1
|
Heuer RM, Falagan-Lotsch P, Okutsu J, Deperalto M, Koop RR, Umeh OG, Guevara GA, Noor MI, Covington MA, Shelton DS. Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). Cardiovasc Toxicol 2024; 24:1287-1300. [PMID: 39212842 PMCID: PMC11445284 DOI: 10.1007/s12012-024-09910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, are risk factors for cardiovascular diseases. Given that human exposure to Cd is increasing, there is a need for therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in zebrafish larvae in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to 2.5 and 5 μg/L Cd. We found that a 50 µg/L Se pre-treatment before 2.5 μg/L Cd, but not 5 μg/L Cd, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Zebrafish exposed to 10 and 50 μg/L of Se for up to 4 days showed typical heart morphology, whereas other Se-exposed and control fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentrations and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.
Collapse
Affiliation(s)
- Rachael M Heuer
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Priscila Falagan-Lotsch
- Department of Biological Sciences, Auburn University, Rouse Life Sciences Building, Auburn, AL, 36849, USA
| | - Jessica Okutsu
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Madison Deperalto
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Rebekka R Koop
- Department of Marine Biology and Ecology, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, FL, 33149, USA
| | - Olaedo G Umeh
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Gabriella A Guevara
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Md Imran Noor
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Myles A Covington
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA
| | - Delia S Shelton
- Department of Biology, University of Miami, 1301 Memorial Dr., Coral Gables, FL, 33134, USA.
| |
Collapse
|
2
|
Heuer RM, Falagan-Lotsch P, Okutsu J, Deperalto M, Koop RR, Umeh OG, Guevara GA, Noor MI, Covington MA, Shelton DS. Therapeutic Efficacy of Selenium Pre-treatment in Mitigating Cadmium-Induced Cardiotoxicity in Zebrafish (Danio rerio). RESEARCH SQUARE 2024:rs.3.rs-4583781. [PMID: 39011097 PMCID: PMC11247922 DOI: 10.21203/rs.3.rs-4583781/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Cardiovascular diseases are a rampant public health threat. Environmental contaminants, such as Cadmium (Cd), a toxic metal, have been linked to increased risk for cardiovascular diseases. Given that human exposure to Cd is increasing overtime, there is a need to develop new therapies to ameliorate Cd toxicity. Selenium (Se), an essential trace element, has been proposed to rescue the effects of Cd toxicity, with mixed effects. Se's narrow therapeutic window necessitates precise dosing to avoid toxicity. Here, we assessed the effects of various waterborne Cd and Se concentrations and sequences on cardiac function using zebrafish (Danio rerio). We showed that Cd induced pericardial edemas and modified heart rates in a concentration-dependent manner. To identify the therapeutic range of Se for Cd-induced cardiotoxicity, zebrafish embryos were treated with 0, 10, 50, 100, 150, or 200 μg/L Se for 1-4 days prior to exposure to Cd at 2.5, and 5 μg/L. We found that a 50 μg/L Se pre-treatment prior to Cd at 2.5 μg/L, but not at 5 μg/L, reduced the prevalence of pericardial edemas and ameliorated Cd-induced bradycardia in zebrafish. Embryos exposed to 10 and 50 μg/L of Se showed typical heart morphology, whereas other Se-exposed and Se-deficient fish presented pericardial edemas. Longer Se pre-treatment durations led to fewer incidences of pericardial edemas. Overall, this study highlights the importance of optimizing Se concentration and pre-treatment periods to harness its protective effects against Cd-induced cardiotoxicity. These findings provide insights into potential therapeutic strategies for reducing Cd-related cardiovascular damage in humans.
Collapse
|
3
|
Panchal SK, Ghattamaneni NKR, Magnusson M, Cole A, Roberts D, Neveux N, Brown L, Paul NA. Freshwater Macroalgae, Oedogonium, Grown in Wastewater Reduce Diet-Induced Metabolic Syndrome in Rats. Int J Mol Sci 2022; 23:ijms232213811. [PMID: 36430290 PMCID: PMC9695597 DOI: 10.3390/ijms232213811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 11/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022] Open
Abstract
Macroalgae produce compounds with industrial, pharmaceutical and nutritional applications. In this study, biomass from the freshwater macroalgal genus Oedogonium was grown in either treated municipal wastewater (M) or ash dam water from a coal-fired power station (D). The biomass was investigated for its metabolic responses in high-carbohydrate, high-fat diet-fed rats, a model of human metabolic syndrome. The Oedogonium biomass cultured in M contained higher amounts of K, Mg, omega-3 polyunsaturated fatty acids (PUFA), insoluble fibre and β-carotene, while biomass grown in D contained higher amounts of Al, Fe, V, Zn, Mn and As. Biomass from M further increased body weight and inflammation in the heart and colon in high-carbohydrate, high-fat diet-fed rats. In contrast, biomass from D prevented changes in metabolic, cardiovascular and liver parameters without changing tissue histology. We suggest that increased intake of metals and metalloids through macroalgal biomass from D may decrease abdominal fat deposition while polysaccharides, PUFA and carotenoids from M may improve blood glucose responses in an obesogenic diet. Thus, macroalgal biomass grown in different wastewater sources could be acceptable for feed or food applications. This biomass could even provide potential health benefits in diet-induced metabolic syndrome.
Collapse
Affiliation(s)
- Sunil K. Panchal
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Science, Western Sydney University, Richmond, NSW 2753, Australia
- Correspondence: ; Tel.: +61-2-4570-1932
| | - Naga K. R. Ghattamaneni
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
| | - Marie Magnusson
- Te Aka Mātuatua—School of Science, University of Waikato, Tauranga 3112, New Zealand
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Andrew Cole
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - David Roberts
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Nicolas Neveux
- College of Marine & Environmental Sciences, James Cook University, Townsville, QLD 4811, Australia
- Pacific Biotechnologies Australia Pty Ltd., James Cook University, Townsville, QLD 4811, Australia
| | - Lindsay Brown
- Functional Foods Research Group, University of Southern Queensland, Toowoomba, QLD 4350, Australia
- School of Pharmacy and Medical Science, Griffith University, Gold Coast, QLD 4222, Australia
| | - Nicholas A. Paul
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| |
Collapse
|
4
|
Bomer N, Pavez-Giani MG, Grote Beverborg N, Cleland JGF, van Veldhuisen DJ, van der Meer P. Micronutrient deficiencies in heart failure: Mitochondrial dysfunction as a common pathophysiological mechanism? J Intern Med 2022; 291:713-731. [PMID: 35137472 PMCID: PMC9303299 DOI: 10.1111/joim.13456] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Heart failure is a devastating clinical syndrome, but current therapies are unable to abolish the disease burden. New strategies to treat or prevent heart failure are urgently needed. Over the past decades, a clear relationship has been established between poor cardiac performance and metabolic perturbations, including deficits in substrate uptake and utilization, reduction in mitochondrial oxidative phosphorylation and excessive reactive oxygen species production. Together, these perturbations result in progressive depletion of cardiac adenosine triphosphate (ATP) and cardiac energy deprivation. Increasing the delivery of energy substrates (e.g., fatty acids, glucose, ketones) to the mitochondria will be worthless if the mitochondria are unable to turn these energy substrates into fuel. Micronutrients (including coenzyme Q10, zinc, copper, selenium and iron) are required to efficiently convert macronutrients to ATP. However, up to 50% of patients with heart failure are deficient in one or more micronutrients in cross-sectional studies. Micronutrient deficiency has a high impact on mitochondrial energy production and should be considered an additional factor in the heart failure equation, moving our view of the failing myocardium away from an "an engine out of fuel" to "a defective engine on a path to self-destruction." This summary of evidence suggests that supplementation with micronutrients-preferably as a package rather than singly-might be a potential therapeutic strategy in the treatment of heart failure patients.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Mario G Pavez-Giani
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - John G F Cleland
- Robertson Centre for Biostatistics and Clinical Trials, University of Glasgow, Glasgow, UK.,National Heart & Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, UK
| | - Dirk J van Veldhuisen
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Yang L, Qi M, Du X, Xia Z, Fu G, Chen X, Liu Q, Sun N, Shi C, Zhang R. Selenium concentration is associated with occurrence and diagnosis of three cardiovascular diseases: A systematic review and meta-analysis. J Trace Elem Med Biol 2022; 70:126908. [PMID: 34902677 DOI: 10.1016/j.jtemb.2021.126908] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 10/29/2021] [Accepted: 12/06/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Selenium (Se) is a vital trace element playing its biological functions through selenoprotein, which has been implicated in various physiological and pathological processes. A growing number of studies indicate that low Se increases the risk of cardiovascular diseases (CVDs). This meta-analysis aimed to compare and analyze differences in Se levels between patients with heart failure (HF), myocardial infarction (MI), coronary heart disease (CHD), and healthy people. This will provide ideas with the potential to improve clinical intervention and prevention of CVDs. METHODS The PubMed, Embase, Chinese National Knowledge Infrastructure (CNKI) and Chinese Biomedical databases were systematically searched for relevant publications until November 20, 2020. The following combination keywords were used: "(heart failure disease OR myocardial infarction OR coronary heart disease) AND (selenium OR Se)". The identified studies were screened against inclusion and exclusion criteria and extracted data were analyzed using RevMan5.3 and State 16.0 software. RESULTS A total of 49 eligible studies (including 61 cohorts) were obtained. Results of the meta-analysis showed that there was a significant difference in Se levels between HF, MI, CHD patients and healthy people. The standard mean difference (SMD) level of Se in HF patients [SMD = -0.98, 95 % CI (-1.34, -0.62)], MI patients [MI: SMD = -3.46, 95 % CI (-4.43, -2.85)], and CHD patients [CHD: SMD = -0.47, 95 % CI (-0.64, -0.28)] were all significantly lower compared to healthy controls. Analysis of the correlation between Se level and publication year showed that SMD of Se levels in HF and controls was positively correlated with time. Se level was found to be a good diagnostic marker of MI (AUC = 0.7107, P = 0.0167, Sensitivity = 77.27 %, Specificity = 72.73 %). CONCLUSIONS This meta-analysis shows that Se levels in patients with HF, MI, and CHD are generally lower compared with healthy controls. However, due to the small number of included studies, further studies are needed to confirm the present results.
Collapse
Affiliation(s)
- Liu Yang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Meng Qi
- Ankang R&D Center of Se-enriched Products, Ankang, 725000, PR China
| | - Xiaoping Du
- Ankang R&D Center of Se-enriched Products, Ankang, 725000, PR China
| | - Zengrun Xia
- Ankang R&D Center of Se-enriched Products, Ankang, 725000, PR China
| | - Guotao Fu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Xueqin Chen
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Qiling Liu
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Na Sun
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Chuandao Shi
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, 712046, PR China.
| |
Collapse
|
6
|
Tang C, Li S, Zhang K, Li J, Han Y, Zhao Q, Guo X, Qin Y, Yin J, Zhang J. Selenium Deficiency Induces Pathological Cardiac Lipid Metabolic Remodeling and Inflammation. Mol Nutr Food Res 2021; 66:e2100644. [PMID: 34932259 DOI: 10.1002/mnfr.202100644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 12/09/2021] [Indexed: 11/10/2022]
Abstract
SCOPE Selenium (Se) disequilibrium is closely involved in many cardiac diseases, although its in vivo mechanism remains uncertain. Therefore, a pig model was created in order to generate a comprehensive picture of cardiac response to dietary Se deficiency. METHODS AND RESULTS A total of 24 pigs were divided into two equal groups, which were fed a diet with either 0.007 mg/kg Se or 0.3 mg/kg Se for 16 weeks. Se deficiency caused cardiac oxidative stress by blocking glutathione and thioredoxin systems and increased thioredoxin domain-containing protein S-nitrosylation. Energy production was disordered as free fatty acids were overloaded, the tricarboxylic acid cycle was strengthened, and three respiratory chain proteins enhanced S-nitrosylation. Excess free fatty acids led to increased synthesis of diacylglycerol, phosphatidylcholine, and phosphatidylethanolamine, where the latter two are vulnerable to oxidation and caused an increase in malondialdehyde. Moreover, increased palmitic acid enhanced de novo ceramide synthesis and accumulation. Additionally, Se deficiency initiated inflammation via cytosolic DNA-sensing pathways, which activated downstream interferon regulatory factor 7 and nuclear factor kappa B. CONCLUSIONS The present study identified a lipid metabolic vulnerability and inflammation initiation pathways via Se deficiency, which may provide targets for human redox imbalance-induced cardiac disease treatment. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuang Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Kai Zhang
- College of Animal Science and Technology of Qingdao Agricultural University, Qingdao, 266109, China
| | - Jing Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Han
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Qingyu Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Xiaoqing Guo
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yuchang Qin
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jingdong Yin
- College of Animal Science and Technology of China Agricultural University, Beijing, 100193, China
| | - Junmin Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China.,Scientific Observing and Experiment Station of Animal Genetic Resources and Nutrition in North China of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences of Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| |
Collapse
|
7
|
Martins WK, Silva MDND, Pandey K, Maejima I, Ramalho E, Olivon VC, Diniz SN, Grasso D. Autophagy-targeted therapy to modulate age-related diseases: Success, pitfalls, and new directions. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100033. [PMID: 34909664 PMCID: PMC8663935 DOI: 10.1016/j.crphar.2021.100033] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 04/15/2021] [Accepted: 05/02/2021] [Indexed: 02/08/2023] Open
Abstract
Autophagy is a critical metabolic process that supports homeostasis at a basal level and is dynamically regulated in response to various physiological and pathological processes. Autophagy has some etiologic implications that support certain pathological processes due to alterations in the lysosomal-degradative pathway. Some of the conditions related to autophagy play key roles in highly relevant human diseases, e.g., cardiovascular diseases (15.5%), malignant and other neoplasms (9.4%), and neurodegenerative conditions (3.7%). Despite advances in the discovery of new strategies to treat these age-related diseases, autophagy has emerged as a therapeutic option after preclinical and clinical studies. Here, we discuss the pitfalls and success in regulating autophagy initiation and its lysosome-dependent pathway to restore its homeostatic role and mediate therapeutic effects for cancer, neurodegenerative, and cardiac diseases. The main challenge for the development of autophagy regulators for clinical application is the lack of specificity of the repurposed drugs, due to the low pharmacological uniqueness of their target, including those that target the PI3K/AKT/mTOR and AMPK pathway. Then, future efforts must be conducted to deal with this scenery, including the disclosure of key components in the autophagy machinery that may intervene in its therapeutic regulation. Among all efforts, those focusing on the development of novel allosteric inhibitors against autophagy inducers, as well as those targeting autolysosomal function, and their integration into therapeutic regimens should remain a priority for the field.
Collapse
Affiliation(s)
- Waleska Kerllen Martins
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Maryana do Nascimento da Silva
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Kiran Pandey
- Center for Neural Science, New York University, Meyer Building, Room 823, 4 Washington Place, New York, NY, 10003, USA
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, 3-39-15 Showa Machi, Maebashi, Gunma, 3718512, Japan
| | - Ercília Ramalho
- Laboratory of Cell and Membrane (LCM), Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Vania Claudia Olivon
- Laboratory of Pharmacology and Physiology, UNIDERP, Av. Ceará, 333. Vila Miguel Couto, Campo Grande, MS, 79003-010, Brazil
| | - Susana Nogueira Diniz
- Laboratory of Molecular Biology and Functional Genomics, Anhanguera University of São Paulo (UNIAN), Rua Raimundo Pereira de Magalhães, 3,305. Pirituba, São Paulo, 05145-200, Brazil
| | - Daniel Grasso
- Instituto de Estudios de la Inmunidad Humoral (IDEHU), Universidad de Buenos Aires, CONICET, Junín 954 p4, Buenos Aires, C1113AAD, Argentina
| |
Collapse
|
8
|
Al-Mubarak AA, van der Meer P, Bomer N. Selenium, Selenoproteins, and Heart Failure: Current Knowledge and Future Perspective. Curr Heart Fail Rep 2021; 18:122-131. [PMID: 33835398 PMCID: PMC8163712 DOI: 10.1007/s11897-021-00511-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW (Mal-)nutrition of micronutrients, like selenium, has great impact on the human heart and improper micronutrient intake was observed in 30-50% of patients with heart failure. Low selenium levels have been reported in Europe and Asia and thought to be causal for Keshan disease. Selenium is an essential micronutrient that is needed for enzymatic activity of the 25 so-called selenoproteins, which have a broad range of activities. In this review, we aim to summarize the current evidence about selenium in heart failure and to provide insights about the potential mechanisms that can be modulated by selenoproteins. RECENT FINDINGS Suboptimal selenium levels (<100 μg/L) are prevalent in more than 70% of patients with heart failure and were associated with lower exercise capacity, lower quality of life, and worse prognosis. Small clinical trials assessing selenium supplementation in patients with HF showed improvement of clinical symptoms (NYHA class), left ventricular ejection fraction, and lipid profile, while governmental interventional programs in endemic areas have significantly decreased the incidence of Keshan disease. In addition, several selenoproteins are found impaired in suboptimal selenium conditions, potentially aggravating underlying mechanisms like oxidative stress, inflammation, and thyroid hormone insufficiency. While the current evidence is not sufficient to advocate selenium supplementation in patients with heart failure, there is a clear need for high level evidence to show whether treatment with selenium has a place in the contemporary treatment of patients with HF to improve meaningful clinical endpoints. Graphical summary summarizing the potential beneficial effects of the various selenoproteins, locally in cardiac tissues and systemically in the rest of the body. In short, several selenoproteins contribute in protecting the integrity of the mitochondria. By doing so, they contribute indirectly to reducing the oxidative stress as well as improving the functionality of immune cells, which are in particular vulnerable to oxidative stress. Several other selenoproteins are directly involved in antioxidative pathways, next to excreting anti-inflammatory effects. Similarly, some selenoproteins are located in the endoplasmic reticulum, playing roles in protein folding. With exception of the protection of the mitochondria and the reduction of oxidative stress, other effects are not yet investigated in cardiac tissues. The systemic effects of selenoproteins might not be limited to these mechanisms, but also may include modulation of endothelial function, protection skeletal muscles, in addition to thyroid metabolism. ABBREVIATIONS DIO, iodothyronine deiodinase; GPx, glutathione peroxidase; MsrB2, methionine-R-sulfoxide reductase B2; SELENOK, selenoprotein K; SELENON, selenoprotein N; SELENOP, selenoprotein P; SELENOS, selenoprotein S; SELENOT, selenoprotein T; TXNRD, thioredoxin reductase.
Collapse
Affiliation(s)
- Ali A Al-Mubarak
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nils Bomer
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
- Department of Experimental Cardiology, University Medical Center Groningen, UMCG Post-zone AB43, P.O. Box 30.001, 9700, RB, Groningen, The Netherlands.
| |
Collapse
|
9
|
Bistola V, Filippatos G. Vitamin B 12 deficiency in heart failure: another "brick in the wall". Hellenic J Cardiol 2020; 61:338-340. [PMID: 33166652 DOI: 10.1016/j.hjc.2020.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Vasiliki Bistola
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Gerasimos Filippatos
- Heart Failure Unit, Department of Cardiology, Attikon University Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
10
|
Abstract
The management of heart failure has changed significantly over the last 30 years, leading to improvements in the quality of life and outcomes, at least for patients with a substantially reduced left ventricular ejection fraction (HFrEF). This has been made possible by the identification of various pathways leading to the development and progression of heart failure, which have been successfully targeted with effective therapies. Meanwhile, many other potential targets of treatment have been identified, and the list is constantly expanding. In this review, we summarise planned and ongoing trials exploring the potential benefit, or harm, of old and new pharmacological interventions that might offer further improvements in treatment for those with HFrEF and extend success to the treatment of patients with heart failure with preserved left ventricular ejection fraction (HFpEF) and other heart failure phenotypes.
Collapse
Affiliation(s)
- Pierpaolo Pellicori
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK.
| | - Muhammad Javed Iqbal Khan
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - Fraser John Graham
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
| | - John G F Cleland
- Robertson Institute of Biostatistics and Clinical Trials Unit, University of Glasgow, University Avenue, Glasgow, G12 8QQ, UK
- National Heart & Lung Institute and National Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton & Harefield Hospitals, Imperial College, London, UK
| |
Collapse
|
11
|
Sodium Selenate Ameliorates Cardiac Injury Developed from High-Fat Diet in Mice through Regulation of Autophagy Activity. Sci Rep 2019; 9:18752. [PMID: 31822702 PMCID: PMC6904559 DOI: 10.1038/s41598-019-54985-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023] Open
Abstract
Obesity is often accompanied by dyslipidemia, high blood glucose, hypertension, atherosclerosis, and myocardial dysfunction. Selenate is a vital antioxidant in the cardiovascular system. The beneficial effects of selenate on obesity-associated cardiac dysfunction and potential molecular mechanism were identified in both H9C2 cells and C57BL/6J mice hearts. The cardiac histological preformation in C57BL/6J mice were evaluated by cross-sectional area (CSA) of cardiomyocytes and percent area of fibrosis in the left ventricles. The cardiac autophagy flux in H9C2 cells and C57BL/6J mice hearts was analyzed by Western blots and the number of autophagosomes and autolysosome in H9C2 cells. In the present study, we found that lipid overload caused increases in serum lipid, CSA, and percent area of fibrosis. We further found that lipid-induced accumulation of autophagosomes was due to depressed autophagy degradation, which was not restored in the pretreatment with 3-methyladenine and chloroquine, whereas, it was improved by rapamycin. Moreover, we demonstrated that increased levels of serum lipid, CSA, percent area of fibrosis and mRNA expression related to cardiomyocytes hypertrophy and fibrosis were significantly reduced after selenate treatments of mice. We also found selenate treatment significantly down-regulated activity of the Akt pathway, which was activated in response to lipid-overload. Furthermore, selenate dramatically improved cardiac autophagic degradation which was suppressed after exposure to lipid-overload in both H9C2 cells and C57BL/6J mice hearts. Taken together, selenate offers therapeutic intervention in lipid-related metabolic disorders, and protection against cardiac remodeling, likely through regulation of the activity of autophagic degradation and Akt pathway.
Collapse
|
12
|
Bomer N, Grote Beverborg N, Hoes MF, Streng KW, Vermeer M, Dokter MM, IJmker J, Anker SD, Cleland JGF, Hillege HL, Lang CC, Ng LL, Samani NJ, Tromp J, van Veldhuisen DJ, Touw DJ, Voors AA, van der Meer P. Selenium and outcome in heart failure. Eur J Heart Fail 2019; 22:1415-1423. [PMID: 31808274 PMCID: PMC7540257 DOI: 10.1002/ejhf.1644] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 08/09/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
Aims Severe deficiency of the essential trace element selenium can cause myocardial dysfunction although the mechanism at cellular level is uncertain. Whether, in clinical practice, moderate selenium deficiency is associated with worse symptoms and outcome in patients with heart failure is unknown. Methods and results BIOSTAT‐CHF is a multinational, prospective, observational cohort study that enrolled patients with worsening heart failure. Serum concentrations of selenium were measured by inductively coupled plasma mass spectrometry. Primary endpoint was a composite of all‐cause mortality and hospitalization for heart failure; secondary endpoint was all‐cause mortality. To investigate potential mechanisms by which selenium deficiency might affect prognosis, human cardiomyocytes were cultured in absence of selenium, and mitochondrial function and oxidative stress were assessed. Serum selenium concentration (deficiency) was <70 μg/L in 485 (20.4%) patients, who were older, more often women, had worse New York Heart Association class, more severe signs and symptoms of heart failure and poorer exercise capacity (6‐min walking test) and quality of life (Kansas City Cardiomyopathy Questionnaire). Selenium deficiency was associated with higher rates of the primary endpoint [hazard ratio (HR) 1.23; 95% confidence interval (CI) 1.06–1.42] and all‐cause mortality (HR 1.52; 95% CI 1.26–1.86). In cultured human cardiomyocytes, selenium deprivation impaired mitochondrial function and oxidative phosphorylation, and increased intracellular reactive oxygen species levels. Conclusions Selenium deficiency in heart failure patients is independently associated with impaired exercise tolerance and a 50% higher mortality rate, and impaired mitochondrial function in vitro, in human cardiomyocytes. Clinical trials are needed to investigate the effect of selenium supplements in patients with heart failure, especially if they have low plasma concentrations of selenium.
Collapse
Affiliation(s)
- Nils Bomer
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Niels Grote Beverborg
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn F Hoes
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Koen W Streng
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Mathilde Vermeer
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martin M Dokter
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan IJmker
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Stefan D Anker
- BIOSTAT-CHF.,Innovative Clinical Trials, Department of Cardiology and Pneumology, University Medical Centre Göttingen (UMG), Göttingen, Germany
| | - John G F Cleland
- BIOSTAT-CHF.,National Heart & Lung Institute, Royal Brompton and Harefield Hospitals, Imperial College, London, and University of Hull, Kingston-upon-Hull, UK
| | - Hans L Hillege
- BIOSTAT-CHF.,Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Chim C Lang
- BIOSTAT-CHF.,School of Medicine Centre for Cardiovascular and Lung Biology, Division of Medical Sciences, University of Dundee, Ninewells Hospital & Medical School, Dundee, UK
| | - Leong L Ng
- BIOSTAT-CHF.,Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J Samani
- BIOSTAT-CHF.,Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Jasper Tromp
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,National Heart Centre Singapore, Singapore
| | - Dirk J van Veldhuisen
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,BIOSTAT-CHF.,Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Daan J Touw
- Department of Clinical Pharmacy and Pharmacology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Adriaan A Voors
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,BIOSTAT-CHF.,Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter van der Meer
- Department of Experimental Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Cardiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
13
|
Mohammadifard N, Humphries KH, Gotay C, Mena-Sánchez G, Salas-Salvadó J, Esmaillzadeh A, Ignaszewski A, Sarrafzadegan N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit Rev Food Sci Nutr 2017; 59:1334-1346. [PMID: 29236516 DOI: 10.1080/10408398.2017.1406332] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Minerals play a major role in regulating cardiovascular function. Imbalances in electrolyte minerals are frequent and potentially hazardous occurrences that may lead to the development of cardiovascular diseases (CVDs). Transition metals, such as iron, zinc, copper and selenium, play a major role in cell metabolism. However, there is controversy over the effects of dietary and supplemental intake of these metals on cardiovascular risk factors and events. Since their pro-oxidant or antioxidant functions can have different effects on cardiovascular health. While deficiency of these trace elements can cause cardiovascular dysfunction, several studies have also shown a positive association between metal serum levels and cardiovascular risk factors and events. Thus, a J- or U-shaped relationship between the transition minerals and cardiovascular events has been proposed. Given the existing controversies, large, well-designed, long-term, randomized clinical trials are required to better examine the effects of trace mineral intake on cardiovascular events and all-cause mortality in the general population. In this review, we discuss the role of dietary and/or supplemental iron, copper, zinc, and selenium on cardiovascular health. We will also clarify their clinical applications, benefits, and harms in CVDs prevention.
Collapse
Affiliation(s)
- Noushin Mohammadifard
- a Hypertension Research Center , Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran.,b Interventional Cardiology Research Center , Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Karin H Humphries
- c Women's Cardiovascular Health , Department of Medicine, The University of British Columbia , Vancouver , Canada
| | - Carolyn Gotay
- d Centre of Excellence in Cancer Prevention, Faculty of Medicine, School of Population and Public Health, The University of British Columbia , Vancouver , Canada
| | - Guillermo Mena-Sánchez
- e Human Nutrition Unit , Department of Biochemistry & Biotechnology , IISPV, School of Medicine, Rovira i Virgili University, and CIBER Obesity and Nutrition , Reus , Spain
| | - Jordi Salas-Salvadó
- e Human Nutrition Unit , Department of Biochemistry & Biotechnology , IISPV, School of Medicine, Rovira i Virgili University, and CIBER Obesity and Nutrition , Reus , Spain
| | - Ahmad Esmaillzadeh
- f Obesity and Eating Habits Research Center , Endocrinology and Metabolism Molecular, Cellular Sciences Institute, Tehran University of Medical Sciences , Tehran , Iran.,g Department of Community Nutrition , School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences , Tehran , Iran.,h Department of Community Nutrition , School of Nutrition and Food Science, Isfahan University of Medical Sciences , Isfahan , Iran
| | - Andrew Ignaszewski
- i Division of Cardiology, Faculty of Medicine, The University of British Columbia , Vancouver , Canada
| | - Nizal Sarrafzadegan
- j Isfahan Cardiovascular Research Center , Cardiovascular Research Institute, Isfahan University of Medical Sciences , Isfahan , Iran
| |
Collapse
|
14
|
Yang J, Hamid S, Liu Q, Cai J, Xu S, Zhang Z. Gene expression of selenoproteins can be regulated by thioredoxin(Txn) silence in chicken cardiomyocytes. J Inorg Biochem 2017; 177:118-126. [PMID: 28957736 DOI: 10.1016/j.jinorgbio.2017.08.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2017] [Revised: 08/28/2017] [Accepted: 08/30/2017] [Indexed: 02/06/2023]
Abstract
Thioredoxin (Txn) system is the most crucial antioxidant defense mechanism in myocardium. The aim of this study was to clarify the effect of Txn low expression on 25 selenoproteins in chicken cardiomyocytes. We developed a Se-deficient model (0.033mg/kg) and Txn knock down cardiomyocytes model (siRNA) studies. Western Blot, Quantitative Real-time PCR (qPCR) were performed, and correlation analysis, heat map were used for further analysis. Both low expression of Txn models are significantly decreased (P<0.05) the mRNA levels of Deiodinase 1, 2 (Dio 1, 2), Glutathione Peroxidase 1, 2, 3, 4 (Gpx 1, 2, 3, 4), Thioredoxin Reductase 1, 2, 3 (TR 1, 2, 3), Selenoprotein t (Selt), Selenoprotein w (Selw), Selenoprotein k (Selk), selenoprotein x1 (Sepx1), and significantly increased (P<0.05) the mRNA levels of the rest of selenoproteins. Correlation analysis showed that Deiodinase 3 (Dio 3), Selenoprotein m (Selm), 15-kDa Selenoprotein (Selp15), Selenoprotein h (Selh), Selenoprotein u (Selu), Selenoprotein i (Seli), Selenoprotein n (Seln), Selenoprotein p1 (Sepp1), Selenoprotein o (Selo), Selenoprotein s (Sels), Selenoprotein synthetase 2 (Sels2) and Selenoprotein p (Selp) had a negative correlation with Txn, while the rest of selenoproteins had a positive correlation with Txn. Combined in vivo and in vitro we can know that hamper Txn expression can inhibit Gpx 1, 2, 3, 4, TR 1, 2, 3, Dio 1, 2, Selt, Selw, Selk, Sepx1, meanwhile, over expression the rest of selenoproteins. In conclusion, the different selenoproteins possess and exhibit distinct responses to silence of Txn in chicken cardiomyocytes.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sattar Hamid
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
15
|
Panchal SK, Wanyonyi S, Brown L. Selenium, Vanadium, and Chromium as Micronutrients to Improve Metabolic Syndrome. Curr Hypertens Rep 2017; 19:10. [PMID: 28197835 DOI: 10.1007/s11906-017-0701-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Trace metals play an important role in the proper functioning of carbohydrate and lipid metabolism. Some of the trace metals are thus essential for maintaining homeostasis, while deficiency of these trace metals can cause disorders with metabolic and physiological imbalances. This article concentrates on three trace metals (selenium, vanadium, and chromium) that may play crucial roles in controlling blood glucose concentrations possibly through their insulin-mimetic effects. For these trace metals, the level of evidence available for their health effects as supplements is weak. Thus, their potential is not fully exploited for the target of metabolic syndrome, a constellation that increases the risk for cardiovascular disease and type 2 diabetes. Given that the prevalence of metabolic syndrome is increasing throughout the world, a simpler option of interventions with food supplemented with well-studied trace metals could serve as an answer to this problem. The oxidation state and coordination chemistry play crucial roles in defining the responses to these trace metals, so further research is warranted to understand fully their metabolic and cardiovascular effects in human metabolic syndrome.
Collapse
Affiliation(s)
- Sunil K Panchal
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
| | - Stephen Wanyonyi
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia
| | - Lindsay Brown
- Institute for Agriculture and the Environment, University of Southern Queensland, QLD, Toowoomba, 4350, Australia.
- School of Health and Wellbeing, University of Southern Queensland, QLD, Toowoomba, 4350, Australia.
| |
Collapse
|
16
|
Yang J, Zhang Y, Hamid S, Cai J, Liu Q, Li H, Zhao R, Wang H, Xu S, Zhang Z. Interplay between autophagy and apoptosis in selenium deficient cardiomyocytes in chicken. J Inorg Biochem 2017; 170:17-25. [PMID: 28214429 DOI: 10.1016/j.jinorgbio.2017.02.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 01/21/2017] [Accepted: 02/09/2017] [Indexed: 12/15/2022]
Abstract
Dietary selenium (Se) deficiency can cause heart dysfunction, however the exact mechanism remains unclear. To understand this mechanism, 180day-old chicks, divided into two groups, C (control group) and L (low Se group), were fed with either a Se-sufficient (0.23mg/kg) or Se-deficient (0.033mg/kg) diets for 25days, respectively. Heart tissues and blood samples were collected. In L group, the activities of serum creatine kinase (CK) and creatine kinase-myoglobin (CK-MB) increased and typical ultrastructural apoptotic features were observed. Se deficiency up-regulated the mRNA levels of Cysteinyl aspartate specific proteinase 3 (Caspase-3), Cysteinyl aspartate specific proteinase 8 (Caspase-8), Cysteinyl aspartate specific proteinase 9 (Caspase-9), B cell lymphoma/leukemia 2 (Bcl-2), Bcl-2 Associated X Protein (Bax), (P<0.05), whereas, the mRNA levels of Microtubuleassociated protein light chains 3-1 (LC3-1), Autophagy associated gene 5 (ATG-5), Mammalian target of rapamycin (mTOR), Dynein and Becline-1 were down-regulated (P<0.05). Noticeably, Microtubuleassociated protein light chains 3-2 (LC3-2) mRNA level increased (P<0.05) by 20%. Western blot results showed that Se deficiency decreased the expression of Becline-1 and LC3-1 protein, however, the expression of Bax, Caspase-3 and Cysteinyl aspartate specific proteinase 12 (Caspase-12) increased at protein levels. The present study revealed that Se deficiency induced apoptosis while inhibited autophagy in chicken cardiomyocytes through Bax/Bcl-2 inhibition and caspases-mediated cleavage of Becline-1. Moreover, correlation analysis illustrates that apoptosis and autophagy might function contradictorily. Altogether we conclude that Se deficient chicken cardiomyocytes experienced apoptosis rather than autophagy which is considered to be more pro-survival.
Collapse
Affiliation(s)
- Jie Yang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Yuan Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Sattar Hamid
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Jingzeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Qi Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hao Li
- Rizhao City Animal Husbandry and Veterinary Bureau of Juxian, Shandong Province, China
| | - Rihong Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Hong Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
17
|
Kalishwaralal K, Jeyabharathi S, Sundar K, Muthukumaran A. Comparative analysis of cardiovascular effects of selenium nanoparticles and sodium selenite in zebrafish embryos. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2015; 44:990-6. [PMID: 25697046 DOI: 10.3109/21691401.2015.1008507] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Selenium acts as an important element in the prevention and treatment of cardiovascular diseases but their health-related effects have not been fully explored. As a novel attempt, zebrafish embryos were treated separately with SeNPs (5-25 μg/ml) and sodium selenite (5-25 μg/ml) starting at early blastula stage. Abnormalities were also observed in the morphology of the zebrafish embryos. The SeNPs-treated embryos exhibited concentration-dependent increased in mortality, pericardial edema, and cardiac arrhythmia. In contrast, sodium selenite showed no significant malformation effect in developing zebrafish embryos. The results of the present study conclude that the SeNPs were more toxic than sodium selenite. The results also suggest that lower concentrations of SeNPs and sodium selenite can be used as possible therapeutic agents for cardiovascular-related problems.
Collapse
Affiliation(s)
| | | | - Krishnan Sundar
- a Department of Biotechnology , Kalasalingam University , Krishnankoil , Tamilnadu , India
| | | |
Collapse
|