Baranowska-Korczyc A, Milanowski B, Jarek M, Maciejewska BM, Coy EL, Lulek J. Cilostazol-Loaded Poly(ε-Caprolactone) Electrospun Drug Delivery System for Cardiovascular Applications. Pharm Res 2018; 35:32. [PMID: 29368067 PMCID: PMC5784006 DOI: 10.1007/s11095-017-2314-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/17/2017] [Indexed: 11/01/2022]
Abstract
PURPOSE The study discusses the value of electrospun cilostazol-loaded (CIL) polymer structures for potential vascular implant applications. METHODS Biodegradable polycaprolactone (PCL) fibers were produced by electrospinning on a rotating drum collector. Three different concentrations of CIL: 6.25%, 12.50% and 18.75% based on the amount of polymer, were incorporated into the fibers. The fibers were characterized by their size, shape and orientation. Materials characterization was carried out by Fourier Transformed Infrared spectroscopy (FTIR), Raman spectroscopy, differential scanning calorimetry (DSC) and X-ray diffraction (XRD). In vitro drug release study was conducted using flow-through cell apparatus (USP 4). RESULTS Three-dimensional structures characterized by fibers diameter ranging from 0.81 to 2.48 μm were in the range required for cardiovascular application. DSC and XRD confirmed the presence of CIL in the electrospun fibers. FTIR and Raman spectra confirmed CIL polymorphic form. Elastic modulus values for PCL and the CIL-loaded PCL fibers were in the range from 0.6 to 1.1 GPa. The in vitro release studies were conducted and revealed drug dissolution in combination with diffusion and polymer relaxation as mechanisms for CIL release from the polymer matrix. CONCLUSIONS The release profile of CIL and nanomechanical properties of all formulations of PCL fibers demonstrate that the cilostazol loaded PCL fibers are an efficient delivery system for vascular implant application.
Collapse
Affiliation(s)
- Marek Rychter
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland.
- NanoBioMedical Center, Adam Mickiewicz University Poznan, Umultowska 85, 61-614, Poznan, Poland.
| | - Anna Baranowska-Korczyc
- NanoBioMedical Center, Adam Mickiewicz University Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Bartłomiej Milanowski
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| | - Marcin Jarek
- NanoBioMedical Center, Adam Mickiewicz University Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Barbara M Maciejewska
- NanoBioMedical Center, Adam Mickiewicz University Poznan, Umultowska 85, 61-614, Poznan, Poland
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614, Poznan, Poland
| | - Emerson L Coy
- NanoBioMedical Center, Adam Mickiewicz University Poznan, Umultowska 85, 61-614, Poznan, Poland
| | - Janina Lulek
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznan, Poland
| |
Collapse
|
12
|
Chen IC, Tseng WK, Li YH, Tseng SY, Liu PY, Chao TH. Effect of cilostazol on plasma levels of proprotein convertase subtilisin/kexin type 9. Oncotarget 2017; 8:108042-108053. [PMID: 29296222 PMCID: PMC5746124 DOI: 10.18632/oncotarget.22448] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 10/28/2017] [Indexed: 12/26/2022] Open
Abstract
The protein complex proprotein convertase subtilisin/kexin type 9 (PCSK9) serves as an important target for the prevention and treatment of atherosclerosis and lipid homeostasis. This study investigated the effect of cilostazol on plasma PCSK9 concentrations. We performed a post hoc analysis of two prospective, double-blind, randomized controlled trials including 115 patients of whom 61 received cilostazol 200 mg/day and 54 received placebo for 12 weeks. Linear regression analysis was performed to determine the associations between several parameters and changes in PCSK9 levels. Use of cilostazol, but not placebo, significantly increased plasma PCSK9 concentrations, high-density lipoprotein cholesterol levels, and number of circulating endothelial progenitor cells (EPCs), and decreased triglyceride levels with a trend toward an increase in total cholesterol (TC) levels. A reduction in hemoglobin A1C and an increase in plasma vascular endothelial growth factor and adiponectin levels with cilostazol treatment were also found. Changes in the number of circulating EPCs were positively correlated and the TC concentrations were inversely correlated with changes in the PCSK9 levels. After adjusting for changes in levels of TC and numbers of circulating EPCs and history of metabolic syndrome, use of cilostazol remained independently associated with changes in plasma PCSK9 levels. In conclusion, cilostazol treatment was significantly and independently associated with an increase in plasma PCSK9 levels in patients with peripheral artery disease or at a high risk of cardiovascular disease regardless of background statin use and caused an improvement in some metabolic disorders and levels of vasculo-angiogenic biomarkers.
Collapse
Affiliation(s)
- I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Wei-Kung Tseng
- Department of Medical Imaging and Radiological Sciences, I-Shou University and Division of Cardiology, Department of Internal Medicine, E-Da Hospital, Kaohsiung, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ping-Yen Liu
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| |
Collapse
|
13
|
Cilostazol Improves Proangiogenesis Functions in Human Early Endothelial Progenitor Cells through the Stromal Cell-Derived Factor System and Hybrid Therapy Provides a Synergistic Effect In Vivo. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3639868. [PMID: 27595100 PMCID: PMC4993925 DOI: 10.1155/2016/3639868] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 06/08/2016] [Indexed: 12/17/2022]
Abstract
This study investigated the effect of cilostazol on proangiogenesis functions in human early endothelial progenitor cells (EPCs) in vitro and the therapeutic implication of hybrid therapy with cilostazol and human early EPCs in vivo. Cilostazol significantly increased colony-forming units and enhanced differentiation of EPCs toward endothelial lineage. Treatments resulted in antiapoptotic effects and stimulated proliferation and migration and in vitro vascular tube formation through activation of stromal cell-derived factor-1 (SDF-1)/C-X-C chemokine receptor type 4 (CXCR4)/phosphatidylinositol-3 kinase (PI3K)/Akt signaling pathway. Blood flow recovery and capillary density in murine ischemic hindlimbs were significantly improved in cilostazol-treated, human early EPCs-treated, and cotreatment groups. The effects were attenuated with SDF-1α inhibition. Plasma SDF-1α levels were significantly higher in 3 active treatment groups after surgery, with greatest effects observed in hybrid therapy. The angiogenic effects of transplanted EPCs pretreated with cilostazol ex vivo were superior to untreated EPCs using in vivo Matrigel assay. Implanted EPCs were incorporated into the capillary, with pretreatment or cotreatment with cilostazol resulting in enhanced effects. Taken together, cilostazol promotes a large number of proangiogenic functions in human early EPCs through activation of SDF-1/CXCR4/PI3K/Akt signaling, and hybrid therapy provides a synergistic effect in vivo. Cotreatment may be beneficial in ischemic disease.
Collapse
|
14
|
Chao TH, Chen IC, Lee CH, Chen JY, Tsai WC, Li YH, Tseng SY, Tsai LM, Tseng WK. Cilostazol Enhances Mobilization of Circulating Endothelial Progenitor Cells and Improves Endothelium-Dependent Function in Patients at High Risk of Cardiovascular Disease. Angiology 2016; 67:638-46. [DOI: 10.1177/0003319715606249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
This is the first study to investigate the vasculoangiogenic effects of cilostazol on endothelial progenitor cells (EPCs) and flow-mediated dilatation (FMD) in patients at high risk of cardiovascular disease (CVD). This double-blind, placebo-controlled study included 71 patients (37 received 200 mg/d cilostazol and 34 received placebo for 12 weeks). Use of cilostazol, but not placebo, significantly increased circulating EPC (kinase insert domain receptor+CD34+) counts (percentage changes: 149.0% [67.9%-497.8%] vs 71.9% [−31.8% to 236.5%], P = .024) and improved triglyceride and high-density lipoprotein cholesterol levels ( P = .002 and P = .003, respectively). Plasma levels of vascular endothelial growth factor (VEGF)-A165 and FMD significantly increased (72.5% [32.9%-120.4%] vs −5.8% [−46.0% to 57.6%], P = .001; 232.8% ± 83.1% vs −46.9% ± 21.5%, P = .003, respectively) in cilostazol-treated patients. Changes in the plasma triglyceride levels significantly inversely correlated with the changes in the VEGF-A165 levels and FMD. Cilostazol significantly enhanced the mobilization of EPCs and improved endothelium-dependent function by modifying some metabolic and angiogenic markers in patients at high risk of CVD.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Cheng-Han Lee
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Ju-Yi Chen
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Wei-Chuan Tsai
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Liang-Miin Tsai
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Wei-Kung Tseng
- Division of Cardiology, Department of Internal Medicine, E-Da University College of Medicine and Hospital, Kaohsiung, Taiwan
| |
Collapse
|
15
|
Hayek SS, MacNamara J, Tahhan AS, Awad M, Yadalam A, Ko YA, Healy S, Hesaroieh I, Ahmed H, Gray B, Sher SS, Ghasemzadeh N, Patel R, Kim J, Waller EK, Quyyumi AA. Circulating Progenitor Cells Identify Peripheral Arterial Disease in Patients With Coronary Artery Disease. Circ Res 2016; 119:564-71. [PMID: 27267067 DOI: 10.1161/circresaha.116.308802] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/03/2016] [Indexed: 01/23/2023]
Abstract
RATIONALE Peripheral arterial disease (PAD) is a clinical manifestation of extracoronary atherosclerosis. Despite sharing the same risk factors, only 20% to 30% of patients with coronary artery disease (CAD) develop PAD. Decline in the number of bone marrow-derived circulating progenitor cells (PCs) is thought to contribute to the pathogenesis of atherosclerosis. Whether specific changes in PCs differentiate patients with both PAD and CAD from those with CAD alone is unknown. OBJECTIVE Determine whether differences exist in PCs counts of CAD patients with and without known PAD. METHODS AND RESULTS 1497 patients (mean age: 65 years; 62% men) with known CAD were identified in the Emory Cardiovascular Biobank. Presence of PAD (n=308) was determined by history, review of medical records, or imaging and was classified as carotid (53%), lower extremity (41%), upper extremity (3%), and aortic disease (33%). Circulating PCs were enumerated by flow cytometry. Patients with CAD and PAD had significantly lower PC counts compared with those with only CAD. In multivariable analysis, a 50% decrease in cluster of differentiation 34 (CD34+) or CD34+/vascular endothelial growth factor receptor-2 (VEGFR2+) counts was associated with a 31% (P=0.032) and 183% (P=0.002) increase in the odds of having PAD, respectively. CD34+ and CD34+/VEGFR2+ counts significantly improved risk prediction metrics for prevalent PAD. Low CD34+/VEGFR2+ counts were associated with a 1.40-fold (95% confidence interval, 1.03-1.91) and a 1.64-fold (95% confidence interval, 1.07-2.50) increases in the risk of mortality and PAD-related events, respectively. CONCLUSIONS PAD is associated with low CD34+ and CD34+/VEGFR2+ PC counts. Whether low PC counts are useful in screening for PAD needs to be investigated.
Collapse
Affiliation(s)
- Salim S Hayek
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - James MacNamara
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Ayman S Tahhan
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Mosaab Awad
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Adithya Yadalam
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Yi-An Ko
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Sean Healy
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Hina Ahmed
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Brandon Gray
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Salman S Sher
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Nima Ghasemzadeh
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Riyaz Patel
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Jinhee Kim
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Edmund K Waller
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- From the Division of Cardiology (S.S.H., M.A., A.Y., S.H., I.H., H.A., B.G., S.S.S., N.G., R.P., A.A.Q.) and Department of Internal Medicine, Emory University School of Medicine, Atlanta, GA (J.M., A.S.T.); and Department of Biostatistics and Bioinformatics (Y.-A.K.) and Department of Hematology and Oncology, Winship Cancer Institute (J.K., E.K.W.), Emory University, Atlanta, GA.
| |
Collapse
|
16
|
Chao TH, Chen IC, Li YH, Lee PT, Tseng SY. Plasma Levels of Proprotein Convertase Subtilisin/Kexin Type 9 Are Elevated in Patients With Peripheral Artery Disease and Associated With Metabolic Disorders and Dysfunction in Circulating Progenitor Cells. J Am Heart Assoc 2016; 5:JAHA.116.003497. [PMID: 27207972 PMCID: PMC4889209 DOI: 10.1161/jaha.116.003497] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Proprotein convertase subtilisin/kexin type 9 (PCSK9) is involved in cholesterol homeostasis, inflammation, and oxidative stress. This study investigated the association of plasma PCSK9 levels with the presence and severity of peripheral artery disease (PAD) and with parameters of endothelial homeostasis. METHODS AND RESULTS A post hoc analysis of 2 randomized trials (115 patients, 44 with PAD and 71 without atherosclerotic disease) was conducted. Patients with PAD had significantly higher plasma PCSK9 levels than those without (471.6±29.6 versus 302.4±16.1 ng/mL, P<0.001). Parameters for glucose homeostasis, endothelial progenitor cell functions, apoptotic circulating endothelial cell counts, and plasma levels of vascular endothelial growth factor-A165 and oxidized low-density lipoprotein were correlated with PCSK9 concentration. By multivariable linear regression analysis, presence of PAD, plasma glucose or hemoglobin A1c levels, apoptotic circulating endothelial cell counts, and vascular endothelial growth factor-A165 concentration were found to be associated with PCSK9 levels after multivariable adjustment. Patients with extensive involvement of PAD or with severe PAD had significantly higher PCSK9 levels than those without PAD. Computed tomographic angiography showed that the numbers of chronic total occlusion sites and vessels involved were positively associated with PCSK9 levels in patients with PAD (r=0.40, P=0.01, and r=0.36, P=0.02, respectively). CONCLUSION PCSK9 levels were significantly higher in patients with PAD, especially those with advanced PAD. Further large-scale studies examining the effect of PCSK9-targeting therapies or the modification of PCSK9 levels on cardiovascular outcomes in this clinical setting are warranted. CLINICAL TRIAL REGISTRATION Cohort 1: URL: ClinicalTrials.gov. Unique identifier: NCT01952756; cohort 2: URL: ClinicalTrials.gov. Unique identifier: NCT02194686.
Collapse
Affiliation(s)
- Ting-Hsing Chao
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - I-Chih Chen
- Department of Internal Medicine, Tainan Municipal Hospital, Tainan, Taiwan
| | - Yi-Heng Li
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Po-Tseng Lee
- Department of Internal Medicine, National Cheng Kung University College of Medicine and Hospital, Tainan, Taiwan
| | - Shih-Ya Tseng
- Department of Biological Science, National Sun Yat-Sen University, Kaohsiung, Taiwan
| |
Collapse
|
17
|
Tseng SY, Chao TH, Li YH, Liu PY, Lee CH, Cho CL, Wu HL, Chen JH. Cilostazol improves high glucose-induced impaired angiogenesis in human endothelial progenitor cells and vascular endothelial cells as well as enhances vasculoangiogenesis in hyperglycemic mice mediated by the adenosine monophosphate-activated protein kinase pathway. J Vasc Surg 2016; 63:1051-62.e3. [DOI: 10.1016/j.jvs.2014.10.103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
|
18
|
Giordano S, Zhao X, Xing D, Hage F, Oparil S, Cooke JP, Lee J, Nakayama KH, Huang NF, Chen YF. Targeted delivery of human iPS-ECs overexpressing IL-8 receptors inhibits neointimal and inflammatory responses to vascular injury in the rat. Am J Physiol Heart Circ Physiol 2016; 310:H705-15. [PMID: 26801304 PMCID: PMC4865064 DOI: 10.1152/ajpheart.00587.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/14/2016] [Indexed: 12/24/2022]
Abstract
Interleukin-8 (IL8) is highly expressed by injured arteries in a variety of diseases and is a chemoattractant for neutrophils which express IL8 receptors IL8RA and RB (IL8RA/B) on their membranes. Neutrophils interact with the damaged endothelium and initiate an inflammatory cascade at the site of injury. We have generated a novel translational targeted cell therapy for acute vascular injury using adenoviral vectors to overexpress IL8RA/B and green fluorescent protein (GFP) on the surface of endothelial cells (ECs) derived from human induced pluripotent stem cells (HiPS-IL8RA/B-ECs). We hypothesize that HiPS-IL8RA/B-ECs transfused intravenously into rats with balloon injury of the carotid artery will target to the injured site and compete with neutrophils, thus inhibiting inflammation and neointima formation. Young adult male Sprague-Dawley rats underwent balloon injury of the right carotid artery and received intravenous transfusion of saline vehicle, 1.5 × 10(6) HiPS-ECs, 1.5 × 10(6) HiPS-Null-ECs, or 1.5 × 10(6) HiPS-IL8RA/B-ECs immediately after endoluminal injury. Tissue distribution of HiPS-IL8RA/B-ECs was analyzed by a novel GFP DNA qPCR method. Cytokine and chemokine expression and leukocyte infiltration were measured in injured and uninjured arteries at 24 h postinjury by ELISA and immunohistochemistry, respectively. Neointimal, medial areas, and reendothelialization were measured 14 days postinjury. HiPS-IL8RA/B-ECs homed to injured arteries, inhibited inflammatory mediator expression and inflammatory cell infiltration, accelerated reendothelialization, and attenuated neointima formation after endoluminal injury while control HiPS-ECs and HiPS-Null-ECs did not. HiPS-IL8RA/B-ECs transfused into rats with endoluminal carotid artery injury target to the injured artery and provide a novel strategy to treat vascular injury.
Collapse
Affiliation(s)
- Samantha Giordano
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xiangmin Zhao
- Department of Pulmonary, Critical Care, Sleep and Allergy, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Daisy Xing
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Fadi Hage
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama; Division of Cardiology, Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Suzanne Oparil
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - John P Cooke
- Houston Methodist Research Institute, Houston, Texas
| | - Jieun Lee
- Division of Cardiovascular Medicine, Stanford University, Stanford, California
| | - Karina H Nakayama
- Cardiovascular Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and
| | - Ngan F Huang
- Cardiovascular Institute, Stanford University, Stanford, California; Veterans Affairs Palo Alto Health Care System, Palo Alto, California; and Department of Cardiothoracic Surgery, Stanford University, Stanford, California
| | - Yiu-Fai Chen
- Vascular Biology and Hypertension Program, Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama;
| |
Collapse
|
19
|
Chong MSK, Ng WK, Chan JKY. Concise Review: Endothelial Progenitor Cells in Regenerative Medicine: Applications and Challenges. Stem Cells Transl Med 2016; 5:530-8. [PMID: 26956207 DOI: 10.5966/sctm.2015-0227] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/07/2015] [Indexed: 02/07/2023] Open
Abstract
UNLABELLED Endothelial progenitor cells (EPCs) are currently being studied as candidate cell sources for revascularization strategies. Significant advances have been made in understanding the biology of EPCs, and preclinical studies have demonstrated the vasculogenic, angiogenic, and beneficial paracrine effects of transplanted EPCs in the treatment of ischemic diseases. Despite these promising results, widespread clinical acceptance of EPCs for clinical therapies remains hampered by several challenges. The present study provides a concise summary of the different EPC populations being studied for ischemic therapies and their known roles in the healing of ischemic tissues. The challenges and issues surrounding the use of EPCs and the current strategies being developed to improve the harvest efficiency and functionality of EPCs for application in regenerative medicine are discussed. SIGNIFICANCE Endothelial progenitor cells (EPCs) have immense clinical value for cardiovascular therapies. The present study provides a concise description of the EPC subpopulations being evaluated for clinical applications. The current major lines of investigation involving preclinical and clinical evaluations of EPCs are discussed, and significant gaps limiting the translation of EPCs are highlighted. The present report could be useful for clinicians and clinical researchers with interests in ischemic therapy and for basic scientists working in the related fields of tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Mark Seow Khoon Chong
- School of Chemical and Biochemical Engineering, Nanyang Technological University, Singapore
| | - Wei Kai Ng
- School of Chemical and Biochemical Engineering, Nanyang Technological University, Singapore
| | - Jerry Kok Yen Chan
- Department of Reproductive Medicine, KK Women's and Children's Hospital, Singapore Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore Department of Obstetrics and Gynaecology, National University of Singapore, Singapore
| |
Collapse
|
20
|
Altabas V, Altabas K, Kirigin L. Endothelial progenitor cells (EPCs) in ageing and age-related diseases: How currently available treatment modalities affect EPC biology, atherosclerosis, and cardiovascular outcomes. Mech Ageing Dev 2016; 159:49-62. [PMID: 26919825 DOI: 10.1016/j.mad.2016.02.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 01/25/2016] [Accepted: 02/22/2016] [Indexed: 12/15/2022]
Abstract
Endothelial progenitor cells (EPCs) are mononuclear cells that circulate in the blood and are derived from different tissues, expressing cell surface markers that are similar to mature endothelial cells. The discovery of EPCs has lead to new insights in vascular repair and atherosclerosis and also a new theory for ageing. EPCs from the bone marrow and some other organs aid in vascular repair by migrating to distant vessels where they differentiate into mature endothelial cells and replace old and injured endothelial cells. The ability of EPCs to repair vascular damage depends on their number and functionality. Currently marketed drugs used in a variety of diseases can modulate these characteristics. In this review, the effect of currently available treatment options for cardiovascular and metabolic disorders on EPC biology will be discussed. The various EPC-based therapies that will be discussed include lipid-lowering agents, antihypertensive agents, antidiabetic drugs, phosphodiesteraze inhibitors, hormones, as well as EPC capturing stents.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Karmela Altabas
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| | - Lora Kirigin
- Department of Internal Medicine, University Clinical Hospital "Sestre milosrdnice", Zagreb, Croatia.
| |
Collapse
|
21
|
Iftikhar O, Oliveros K, Tafur AJ, Casanegra AI. Prevention of Femoropopliteal In-Stent Restenosis With Cilostazol. Angiology 2015; 67:549-55. [DOI: 10.1177/0003319715604768] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Severe peripheral artery disease requires revascularization to relieve life-limiting ischemic symptoms. Postrevascularization in-stent restenosis continues to be a problem after femoropopliteal procedures. Our aim was to evaluate the use of cilostazol to prevent in-stent restenosis among patients with lower extremity arterial stenting. We performed a MEDLINE and EMBASE search and reviewed the abstracts and manuscripts following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement. The primary efficacy outcome was patency rate after stenting. The odds ratio estimates were pooled using the Mantel–Haenszel random-effects method. We identified 524 studies, and 20 articles were fully abstracted and 4 were included in the meta-analysis. The total number of patients included was 2434. Patients in the cilostazol group had better primary patency rates after endovascular stenting than those not taking cilostazol (odds ratio: 0.55; 95% confidence interval: 0.43-0.71). The use of cilostazol appears to prevent in-stent restenosis of high-risk patients.
Collapse
Affiliation(s)
- Omer Iftikhar
- Department of Internal Medicine, University of Oklahoma Health Sciences Center and Department of Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Karla Oliveros
- Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Alfonso J. Tafur
- Vascular Medicine, Cardiovascular Institute, NorthShore University HealthSystem, Evanston, IL, USA
| | - Ana I. Casanegra
- Cardiovascular Medicine Section, Department of Internal Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|